This program determines the complete viscous and inviscid flow around a body of revolution at a given angle of attack and traveling at supersonic speeds. The viscous calculations from this program agree with experimental values for surface and pitot pressures and with surface heating rates. At high speeds, lee-side flows are important because the local heating is difficult to correlate and because the shed vortices can interact with vehicle components such as a canopy or a vertical tail. This program should find application in the design analysis of any high speed vehicle.

Lee-side flows are difficult to calculate because thin-boundary-layer theory is not applicable and the concept of matching inviscid and viscous flow is questionable. This program uses the parabolic approximation to the compressible Navier-Stokes equations and solves for the complete inviscid and viscous regions of flow, including the pressure. The parabolic approximation results from the assumption that the stress derivatives in the streamwise direction are small in comparison with derivatives in the normal and circumferential directions. This assumption permits the equation to be solved by an implicit finite difference marching technique which proceeds downstream from the initial data point, provided the inviscid portion of flow is supersonic. The viscous cross-flow separation is also determined as part of the solution. To use this method it is necessary to first determine an initial data point in a region where the inviscid portion of the flow is supersonic.

This program was released through COSMIC as program ARC-11087. The italicized text above is from the official COSMIC release.

- Go to the page of references for the AOFA program.
- Download aofa.zip, containing the original source code, the source code converted to modern Fortran, and the input for a test case.