Public Domain Aeronautical Software (PDAS)  

The Monte Carlo Investigation of Trajectory Operations and Requirements (MONITOR) program was developed to perform spacecraft mission maneuver simulations for geosynchronous, single maneuver, and comet encounter type trajectories. MONITOR is a multifaceted program which enables the modeling of various orbital sequences and missions, the generation of Monte Carlo simulation statistics, and the parametric scanning of user requested variables over specified intervals. The MONITOR program has been used primarily to study geosynchronous missions and has the capability to model Space Shuttle deployed satellite trajectories. The ability to perform a Monte Carlo error analysis of user specified orbital parameters using predicted maneuver execution errors can make MONITOR a significant part of any mission planning and analysis system.

The MONITOR program can be executed in four operational modes. In the first mode, analytic state covariance matrix propagation is performed using state transition matrices for the coasting and powered burn phases of the trajectory. A two-body central force field is assumed throughout the analysis. Histograms of the final orbital elements and other state dependent variables may be evaluated by a Monte Carlo analysis. In the second mode, geosynchronous missions can be simulated from parking orbit injection through station acquisition. A two-body central force field is assumed throughout the simulation. Nominal mission studies can be conducted; however, the main use of this mode lies in evaluating the behavior of pertinent orbital trajectory parameters by making use of a Monte Carlo analysis. In the third mode, MONITOR performs parametric scans of user-requested variables for a nominal mission. Various orbital sequences may be specified; however, primary use is devoted to geosynchronous missions. A maximum of five variables may be scanned at a time. The fourth mode simulates a mission from orbit injection through comet encounter with optional Monte Carlo analysis. Midcourse maneuvers may be made to correct for burn errors and comet movements. (NASA Goddard Space Flight Center)

This program was released by NASA through COSMIC as GSC-12705. The italicized text above is from the official NASA release.

Public Domain Aeronautical Software (PDAS)