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ABSTRACT

This lhdbook of Data Redution MethoI contains sumaries

of reduction programs currently used by Data Reduction Division.

Generally the program descriptions consist of the statement of

the mathematical problem involved, the derivation of equations

used and the cowputztioril rrocedure employed.
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A HANDBOOK OF DATA REDUCTION METHODS
Introduction

This Handbook has been designed to provide in a single source tmvaries
of the data reduction metheds and programs currently used by the Data Reduction
Division. Many of the techi.iques outlined in this Handbook are criginal develop-
ments of the authors. The basis for the other methods described were obtained
from previously published technical reports and papers of individuals in the
Data Reduction Divisiun.

Particular car, has been taken to insure that each of the sections of this
Handbook can be viewed independently, as the "Program Requirements Document"
for a particular reduction. rn all ca3es possible the basic relationships among
the physical pripciples involved have been used to show the detailed derivation
of the equations prograumed. In general, eacb -section contains a description of
the aeapurement process or mathematical problem involved, tho derivation of the
equations for the progr m, and a computational procedure to be followed. Refer-
ences are given for each section where available.

The authors wish to acknowledge especially the outstanding contribution
of Mr. R.A. Montes, of DRD-T. without whose assistance this report would have
been impossible.
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INTRODUCTION:

Cinetheodolites are angle-measuring instruments used ". determine the
trajectories of rapidly moving aerial targets. Two or more theodolites
placed at known distances from each other measure and record on film
azimuth and elevation angles to the target. Since the distances between
the theodolites (base lengths) and the angular measurements are known, the
positions of the target in space can be computed.

The existing WSMR cinetheodolite system is composed mainly of two
types of cameras, the standard Askania and the Contraves, which are located
throughout the range to provide complete instrumentation coverage. The
computational procedure is essentially the same for both types of theodolites.

In operation, the theodolites are continuously sighted on the target
and photographs are taken of the target and two graduated circles (azimuth
and elevation dials) at regular or irregular time intervals. To insure
that these photographs are taken simultaneously at each measuring station,
the shutters of the cameras are opened by electrical pulses from a central
timing station.

Figure 1 illustrates the angles measured by two theodolites. The
location of these theodolites depends on the type of terrain and or. the
flight or firing direction. The distance between any two stations should
be a maximum of one-third and a minimum of one-fifth of the expected
average distance between the camera and the target.

Figure 2 shows a film frame of a missile which was measured w:.ch
Askania cinetheodolites. Figure 3 shows a fil,, frame of an eirzraft
measured with Contraves theodolites.

(
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Description of the Askania Theodolite

The Askania theodolite is constructed about a rectangular axis system,
illustrated in Figure 4, which consists of the vertical main axis, (19),
the horizontal auxiliary axis (89), and the sighting axis (99) which is
at right angles to the auxiliary axis. The three main parts of the
cinetheodolite are:

1. The rigid base, Fig. 5(14).

2. The U-shaped camera trunnio, Fig. 5(46), which turns abcut
the vertical main axis,

3. Th^ camera, which can be tilted through the horizontal
auxiliary axis, with objective lens, Fi;,. 4(105) and sighting telescopes,
Fig, 4(70,71).

The theodolite is secured to the bese plate by three foot-screws
and holding clamps. The camera trunnion, which includes two levels at
right angles to each other, Fig. 5(44), is leveled with the horizontal
axis by means of theset foot-screws.

The trunnion k..so contains th%, operators' eyepieces for the tracking
telescopes, Fig. 4(49), and the necessary optics for projection of the angle
data f-om the graduated circles onto the film.

Sighting the Theodolite

On opposite sides of the camera carrier, hand wheels, Fig. 5(37,38)
are provided so the camera can be turned by wvrm gears, Fig. 6(58), and
worm wheels around the vertical main axis, or tilted about the horizontal
auxiliary axis. The hand wheels have a two-speed transmission, coarse
(three degrees per revolution) and fine (one degree per revolution).
The switching from one to the other is done by pushing or pul-ling the
hand wheels in the direction of the axis. To set the camera quickly, th'i
worms can be released so the camera isfreely sighted toward the target.
The lateral worm drive is released by turning the knob, Fig. 6(28), coun'ter-
clockwise, wherets the vertical drive is released by turning the lever,-,
Fig. 6(59). to the right,

GraduateZ Circles

The thendolixe is provided with two glass circles, which center with
the main axis or the auxiliary axis, respectively. The azimuth circle,
Fig. 4(3)), 3s graduated every .5' and numbered clockwise from O* to 360.
It may be reanually zaroed by tho field operator. The elevation circle,
Fig. 4(50), is graduated from 0* to 1800 and calibrated for an additional
graduation of approximately 10° in both directions. The vertical motion
gears disconnect at a depression angle of 6, which limits elevation
traverse.

13
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Reading Microscop,. and Photo Recordings

Optical systems, Figs. 4(32,51), located inside the camera carrier,

in the hollow auxiliary axis, and in the camera itself, are used to read

the glass circles and film recordings. The etched scale divisions on the

glass circles are first projected on a scale plate ard then transmitted by

various prisms to the aperture plate. Microscopes, Fig. 4(49), switched

into the optical ray path by a push button, are used in reading the gradu-

ated circles which are calibrated t, 1.01
° so that 0.001 can be estimated.

16
A

ll I This dial reads 16.528. If the

11 1 11 1 1to number 16 were in the upper left
k hana corner the diil would read

5 6 7 8 9 10 16.028.

16

Fig. 7. Askania Dial Reading (Style Al

New Askania caveras show whole degree values. In additiot, each
degree is coded at the bottom of the dial.

f116
E

Ii 200

a 0 232/2 - 116,
2 the whole degree

t! bI|
b Fig. 8. Askania Dial Reading (Style B)

The fraction of the degree would be 0.125". Since the distance, b,

represents one-half degree a represents a decimcl portion of that half

degree. Therefore, the angle is 116.125". Had the whole number 116 been

in the lower half of the dial, the actual angle would be 116.50 plus thea

fraction -or 116.62S*.

17



Fig. 9. Askania Camera, Counter
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Fig. 10. Askania Camera, Magazine side
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Camera

The camera consists of ore object lens, Fig. 4(105), with aperture
plate, camera housing, shutter, the camera mechanism, motor, and film
traspcrt gears.

Sighting Telcscop

Each side of the camera has a sighting tlescope, Fig. 4(70,71).
These are inserted in guiding grooves and fastened by clamp screws,
Fig. S(87). The operators position the camera oi. target by turning the
hand wheels until the target is centered in the field of view o" the
telescopes.

Frame Counters

Two counters are built into the camera: one for the consecutive
numbering of the frame, the number being projected on the frames, and the
other indicating the amount of exposed film. Both counters can be read
from outside the camera when it .is open.

Before operations the frame counters of all the theodolites may be
set to zero to facilitate comparisons of corresponding frames. The
number shown in the window is always one unit smaller than the projected
number on the film. If the frame series is to begin with 000, the counter
should be set to 999.

Technical Data for Askania

Objective Lenses:

Focus of 30 cm 60 cm 100 cA

Aperture 1:4.5 1:4.5 1:6.3

Field of view 4036'x656' 2°18'x3"28' 1"23'x2"04'

Frame size 24x36 mm 24x36 mm 24x36 m

Diaphram 1:42 1:42 1:8 and 1:11

Sighting Telescopes:

Magnification lOx 12x 20x

Field of view 608 '  5025' 3*13'

Free aperture 60 ma 60 mm 80 mm

20



Graduated Circles:

Graduated from one-hundredth degree. Each degree and each one-

half degree is numbered.

Azimuth 0-360"

Elevation 0-180' with additional graduation of I0
in both directions.

Reading Microscopes:

Fine Reading through 100 division scale to 1/100b degree.

Magnification 3Sx

Venetian Blind Shutter Exposure about l/ISO secon4.

Maximum Frame speed S frames per second.

Magazine capacity To 165 feet standarA film.

Description of Contraves Theodolite

The Contraves photo-theodolite, Fig. .11, s an instrument which when
directed at stationary and moving targets records their position.l in angle
values at accurately determined time intervals. At each of these intervals
the target is photographed and on each of these photographs thz position is
indicated with respect to cross hairs, azimuth, elevation And time. A
theodolite measuring system is conprised of at least two theodolites. To
correct the measured data for instrument errors, each theodolite is provided
with an array of fixed target boards. The positions of the target boards
are determined in the WSCS coordinate system with high accuracy by the
fundamental survey of the installation.

21
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Description of Figure 12

1. Optics housing

2. Main telescope

3. Tracking telescope

4. Elevation drive shaft

S. Tracking telescope objective-12, 4 power

6. Tracking telescope objective-2 power

7. Prism for magnification selection

8. Eye piece

9. Sun shield

10. Color filter turret

11. Azimuth bearing

12. Image plane

13. Flash lemp

14. Light path for cross hair projection

IS. Light path for azimuth scale projection

16. Light path for elevation scale projection

17. Light path for frame count projection

18. Glass disc with azimuth scale engraving

19. Glass disc with elevation scale egraving

20. Frame counter

21. Synchronized camera-35 m
|4

22. Spur gear for elevation drive

23. Spur gear for azimuth scale setting

24. Cross hair illumination bulb

25. Reading microscope

24



Optical System

The optical system of the theodolite, Fig. 12, is comprised of three
sections: the angle measuring equipment, the photographic optical equipment
and the sighting equipment. The angle measuring equipment consists of two
double graduated circles which are used to reproduce on film the angylar
position of the main telescope. The circle graduations are projected into
the camera by an optical system using prisms for deflection and a flash
lamp as the source of illumination. The photographic optical equipment
consists of the main telescope, an iris, filters, focusing mechanism,
cross.hairs and camera. The main telescope is a folded optical system with
a focal length of 1.5 meters and an aperture of f 1:8. The sighting equip-
ment consists of two tracking telescopes, one for elevation and one for
azimuth. They are provided with a change-over prism for changing magnifi-
cation from 2X for searching to 12.4X for tracking.

The camera takes pictures through the main telescope at the rate of
either five, ten, twenty, or thirty frames per second. Standard 35mm
motion picture film is used with a register pin movement. The picture,
Fig. 3., is O.3* x 0.5 ° located in the upper three quarters of a standard
35mm single frame picture. Azimuth, elevation and frame number dials are
simultaneously photographed across the bottom of the 35mm frame. Two
perpendicular cross hairs are located in the center of the picture on the
optical axis of the main telescope. These are used as reference marks to !
determine tracking corrections between the image of the target and :he
optical axis of the telescope as indicated by the cross hairs and the azimuth
and elevation dials.

Time Recording System

The time recording system consists of a flash lamp combined with a
frame counter. Very accurate timing pulses are used to trigger the flash.
The same pulses are used to operate the electro-mechanical frame counter,
serving actually as a counter of the received timing pulses. The flash
illuminated frame counter scale is projected via its own set of deflecting
prisms and lenses into the camera. A microscope enables the operator to
read the two. double-circles and the frame counter.

One Man Tracking

The tracking system has been developed to provide fo, ,oe man
operation. The conventional two man handwheel operation is jplaced with
a joy-stick. Through careful proportioning of the conxrolled position-
velocity-acceleration drive, good control response characteristics are
achieved.



Reading Microscope and Photo Recordings

Readings of the azimuth and elevation are presented on the film from
graduated circles. The scale is read in two steps: First, the main scale
is read with respect to the pointer (coarse index) to the nearest 0.1
degree which is represented by the numerals and larger graduations of
the main scale, (Fig. 13). Second, the fine index position is read to
provide 0.01 degree directly and 0.001 degree by interpolation. This is
done by starting the fine index reading under a large main scale gradua-
tion which is numbered, and reading with respect to the main scale
graduations. Although it appears the scale can be read at any of five
positions, the recommended position is the one in the center of the field
to minimize, to a negligible amount, any distortional effects of the data
optical system.

The small graduations of the main scale represent 0.02 degrees when
reading only the main scale with reference to the fixed pointer, but
these same small graduations represent 0.01 degree when reading with
respect to the oppositely moving fine index scale.

Azimuth Degrees
Course 282 2 46
Scale __> I V This dial reads
Fine I I I 282.449 degrees
Scale

. Fig. 13. Contraves Dial Reading

Reticle Pattern on the Film

The reticle, two orthogonal lines$ rotates in elevation. The two
short perpendicular marks on the same reticle line are calibration marks
which are a reference for film shrinkage computation. It is possible to
read tracking corrections using the reticle but with existing equipment
at WSMR it is too time consuming. If the reticle is used to measure the
tracking corrections, the reticle with the two short perpendicular marks
is the line along which the azimuth tracking error is read, additive error
to the left of the elevation, subtractive to the right. The third short
perpendicular mark indicates the line along which the positive elevation
tracking error is read.

26
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Technical Data for Crintraves

Objective Lenses:

rocal Length 1500 mm 15% (60 in)

Aperture 190 mm (7.5 in)

Relative aperture 1:8

Iris Diaphragm 1:8 to 1:22

Frame size 24 x 15 mm, 0.8* x O.S

Sighting Telescopes:

Magnification 2 and 12.4 power

4 and 20 power optional

Field of View 25.S ° and 5.5"

12.5 and 2.5" with option

Operating Range

Elevation -S* to +185"

Azimuth 0 to 360*

Camera Frame Rate 5, 10, 20 and 30 frames per second

27
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FILl READING EQUIPMENT

TELEREADEX - TYPE 29-A (FRC7 ?).JECTION TELEREADER)

The Telereadex (see Vigures ", aid 15) is a front-projection film
reader incorporating positive pin r glstration and autonatic frame advance.
The image is projected by a 750-watt lcmnp through a lens directed upward
where it is reflected by a silver surfaced mirror onto a flat white surface
to give maximum resolutio, "X" and "Y" boresight measurements are made
using movable cross hairs vihch traverse the entire surface. Associated
r ecording equipment includes the Telecordex Linear Calibrator, either
the IBM 517 or 523 Summary Punch, and an automatic typewriter.

The machine can take either standard double frame or high speed
single frame Askania or Contraves Film, or 16mm and 35mm radar boresight
film. The majority of radar boresight and high speed Askania films use
the pin registration; the staodard Askanin does not. There are 16mm, 35mm
and 70mm mechanisms available. The film may be advanced 1 to 12 single
frames or I to 6 Askania frames.

The lens systdm o* the Telereadex consists of 5, 10 and 20 power
magnifications with 40 power available f needed.

The accuracy of the machine varies with the steadiness of the initial
tracking, pin registration, and film quality. Accurate measurements can
be made at speeds of 7.2 seconds per frame on standard Askania; 2.2 seconds
per frame on high speed Askania and pin registered 16mm radar boresight.
Pin registration is accurate to .003 inch. Least count is tll0 microns
at the measuring surface.

DIAL READERS

The Coleman Dial Reader (see Figs. 16 and 17) is an electro-mechanical
apparatus for reading dials on either standard or high speed Askania
35mm film. The projector lens, film, and film movement mechanism are all
attached to a movable carr age which may be shifted by means of a side-
mounted lever, or rotated by a worm gear, to position the image on the
frosted glass surface for viewing.

The fxlm may be adv iced manuaily or automatically by a selector
switch on the front panel. At the discretion of the operator it may be
advanced onu throuoh twelve frames, or continuously. Film may be run
forward or backward with the frame count adding or subtracting, depending
on the direction of film travel.

?,o vertical wires are positioned iust behind the viewing plate for
measurement of either azimuth or elevation, with separate runs for each
measurment. The two wires are so coupled that one wire is used to set
zero or, the viewing surface, and the other wire, which is coupled to a
digitizing unit for the memory relays, is moved to make the measurement.

28
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Readings may be made at the rate of approximately three hundred per
hour with high speed Askania, or two hundred per hour with standard Askania
with the digitizing vernier of one part in one thousand. The whole degree
readings are punched in a keyboard and the +1800 and +.S' indicator switches

set. These data are read out into an IBM 517 or 523 Summary Punch furnishing
azimuth or elevation repeings, frame count, the whole degrees, and switch
settings on punched cards.

The Cqleman dial reader has been modified to read Contraves dials.

The Parabam and Corvus dial readers are essentially the same as the
Coleman. The Parabam dial reader utilizes 35mm or 70mm film. Contraves
film can not be read on the Parabam. The Corvus dial reader is adaptable
to either Contrpves or Askania film.

ASKANIA VIEWER

Th - Askania Viewer is a portable manually operated device for viewing
and measuring boresight data recorded on 35mm film. With the aid of two
cross hairs and the calibrated degrees and minutes marks around the upper
edge of the plate, it is possible to read angular measurements. The
cross hairs are marked in degrees and minutes, both veiticafly a~d horizontally,
so that it is possible to read tracking corrections directly from Askania
film. The azimuth and elevation dials may also be read with the Askania
viewer, making it possible to obtain all the required information to compute
space positions from the one machine.

The viewer requires only 12 by 18 inches of space; however, it is
usuaily mounted between two large hand cranked reels on an 18 by 42 inch
table to make transportation of the film easier. Operated in this manner,
the machine has a capacity of 800 feet of 35mm film. The film transport
on the viewer itself is limited to a total capacity of 100 feet of film.

The film is wound from one to the other of the two hand-operated reels,
passing over a diffused light and being viewed through the machine during
this process. The diffused light is furnished by a 25-watt frosted bulb
looated in a metal cylinder in front-of the machine. The light is reflected
from a diffusion plate through the film. Two operators, one reading and
one recording, can read and recc-d 40 to S0 frames of Askania film per hour.
This includes the reading of azimuth dials, elevation dials, X and Y dis-
placement readings, allows time to change film rolls, and mark frames to
be :ead. The viewer is calibrated to read directly from film taken by 60 cm
optics.

ASSESSING AND READING FILM

The purpose of reading film is to determine the location of the target

or missile with respect to the center of the frame. The Telereadex (Front
Projector) is the machine primarily used fcr these measurements. When read-
ing Contraves film the head of the reader must be rotated 90 degrees so that
the film X and Y axes coincide with the reading machines' X and Y cross hairs.

33



Assessing Film

The following information appears on the films:

1. Timing

2. Direct and Indirect orientation targets (6-8 each)

3. Missile images

4. Azimuth and elevation dials

The film is assessed fo- the following factors:

1. Quality, density and contrast of film in general

2. Definition of targets and missile images

3. Definition of fiducial points

4. Definition of azimuth and elevation dials

S. Definition of frame counters

6. Definition of time code

7. Consistency of missile remaining in each frame through the
complete run.

The following additional information is noted during assessment as
an aid to the reader:

1. Frame number of zero .ime for each camera

2. Number of readable frames

3. The numbers of the first and last frames containing readable
images.

READING ORIENTATION TARGETS

There is a maximum of eight direct and eight indirect targets. Six
to twelve frames are taken of each target (direct and indirect). The
machine operator runs the film to the first target and selects the best
target imagz for reading. The machine is then zeroed by moving the cross
hairs until they coincide with the fiducial marks on the Askania or the 0

intersection of the orthogonal lines on the Contraves film. The operator
then clears the Telereadex and moves the cross hairs to the center of the
target image. The displacement (x, y) of the target image from the center of
the frame is punched on cards by the IBM card punch. The operator then
selects the best image of the second target, zeroes the machine, and reads
the displacement of that image. This is done for each of the targets.

34
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After all the targets (direct and indirect) have been read, the film

is run to the first readable missile image marked by assessments. The
above procedure is followed for reading missile images. Each frame is
zeroe!d, read, and punched on cards as requested by the projects.

DIAL READINGS FOR 35MM FILM

The boresight readings give the image location (target or missile) with
respect to the center of the frame, The dial readings give the angular
position of the optical axis, which goes through the center of the frame.
This brings the internal system of the camera into alignment with the ex-
ternal system of the range. The film should be run to the first target
image recorded, the azimuth dial read, and the information punched on the
card. The azimuth dial is read for every frame which was measured in the
orientation and boresight corrections. After the azimuth dial corresponding
to the last missile image is read and recorded, the operator returns to the
(irst target and repeats this procedure, reading the elevation dials.

To summarize, three sets of cards are punched: One set with the
orientation targets and missile displacements, one set with the azimuth dial
readings, and the third set with the elevation dial readings. These three
sets of cards are combined and fed to the IBM 7094 for computing corrected
angles and trajectory data.

TIMING ON ASKXNIA FILM

A binary coded decimal timing is used on the Askaiuia film. While the
film moves frcm left to right, the code is read from right to left. The
code is always at the bottom of the film and recycles every ten minutes.
Zero time is indicated by three reference marks with no coding indicated.
There are also reference marks between decimal digits. The code from 9
minutes, 51 seconds through ten minutes as it is seen on the film is shown
in dig. 18.

35



Film Movement .,-

SUnits of minutes Tens of second* s kits A2 second$ T InA1osod
11110 111ll0 1111l-i0

8 4 2 1 reference 4 2 1 reference 8 4 2 1 referance

11_£0 1_10 __l0 , ,

£__ ~~~ mi S_1 s _1 0,e

9 d 6 bec

jj~~ j jj9min S7 see

1i_ 110 j_1_9 min i 9 sec

_ __ 0 ,10 smi

Fig. 18. Timing 6n'Askmnia Film
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Timing on Contraves Film

IRIG Standard Timing (Format B) is used on the Contraves fiiL.
Format B is basically a pulse-width code in which the time i5 expressed
twice in each time frame. (Figure 19a)

The first code word is time-of-year expressed as binaty coded decimal.
The second word is time-of-day expressed in straight binary notation, as
seconds only.

Outline of Format B

1. Time: Universal Time (U3-2)

2. Time Frame: 1.0 seconds

3. Code Digit Weighting options: BCD, SB or both

a. Binary Coded Decimal time-of-year code word

(1) Seconds, minutes, hours and days

(2) Recycles yearly

b. Straight binary time of day code word

(1) Seconds only

(2) Recycles each 24 hours

A timing index is used on the Contraves film. It is found at the
beginning of the film. It is measured as follows:

A B

a a 0 0 0 0 0 a a a a a 10 8 13319)
90

/oouoo oooofooooooe goa

Fig. 19. Timing Index on Contraves Film

The discance AB is measured as shown in Figure 19. When reading the
time of the first frame the true time of that frame is located a distance
AB from the time actually shown for theframe. The difference between these
two times is the correction to be applied to all succeeding frames.
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THE CINETHEODOLITE REDUCTION

The data obtained from each cinetheodolite consists of an azimuth
and an elevation angle to the missile from the cinetheodolite. The
azimuth angle (a) is defined as the angle (measured clockwise from north)
of the projection of the missile on the horizontal plane. The eJvation
angle (e) is defined as the angle between the line of sight to the missile
and the horizontal plane (See Fig. 20).

Up

N

Fig. 20. Cinetheodolite Angles

These measured angles contain errors, some of which are known and
some of which are indeterminAte. The known errors iay be corrected for;
the indeterminate errors are minimized by the least squares position
solution.

Corrections for known errors in, the measured angles or dial read-
ings may be considered as belonging to two groups: Corrections for
errors inherent in-the camera due to mechanical limitations; and cor-
rections to bring the internal system of the camera into alignment with
the external system of the range.

The first group will include eccentricity and lens sag; the s6cond
group will include reference zero, collimatioi-, and mislevel (or tiit)
and corrections which must be applied to compensate for tracking errors,
A further correction must be applied to the position data to compersate
for errors caused by refraction.
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The following method is used at White Sands Missile Range to determine
these corrections. positiomed about each theodolite station are eight equally
spaced optical targets. The exact location of these targets has been sur-
veyed. lumediately before and after each missile firing, orientation
shots of the targets are taken, first with the camera in a normal position,
and thn-with the camera in a dumped position (elevated through 180 degrees),
It is possible to compute the values of corrections for that particular
missile firing with data obtained from these orientation shots. These
corrections are then applied to the measured angles to obtain the corrected
angles for the final cinetheodolite reduction.

B'3cause of the presence of unknown sources of error in the instrument
and errors introduced in reading the film, the corrected rays irom all
the theodolites will be concurrent only with zero probability. Therefore,
the problem arises of estimating the position of a missile st a given time
from observations yielding a set of non-concurrent lines in space. This
is most frequently solved by assuming that the position of the missile is
at that point in space which minimizes the sum of the squares of certain
residuals (sometimes distances and sometimes angles). The method developed
here (the Davis Solution)* is based on the theory of least-squares, mini-
mizing the sum of the squares of the angular residuals. It will be noted
that this solution i identical with the maximum likelihood estimates of
missile position in the particular case in which the azimuth and elevation
angles are normally distributed.

ORIENTATION CALCULATIONS

Scale Factor of Film Reader (Cxy

(180)(Diagonal of film in inches)
Cxy (w)(Focal length in inches)(Diagonal in machine counts)

Theodolite Dial Ecentricity 'A)E,_Ac)

Cg represents the geometric L-ater of the circle. If the dial ro tates
around another point Cr, the arcs measured on the edge of the circle do not
correspond to the turned angles of the ia plate. Eccentricity in the
dials may be expressed in terms of:

E a The displacement of the geometric center of the dial (Cg)
from the center of rotation of the dial (Cr).

*R.C. Davis, "Techniques for the Statistical Analysis of Cinetheodolite
Data," NAVORD RPT 1299, NOTS 36N, . ,al Ordnance Test Station, China Lake,
California, 22 March 1951.

40



PWq r W -- - - V -_ - -- - -

* angle wit~h respect to reference at which the eccentricity
error is increasing thirough zero.

Figure 21 is the azimuth dial ani a theodolite illustrating the following
properties:

* 'diou cdio -actual dial readings c.-: the azimuth and elevation dials

I*ap #E - phase angle for azimuth and elevation dials

Eat EE - magnitude of displacement of center of ro:ation from
geometric center of azimuth and elevation dials.

AGE, AcE - Eccentricity corrections

adio

Fig. 21. Dial Ecceantricity Cxcrrect,.cn
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tan AaE -

1 - c- a *a)

tan AaE _-Ea sin (adio - ta)

Since AGE is a very small angle,

AaE  tan AaE x Ea sin (adio 4a)

The same procedure is used to measure the eccentricity in the ele-

vation dial.

Azimuth Zero Correction (AcL.) Orientation

Orientation error in azimuth (Aao) is defined as the constant
difference between the surveyed and the measured location of the target
(within the desired angular reference system).

adio ' dial readings of the frame which shows the ith target
board with the camera in a normal position.

Xdi - borisight measurement corresponding to adio, in reader
counts.

ario , dial readings of the frame which shows the ith target
board with the canera in reversed position.

Xr± n boresight measurementsccrresponding to the ario, in
reader counts.

Cxy - degrees count for the reader used to measure Xdt- Xri.

AaE  - azimuth dial eccentr.iLty correction

si = surveyed azimuth angle from nodal point of camera to ith
target board.

adi adio (Xdi) C + A cE

ari ario (Xri) Cxy - Aa-

42



asi - --- Odi ari) + go"

N

A0o I -jul
N

An elevation zero correction: hop is included in the level correction
computation.

Collimation (C

Collimation is defined as the misalignment of the optical and
mechanical axes of the camera when the camera is esevated 180 degrees
or dumped. The error caused by this misalignment is shown below.

Z

Elevztion piano 01. Optical, "IS

Elevation plane of mechanical axis

dio

Fig. 22. Collimation Error Correction

adi azimuth dial reading of the frame which shows the ith target
board with camera in normal position.

ari * azimuth dial reading of the frame which shows the ith target
board with camera in reversed position.

C + (ari - adi) * 90.

N
CO - i Ci
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Lens sag is caused by non-rigidity of the camera lens barrel. This
effect is shown by an exaggerated illustration. Error caused by lens
sag is maximum at O* and is zero at 90".

Target5 , ,
Surveyed elevation

Lof target
Lens

Barrel

Fig. 23. Lens Sag Error

Then if:

eds ¢r " corrected elevation dial reading of the frame which
shows the ith target with camera in normal and
reversed position respectively,

Cd - (Cr - 180")
2

Level Corrections CL, *L)

When the caeora is not levelled exactly prior to operations, error
is introduced as shown in Figure 24.
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Camera L
Vertical *'

/L

Fig. 24. Level Corrections

This error may be expressed in terms of L, the angle of staximmu tilt, and
*Ls the phase angle in the azimuth plane at maximu.m tilt.

Let:

asit 'ti a Surveyed azimuth and elevation angles from the. node.l point
of the camera to the ith target.

tdi a elevation dial reading of the frame which shows the ith
target in normal position.

L a magnitude of level correction

#L* phase angle

Assume that the error equation is of the form:

Ac - heo L cos (cIsi - 40

a Ao +L in asisin#L +L cos asi cos #L

where
Ac Csj edi

4S



Using:

N = L cos *L

M - L sin 4L

Aci  Aco + M sin asi + N cos asi

Using a least squares solution, the following matrices are formed:

It sin us Z sin2 a: ZVi 0s csai 1 thIe, sinas

L cos asi I sin cos asi t C0s2  j N rAci cos asJ

and solved for LEO, H, and N.

*L and L ar obtained from:

*L tain (-
N

Lu cos #L

Aco is the elevation zeroing correction.

Summary of Data Computed for Orientation Calculations

Cxy - Scale Factor

A ED ACE - Eccentricity

"o, uco - Azimuth and elevation zero correction (referenca)

CO a collimation

D a lens sag

Lt #L a magnitude and phase angle of tilt
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Corrected Angle Calculations._

Given dial leading (adial, cdial) and correction from above orien-

tation calculations, find correct a and Ei to be used in the reduction
for space Positions.

Measured azimuth, elevation:

a
Oueas 4 Odial - -b (See Fig. 8)

a
Cmeas 0 edial + 7-- (See Fig 8)

Eccentricity correction

9E " ft6as + 6aE

EE a Emeas + AcE

Reference azimuth, elevation

CI © GE + AG0

to CE + Ato

Lens sag

co 0 to + D os c o

X and Y reader counts converted to collimation for Askania are

+., XCxy + CO

T YCxy

and Cont raves

- (-X cos D + Y sin CD) Cy + CO

7 * (X sin €D + Y cos CD) Cxy S
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Then correcting the angles for collimation,

Si- Sin CD + YC CD 1

€C a%+ sin L] Cos EC C1 + X2 + T2)1

Level Correction (L, #)

- cos cC sin (c - L)
(i"L) sinl[" cos CL

(sin cL cos L - sin cc'\
ci = #L cos- K osELsinL

EL- sin'1 fin cC cos L + cos cC sin L cos (aC #L

acos1 Pl - sin2 E09~

Refraction Correction

The exact formulas for the refraction effect are extremely compli-
cated. Of the various approximate formulas which have been proposed, the
following has been found to fit the rigorous curvc. within adequate ac-
curacy over the limits in which it is used in cinetheodolite reduct gps.

-0,023157 (X2 + y2)&

A€R a Z + 100,000

Where (X2 + y2i w distance in feet"o the projection of the missile in the
horizontal plane, and Z = distance in feet to the missile above the horizon-
tal plane, ACR is the correction in degrees which must be applied to the
measured elevation. An approximate position of the missile is required %o
make this correction.

48



COMPUITATION4AL PROCEDUJRE

The coordinate system used is a cartesian system (X, Y. Z) where X is
positive to the North, Y is positive to the East and Z is positive upwards
from the origin.j

Using9 two stations an approximate position (X0 , Yo, Zo) is computed
by the bodwell* ivothod. If any one coordinate disagreement is greater
than 300 feet anothier position is computed using one of the first two
stations anid a third station. Tf t-'cre is still a disagr. 0, o zr
300 'aet then the second and tnirdl statirr-s are used to c01npIute t~ic apprr-
ximate position.

Assuming that X0, Yo, Z0 is a close approximation, the elevation
corrected for refraction may be computed by

ci 0cL +AER

A Bodwell point is used as v.he initial point for each position
throughout the missile rtn. The Davis least square solution is then
used to compute AX, AY, and AZ as follows:

A first approximation to the azimuth and elevation angles from the
ith theodolite is computed.

G U tan -1 ( --XO - Y i )

t I (Xo - X0)2 +(YO Yi)2

where Xi, Yi, Zi are the coordina.-s of the ith theodolite.

iee A Least Squares Solution of the Cinetheodolite Problem, C.A. Bodvell,

IJADC Report No. Mflfr-i8, 12 Dec. 1951
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The true azimuth and elevation from the station arc ,.pressed in a Taylor's
series expansion ir, which the higher order terms are iL. carded as negligible.
These series are:

1 i met ax A i--- Ayi+ - Zj. ... (1)

Ei "*i + ax Axi a An +--:- i+ (2)

The function to be minimized is the sun of the squares of the residuals.
The residuals are th4 changes in the angles. This sum becomes:

An ax (3)

where Pi and q are the angular weighting functions defined by:

. Pi',i([.0  Xj) 2  + (Yo.- yi) 2
Pj"= cos 2 gj -

(Xc - Xi) 2  (Yo - Yi) Z  (Zo Zi)2

Qi a

So
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Substituting: P1.11  0 P
ax

PiAi2 u i-PI
ay

Qjz - Qi

ay

Qiei Ui

and the approximate positions with respact to the ith theodolite,

X- Xi- xi

Yo - Yi a yj

o Z- Zi - i

and letting

gkj - Xk- Iaij aikP

hkj a hjku a ij jk Qi

i-1



Express the simultaneous equationsrmpresented by

33 , 0

U (5)

___ U 0

in the ftlicving fos:

(gil h1 ) j * (g 2 4 + him) AYi + (g1 3 + h13) Az

IEu (Mi - ?j) Pi vil (Tj - cv)Q (6)

(812 + h12) axi+ (922 * h22) Ayi* (923 + h2 3) &Az

IE12 (aji - Gj) Pi - *i2 (cl - c~j) Q] (7)

(g13 h1 3) Axj (g:3 + h23) 4y1 +(g3 3 - h33) A:1

jais (ci - GOO Pi +!, (ci - i) 'I ($)

The values of the coefficients of the variables 1Ix, ,- Id a n
Equations 6-8, evalAated at the first approxiiation, Mac Equation 4
whore

R12  xi2 + y12 + zi
2

becoac:

N Y12 . zi2

i-I R;4
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913 4,+ 
3

923 + 2 -I- ijul \, Rj4  "

N xt2 + z2

92 2  h22 ...- wl Ri4

-N X12 + y, 2

g3 3 c h3 3 "Iuil

by substituting

Ai a (9)R12

Bi a Rj (10)
RT

Ci a-- (11)R1J2

express the coefficients of the variables in Equations 6-8 a:

N N N

N N2 2  N

4l I -AiBj I(Ai Cj) I Pljcj (12)
ial iulil

N N N
-AiCi - BiCi I (Ajul- i-I i-I

and the cofactors &ll, Al2, 613# 622A A23- 633, (Ajk Akj) of the

4iete7uinant A way be readily obtained. The space positions may be
cwaputed from the solution of lie simultaneous Equations 6-8, yielding:
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N Fa 1 g1 1

=i - [il (zi " a'i) Pi + el (ci - Cri) Q

+i N A 12
a I I (ai " Pi ' e12 (91 - C'*) Qi-l -_ (13)

N Ia i a13

* [ai3 (Mi Q o.i) Pi + eil Cz£ - C'i) Q

with similar expressions for Ayi and &zi.

The new approximate position then becomes

XAi X0  * Axi

The new estimated point is then used to find a now An, Ay, . -
This procedure (iteration) is continued either until Ax. Ay and Az are
less than 0.1 units or through six iterations,

The azimuth and elevation residuals for each station are computed
(in radians).* The azimuth residual is multiplied by the cosine of the
elevation. After the last iteration, if the absolute value of any one
azimuth or elevation residual exceeds 2.25 minutes, the azimuth and
elevati-a angles for that station are removed and the point iz recomputed.

VARIANCE AND CO-VARIANCE OF TK COORDINATES

The angular standard deviations for each point way be found from
the residual angles (&ai cos ci and 6ci) using

)cos c1 2 * Ec 2icoR
2n-3

The coordinate o's are then computed using the oA above and the cofactors
of the elements of the principal diagonal of the least squaresdeterminant.
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Rotational Computations

The position data, havina been computed in the WSCS. are translated
Lo the desired origin and rotated into the desired tangent plane,

Hand Coputing Space Position

A simple two-station reduction (Bodwell Solution) may be used to
check the data which is received from the high speed computer. IBM 7094.
starting with the correctd angles, sa, €1. G2& C2. as follows:

1. cos a, 13. A - 1 a2 + bl b2 cl c2

2. cos el 14. BI a (x2 -x1) Al + (Y2 -yl) bl + (z2 - l) cl

3. sin *I  15. B2 - (x2 - xl) a 2 + (Y2 - Yl) b2 
+ (z2 - t1) C2

4. cos 02 16. A2 - 1

S. cos €2 17. B2 A -B 1

7. al- cos al cos cl -B1 A + 82

8. a2 - cos 02 cot c2 1 rA 2 -1

9. c 1 sin Ci 19. xol - r1 a1 * xl

10. C2 = sin 92  20. yol = rl b, + y1

11. - cos sin &1 21. Zol a rl c1 * z,

12. b2 - cos '2 sin @2 22. Xo2 - r2 A2 * x2
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1 23. Yo2 a r 2 b2 + Y2

24. 22 r2 C2 + z2

25. x. &
2

26. yo -Yol Yo2
2

27. Z0 . Z 02
2

(whe 'is yl* ls x2s Y2. z2 are the surveyed coordijAtes of the camra
station*s traslated and rotated.)
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B. POSITION DATA

11 Single Station AN/FPS-16 PIadair, including Derivation

of Dow Point Temperature
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WSMR SINGLE STATION AN/FPS-16 RADAR REDUCTION
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INTRODUCTION

The primary electronic tracking instrumentation system at WSMR is the
AN/FPS-16 Radar system. The system consists of nine radars, located through-
out the range: three at "C" station, two each at King-1 and Stallion sito,
and one each at Tula Range and Phillips Hill,

Although often referred to as a "systr.", It is actually simply a group
of individual instruments, since each radar is capable of independently
determining the position of the object being tracked. The radar reduction
discussed in this section is a sinlte-station solution for determining the
trajectory of a missile (or other target) in cartesian coordinates using
the range, azimuth, and elevation data as measured by oae ralar station.
An N-station solution which aetermines A single trajectory from the w3ighted
averages of multiple-radar weasurements will be discussed in a iater section.

Basically a radar operates by transmitting a Ligh-energy radio frequency
signal. A portion of this signtl is intrcepted by a refiecting object
(target) and reradiated in all directions. That energy which is readiated
back to thp radar is detected b7r the radar receiver. The distance :o the
target is determined from the tide elapsed betwoon the transmission of the
signal and the d'tection of the echo. The direction or angular position of
the target is INdicated by the point.ng angles of the antenna. (Norm.ly a
radar uses the same antenna for both transmitting and receivi:?.)

The nost common form of rf signal transritted is a tra. , c narrow
rectangular pulses, modulatinS a sine wave carrier. Since electromagnetic
energy travels at the speed of light, the range to the targat can be found

from R a c At where c is the velocit/ of light, and tit is the time required2

for the wave to travel out and back.

OGscu the transmitted pulse is emitted, a sufficient length of time must
be permitted to elapse in order that any return echo may be detected before
the next pulse is transmitted. (Otherwise the At would be measured with
respect to the =zong transmiLted pulse and erroneous range data produced.)
The measurement of range becomes simply a problem of time measurement. The
pulse repetition frequency (prf), i.e., the rate at which pulses are trapus-
mitted, determines the maximum range from t:hich echoas can be returned without
ambiguity:

R(fax. unambiguous) 2 cF)
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The radar tranimits a narrow beam of radiation, using a highly
directional antenna. Consequently echoes are received only from targets
lying in the direction in which thebeam is pointing. If the antenna, and
therefore the radar beam, is swept or scanned around the horizon, the
strongest echo will be received when the beam is pointed directly at the
target, weaker echoes when the beam is pointed a little to one side or
another of it, and no echo when it is pointing in other directions. By
measuring the antenna position (in azimuth and elevation angles) at the *ime
the strongest echo is received, the position of the target can be detarmined.

A tracking radar is designed so that, once it has located the target
which is to be tracked, it will "lock on" and automatically continuo to point
its antenna in the proper direction to follow the trajectory of the target.
The FPS-16's are equipped with a closed loop servo control system to perform
this' function.

The FPS-16 is a monopulse tracking radar, having four feed horns located
at the focal point of its parabolic antenna. If the target is centered
directly in the beam path, equal arounts of returned radiation will be re-
ceived by each of the four horns. If, however, the target is off-center, by
comparisons of the signal strength received ct each of the horns, error
signals can be developed to direct the servo system to automatically correct
the antenna pointing direction. The azimuth tracking error signal is propor-
tional to the difference be:wveen the sums of each vertical pair of horns.
The elevation tracking error signal is proportional to the difference between
the iums of the horizontal pairs. (See Fig. 1)

[E n AAz. - (A"C) - (B.D)

E AEI. - (A B) - (C D)

FIGURE i - Feed Iforn Configuration

The swa of the radiqtion recoived by all four horns is used to develop
the refermnce signal to which the azimuth and elevation error signals are
related. This sum signal is also used to develop the automatic gain control
(AGC) signal. the AGC contro-s a p*ifier gain of the radar receiver to
insure that the signal level inthe receiver is kept within the limits of the
receiver's linearity, and to prevent losset of small signals by noise or
large signals by receiver saturation. (Another application of this AGC. signal
will be discussed in connection with the "Radar Cross-Section" data reduction.)

The basii data obtained by a radar consist of range, azimuth, and elava-
tion observations, with timing, recorded digitally on magnetic tape in binary
code, The FPS-16's at WSMR use standard IRIG timing.
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AN/FPS-16 RADAR DATA CORRECTION

A precise calibration technique is necessary to correct the F-PS-16 raw
data for known errors. This includes orientation calibrations, data shaft
eccentricity corrections, mislevel andantenaa sag corrections, beacon delay
corrections, and refraction corrections.

Orientation Calibrations

Each AN/FPS-16 radar employed at White Sands Missile Range utilizes
an orientation system of six orientation targets, boresight signal generator,
range corner reflector and two boresight targets. The targets are referenced
in elevation and azimuth with respect to a local grid system and positioned
500 yards from the mechanical axis of the radar. Tie target boards are four
feet square and are mounted on sixteen foot poles ajiproximately eight feet
above the ground. Each target is quartered and brightly colored with opposite
quarters of the same color. One target, the grid target, is positioned in
the same horizontal plane of the radar at an elevation equal to zero ails to
insure an elevation plunge (dump) angle of exactly 180 degrees (3200 mils).

An optical telescope is used to sight the targets for positioning the
radar. The telescope can be moved from its mount. The telescope mount is
welded on the antenna support structure of the radar.

The boresight signal generator and the boresight targets are mounted
on the boresight tower approximately five hundred yards from the radar.

All calibration data are supplied by the radar division to Data Reduction
on a data correction sheet (Fig. 2).

The first step of the calibration procedure is to determine the relation-
ship of the vertical plane through the optical axis of the optical telescope
to the vertical plane which is perpendicular to the elevation axis of the
radar. This is done in the following manner:

a. Place the telescope in its mount in the reverse position while the
antenna is in the normal position.

b. Plunge the antenna in elevation and direct the mount until the
vertical cross hair of the telescope coincides exactly with the vertical
line on the grid target. (Read azimuth octal at the console.)

c. Return the antenna to its normal position and return the telescope
to its normal position. (Note that the azimuth reading has not changed.)

d. Read the deviation of the grid target board vertical cross hair with
respect to the telescope vertical cross hair. The sign is positive if the
grid target cross hair is to the right of the telescope cross hair, negative
if to the left. The deviation (cl) is recorded on the data correction sheet.

The next step in the procedure is to determine the location of the beam
axis with respect to the plane which is perpendicular to the elevation axis
of the radar. This is done by:
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a. Track the boresight tower in the automatic mode at the receiver
frequency and receiver bandwidth that is to-be.-used during the mission, with
the mount and optical telescope in the normal position.

b. Observe the optical target m the boresight tower with the optical
telescope. Read "a,", as positive if the v',rtical line of the target is
to the right of the vertical cross hair of the optical telescope, negative
if to the left. Read "el", as positive if the horizontal line of the target
is above the horizontal cross hair of the optical telescope, negative if it
is below. The "al". and "el", are recorded on the data correction sheet.

c. Plunge the antenna in levation and rotate 3200 mils in azimuth,
and track the boresight tower again. Read "a2", and "e2" as above and
record them on the correction sheet.

d. Obsorve the six orientation targets in sequence. Direct the mount
until the horizontal and vertical cross hairs of the telescope coincide with
the cross hairs of the targets. Record on the correction sheet the azimuth
and elevation readings converted to mils for each target.

The last step in the calibration procedure is to determine the range
calibration.

a. The radar tracks the corner reflector, the signal in the skin gate.
The octal range reading is converted to yards and recorded on the data sheet.

Data Shaft Eccentricities

The data shaft eccentricity error is defined as the error introduced
in the recorded data by the data shafts' not rotating about their true centers.
The eccentricity constants for each radar are supplied to Data Reduction by
the Radar section.

Beacon Delay Correction

The time delay between the reception of the radar signal by the beacon
transponder in the missilo and the transmission of the transponder's own
signal is known as the beacon delay.

Prior to a test, the beacon delay is measured and compensated for in the
field. The field measurement is compared with the beacon and skin data dif-
ferences. If the differences are wt zero, then a correction is added to the
field measurement to produce zero differences.

If circumstances prevent the beacon delay setting, the negative of the
beacon delay (Q) must be recorded on the data correction shaet.
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Other Error Constapts

The error constant (H) is that introduced by the elevation axis of the
radar not being perpendicular to the azimuth axis.

The error constant (D) is that introduced in the elevation angle due to
the sag caused by the weight of the attenna.

Refraction Corrections

Refraction error or propagation error is that error introduced in the
elevation angle and range due to the variations in the velocity of propaga-
tion through the atmosphere.

The values recorded on the data correction sheet are:

a. The wet bulb (Tw) and dry bulb '(TO) temperatures which areCdetermined by the use of a psychrometer.
b. The barometric pressure (Po).

Mislevel Correction

The mislevel error is that error introduced by the azimuth plane of
the radar not being coplanar with the surveyed azimuth plane.

Definitions of Symbols Used in the Reduction:

al, a2, el, e2 = Optical to beam axis observations

a, e - Correcticns for non-perpendicularity of beam axis to
elevation axis

CO - Correction for non-perpendicularity of beam axis to the
elevation axis t(Collimation)

cI - deviation of grid target vertical cross hair with respect
to telescope vertical cross hair

aoi - Recorded azimuth of the ith target

i - Recorded elevation of the ith target

ecl = Amplitude of elevation I speed shaft eccentricity

ec1 6 = Amplitude of elevation 16 speed shaft eccentricity

Ocl - Phase of elevation I speed shaft eccentricity
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€cl6 - Phtse of elevation 16 speed shaft eccentricity

e,21- mplitude of azimuth I speed shaft eccentricity

emI5 = Amplitude of azimuth 16 speed shaft eccentricity

0 Phase of aziNUth i speed shaft occentritity

4k16 w Phase of azimuth 16 speed shafc ocentricity

H a Nn-perpes;ciularfty of azinuth axis of the radar to t
elevtic mis of the .vdar

D a Err-. due to sal caused by the weight of the antenna

as* = Surveyed azimuth ang1e of the ith tarnt

esi w Surve/ed elevation angle of the ith target

L w Amplitude of tilt

#L a Azimuth angle away from true r.t*h, at which the maxlmum
islevel occurs

Aco , Elevation calibration qorrvtion (sein' coarection)

Aso a Asimuth calibration correction (zeroin correction)

n 0 Muber of targets

*R a Amplitude of range I speed shaft eoetric ¢y

# Phase of rangc I speed .shaft eccentricity

a Observed Aug*

Rs a Surveyed Range

06 v Raute calibration correction

ftip *i a Angular residuals for it- trg.t

Kle. K2a' ZlRI 12R a Cofficionts of e0fractiOm

II a Index of rstraction (not to be aonuaed with N L oa

PA a Pressure ig nillibsrs

Tv n Not bulb teapersturs in iops"s absolute

To iry b3lb texporaturo in bs absolute
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Cop aoj ' Observed angles at the jth tine

oj - Observed range at the jth time

Q a Beacon delay

free space velocity of propagation
Radar velocity of propagation 0'.0()00

j 064 =Final corrected angles at ith time in the radar tangent plane

w Final corrected range at jtn tlme

A u, Uj: N.j X Direction cosines of rader line of sight at jth time

xjt:, Yj". Zj" a Coordinates at jth time in WSCS plane

Xj', Yj , ZjI a Coordinates at 4th time with respect to desired origin in
WSCS plane

Xjo Yj. Zj a Coordinates at jth time with respect to tangent plane of
desired origin

Mathematical Procedure

The following is the procedure for the single station reduction of
AN/FPS-16 radar data,

Angular Orientation Calculations:

The correction3 for the error introduced by the radar beam axis not
being perpendicular to the elevation axis are computed as follows:

aI.l "a22

2. e= el-e
2

3. C0  a - -D2

By applying corrections (1) and (2) to the recorded azimuth and eievation

angles, all observations become referenced to the beam axis.

Cli co; - e

olh %oi - a
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The angles are then corrected for data sh&at eccentricity errors by the
following equations.

c21 o -li * e., sin (Lli - l) + ec6 sin 16 (c 1 i -.0c,16)

02i aali + e.1 sin (0li - *al) * 0.l6 sin 16 (cli" -a16)

The angles corrected for the error constant (H)p introzaced by the
non-porpendicularity of the elevation axis to the azimuth axis, become

-3i - sin-l (sin c2i cos IHI)

i+ sin c2i
u3 2 i I Cos €3i t/

Then, correcting for the error constant (D), due to the sag caused

br the weight of the antenna, the elevation becomes

c4i - c31 - D cos c i

The azimuth angle is corrected for collimation (Co), the orror due
to the non-perpendicularity of the beam axis to the elevation axis, by
the following equation:

c14i M 03i + CO sec c3i

Using the surveyed angles of the targets and the corrected sngles
oomputo

Aft • si - 041
Acliuc¢si-" 4i

&Ei e- - c41

The correction for the non-level error, which is due to the azimuth
plane of the radar not being coplanar with designated azimuth plane, is
computed using the surveyed azimuth data of the targets and the corrected
elevation angles of the targets.

Ass,.%ming that the error equation is of the form:

to + L co4 asi COS #L + L sin asi sin*L (I)
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let 1- L sin *L

Since Aci - -si - c41, equation (1) becomes:

A - o - 1+ sin asi + N cos asi

Using a least squares method, the sun to be minimized is:

n (Ato + N sin Asi N cos usi _ At)2

i-I

and

3AS - 2 [nAco + N i asi + N csai

So i i i I c~ s  A

am a 2 co  !, si as M Isnasi + N .H ast Cos Gsi

- Act sin as1

t 2 o  cossi +4 Isin asi cos asi N 1cos2 astini i-l i-l

n
- A(i COS asi
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The simultaneous equations are represented by

n n n
n& 0 4-N lCos QSi *M Isin asi e

i iJlil iii

n n n

A o  Isin asi N Isin asi cos asi N sin2 asi- lAci sin asii-I i=I iI iI

Ac0  I cos Gsi + N I Cos 2 
a si + I sin asi Cos si a Aci cos asi

i-I i-I i-l i-I

A=0 , M and N are obtained using the following matrices:

SI siasi I cos % o IAci

n W. n nIsin asi T sin2 asi sini si cos asi N Ati sin asi

nIM s  n n nA Ji
iri iul i-I i-l

*i os Osi I sin asj Cos s iI S2a NIu CoUi
juli-I Ica s N ac 1 ois

Then L - (p42 + N2 Ak

4L - tan-l k N

# ;, i -;-=th -.- from true north, at which the maximm
.-islevel occurs.

Ac) = the elevation calibration correction.

Compute the azimuth calibration correction

n

A0  Aai
il

n
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Range Orientation Correction (AR0 )

Correct tne range as follows:

7 (Ro" - R)

Range error - R sin 2048

AR a Rs -

ARo a AR * Range error

Angular Residuals:

Compute the angular residuals as follows:

6ci  Acj - (Ac0  H sin ast + N cos ast)

zai  Aai -

Coefficients of Refraction:

The coefficients of refraction are determined by the following formulae:*

Kle - (-1.01859!636 X 10-3) (N)

K2e 3 5.568912557 x l0$ - 4.351144769 x 10 (N) # 2.152067349 x 10 (N)Y

- 4.850656971 x 10-2 (N)3 + 4.143517896 x 10
5 (N)4

KIR - According to Table I (N.units vs KIR)

92R a 1.526309835 x 104 + 2.851703765 x 10 (N) - 3.067090397 x 10-1 (N)2

+ 4.943394167 x i04 (N)
3

where N is the index of refraction determined by the contribution due to the
pressure and temperature (S units) and the contribution due to the pre3sure
of water vapor (R units)

*Pearson, Kermit E., Kasparek, Dennis D., Tarrant, Lucile N., "The Refraction
Correction DevelpFed for the AN/FPS-16 Radar at WS?4R" (U), USA SMSA
Technical Memo:andum 577, November 1958.
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Compute:
l 23S3

• 6.22 1  .40sl -

PO - 10 log .4051 - 2353

Tb - 4 x 10-4 (T , - To)

where

To - Dry bulb temperature in degrees absolute

Tw = Wet bulb tem-eraturo in degrees absolute

Po a Possure in millibars

Then the dew peint temporature, TD, becomes

TD a 23S3

8.40S1 - log (Ta + Tb) Po 1I10 (Ta * Tb) + 6.22

s(7it, (P)
" TO

R(,mits) a logs [(TD - 273)(.02789) * 1.42618]

N(wuits) a R(units) + S(units)
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TABLE I

N units vs KIR

N units KIR (yards)224 thru 233
-3.03

234 thru 243
-3.04

244 thru 251
-3.OS

2S2 thru 260
-3.06

261 thru 263
-3.07269 thru 275f-3.08

276 thru 283Ji 
-3 09

284 thru 291 
-3.10

292 thru 298~-3o111

299 thru 305 
-3.12

306 thru 311
-3.13

312 thru 318 
-3.14

319 thru 323 
-3.15

324 thri 329 
-3.16

330 thru 333 
-3.17

334 thru 340
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Data Point Correction:

Having determined the calibration corrections. he observed data at the
jth time are corrected by the following formulae:

The data corrected for dit:s shaft eccentricity errors are

£lj " Coj + e.l sin (£oj - *cl) * ecl6 sin 16 (aoj - *c!6)

0aj - aoj + eal sin (oj - #*.) + *16 sin 16 (aoj - #*16)

R U Rol * eR sin TRj--#R)1

2048

where:

co = observed elevation angle at the jth time.

*oj observed azimuth angle at the jth tim.

Roj observed range at the jth time.

Correct the angles for the error constant (H)

a2j sin 1 (sil cij cos 1I1)

02j - (IJ + sin-i n Hcj

(in H cos c2J

Correct the elevation angle forthe error constant (D), and the azimuth
angle for the error constant (Co)

3j £2j - D cos c2j

03J 02j + Co - c c2j

Correct the ingles for the calibration corrections (Aco, As)

c4j a t3j + Aco

04J = 03J Aa0
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Correct the range for the range calibiation correction (ARo) tud
beacon delay (Q) by the following equations:

R2j - [R1 j + Ro + Q] F

where
free space velocity of propagation

Radar velocity of ropagation

The angles are then corrected for the tilt (L) by the follo.An

formzlae:

cSj a sin-' [sin C4j cos L + cos c4j sin L cos (a4J " *0]

SWCOs 4, sin (04j " *L)1(! sj " L + sin- ' co; CSj . .

aL + ' ,s.- in C4j + sin • cos L
L cos c5J sin L

Correcting the angles and range for the refraction correction. the
iinal corrected angles and range become

Kle R2j COS C5J

c6J - cSJ - K2e + sin CSj

a6j - j

- KIR R2j cos CSj J
R61 i R2 j K2R + R2j sin 'Sj

The direction cosines of the line of sight from the Radar to the missile

at time j are determined from the corrected angles by:

j - COS ct6j cOs 6j

* * COS c6j sin 26J

vj sin c6j
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The line of sight is rotated into the WSCS plane by the following
rotational matrices.

SCOS a. Cos C.

M = ,sin a. cos C

'u. Sin C.

where

M1 i 21 "31

12 22 32,
M M MH13 23 33

and

MH = sin 00 sin 0 k Cos (A0  A Ak) + cos 0 cos *k

H12 = -sin 0k sin (A0 - Ak)

H13 z -Cos 0 sin 0k Cos (X - Ak) + sin 0 Cos k

M21 = sin 0 sin (X0 -A0 )

22 Cos (A0 -k)

-cos 0 sin (X0 -k )

N1K = - si @0 Cos 0k Cos (X0 Xk) + sin k Cos *

M32 = Cos 0k sin (X0 - Ak)

M33 = Co. 0 Cosk cos (A0 - Ak) + sin 0 sip #k

*The derivation of this matrix :s described in ADDENDUM I.
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00, 0 = Geodetic Positions of the WSCS Point

Pkf Xk = Geodetic Positions of the k Radar

The direction cosines are then converted to rectangular coordinates in
the WSCS plane as follows:

xj = CR R6 (cos e. cos a.)

yj= CR R6 (cos c. sin aj)

I= C R6 sin r

C = conversion factor from yards to desired units. The coorc.nates
are thn translated to the desired origin by the following equations:

x. I x.' + Ax

y.'= y ." + Ay

z. = Z." + Az
3 3

where As, &Y, Az are the WSCS coordinates of the radar with respect to the
desired origin.

The position data may then be rotated into the tangent plane of the
desired origin by the following rotational matrices

X1 X

(As ) ( y Yj

z z11 I

zj/

where M is the M matrix as defined previously, except that 0L, L

replaces *k' k

0 L' AL' = Geodetic Positions of the desired origin (usually the

Launcher)
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and A is the rotational matrix that orients the system to the line of fire.z

f'CosA sinA 0
(A) u inA cosA 0

00 1J

where A is the azimuth of fire frum true north positive clockwise.

The range, azimuth and elevation may be computed with respect to the
launcher by the following equations

(x. 2 + yj2 + Z 2)1/2

RLj = CR

aLj = sin J

(x. 2 + yj2)1/2

L = sin
Lj 2 2 Z 1/2Cx. + yj + z. /
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AN/FPS-16 DATA CORRECTION SHFET

INFORMATION

INSTRUMENTATION RADAR NO. DATE

TARGET ROUND NO. OPERATION TIME

AZIMUTH OCTAL DATA SAMPLING RATE

REMARKS:

IN AUTO

.. ..... ORP CTION ATA,

WET BULB DRY BULB PRESSURE

SKIN GATE OCTAL BEACON DELAY_________

( DEVIATIONS FROM VERTICAL CROSS IAIR.

A1  A2  E1  E2

TARGET OBSERVATIONS (OCTAL)

TARGET NO 2 3 4 5 6

AZ IMUTM

ELEVATION _-

FIGURE 2
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DERIVATION OF P[W-POINT TEMPERATURE

The dew-point temperature, TD, is defined s3 the temperature to which
moist air must be cooled, while keeping both pressure and mixing ratio

constant, until the moist air just reaches saturation with respect to the

water. The dew-point temperature can be expressed as. a function of the
partial vapor pressure of humid air, e,, which in tLu.n, is found fro* the

wet bulb temperpture, dry bulb temperature and mixing ratios.

The basic relationship used to express the dew-point temper~ture in terms
of partial vapor pressure is derived from the Clausius-Clapeyron equation,

(sometimes called simply the Clapeyron equation). Whenever a substance changes
phase (molts, freezes, evaporates or condenses) a quantity of heat must be

supplied or taken away from the substance while the temperature rm-ains constant.
This quantity is called the latent heat (L) of the phase charge. If, for exatyle.
as in the computation of dew-point temperatures, the two phases are water and
vapor respectively, then L is the latent heat of evaporation. The Clausius-
Clapeyron equation relates this latent heat to the discontinuous change in
volume accompanying a phase change and to the slope of the curve of saturation
vapor pressure vs. temperature:

La (v2 - vl) T des (1)

dT

where v2, v1 a specific volume of vapor and water respectively

es a saturation vapor pressure

T a temperature.

."hen the specific volume of vapor is much greater than that of water,
(i.e., v2 "> vl), and the vapor is assumed to obey the perfect jas law PV * RT,

R being the gas constant for vapor, equation (1) can be written in the form:

des L dT (2)

as R T

Assuming that the latent heat is a function of temperature, L * b-cT,
equation (2) can be integrated to give

1n es = -b . -- Iln (T) + Constant (3)
RT R

or, letting

b
a
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C - c

A = the constant of integration,

in es " (- T  - C in (T) + A (4)

Substituting numerical values for the constants, and measuring the

temperature in °K, the value of the saturation vapor pressure, es, in

cenribars is found from

In "s " 6763.61 - 4.9283 In (T)- 51.9274 (S)

Converting to comon logarithms equation (5) becomes:

log as * -27. - 4.9285 log (T) * 22.55l (6)

or equivalently:

log e5. T[22.5S18 - 4.9283 log (T)) - 2937.4 (7)T

An expression for log (T) is f.'und, assuming the mean of the expected

tempe.-ature range to be 280"K.

log (T) - log +.0A * log '280) (8)

-log e In + log (280)( 28o /

• .43429 In 2) + log (280)
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A series expansion for lit (TJ-- wh(en T ., 1 neglecting
S280/ wh 280/ 2

aigher order terms which are insignificant, yields

V T 1
in ( 8 20 "280

ln 01 T T '9
\ 280

Substituting equatin (9) in equation (8) yields

lol. (T) = .4M29 (1 280- + 2.44716731 (O)

Using this expression in equation (7) gives the equation for saturation
vapor pressure as a function of temperaturo:

l T22.5518 - 4.9283 [43429(1 _ 2 2.44716731)i 2937.4
T

a Tr[22.Ssl8 - 4.9283 (2.44716731) - 2.0910284 ( 80 2937.4

T

a (845l1 253 (11)
T

From this equation it can be seen that' the dew-point temperature, TD, is
related to the partial vapor pressure of humid air, ep, in centibars, by:

23S3 (12)
TD =8.4051 - log ep

The part- I vapor pressure is found from tl_, wet bulb temperature, dry bulb

temperature a.- mixing ratios. The wet-bulb tempercture is defined to be the
temperature to which air may be cooled by evaporating water into it at constant

pressure until saturated, The latent heat of evaporation is thought of as
.orming from the air. The mixing ratio, that is, the rativ of the mass of water
vapor present to the mass of dry air containing the vapor, is not kept constant.
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If a stream of air at a certain pressure, temperature and mixing ratio
flows past a thermometer bulb which is covered with a damp cloth, water will
be evaporated from the cloth by the flowing air. The thermometer bulb will
be cooled by the evaporation. When an equilibrium condition is reached, that
is, when the loss of heat by air flowing past the wet bulb equals the sensible
heat which is transformed to latent heE.t, the following energy equation holds:

(To - T,)(cp + wcp') a (w' - w) Lw (13)

where To - dry bulb temperature (temperature of approaching air)

Tw * wet bulb temperature (temperature of leaving air)

w * mixing ratio of approaching air

w' mixing ratio of leaving air (saturated mixing ratio)

Cp * specific heat at constant pressure of dry air

cp' * specific heat at constant pressure of water vapor

Lw a latent heat of vaporization at wet bulb temperature

To and Tw are in degrees absolute.

The mixing ratio, w, is found from

w - O (14)
Od

where Ow mw 10 ep density of water vapor
RT

m. (P - 1 -0 ep) density of dry air
' d R

and ep is in centibars and P is in millibars.

md u apparent molecular weight of dry air * 28.966

mw  opparent molecular weight of water 1 18.0159

mw/m d - 0.62197

then 6.22 ep
- (15)

P - 10 ep
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The value of the saturation mixing ratio is defined to be the maximur.

value w may have at a specified temperature and pressure:

w1 6.22 as._" :6)
P - 10 es

where •s V saturation vapor pressure in centibars

P u pressure in millibars.

Solving equation (13) for w,

W, - (To - To) cp
W U e TI- Tw (17)

C ,
- -(To Tw) + 1LW

Equating equations (15) and (17) and solving for ep yields

[ - (To" T)-- P (18)

62 + Iw 0 "W - (To - Tw) -. 622 P 6.22

where

Cp - 1.003 joules/gram/OK

Cp' - 1.81 joules/gram/°K

Lw - (2502 - 2.38 Tw), but since Lw varies only slightly with the

temperature, L a 2502 joules/gram.

Substituting these values in equation (18) yields the solution

[w' + ( To - Tw)(-4 X 10-4)] P

10 [w' + (To -Tw)(4.9 x 10-5)] + 6.22 (19)
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A very close approximation to this may be found by assuming in equation
(17) that

(icPL (TO - Tw) 1.

Then [w' + (To - Tw)(-4 x 104)] p (20)

10 (w' + (TD - Tw)(-4 x 10-4)] + 6.22

which is used in the redv.cion of the dew-point temperature.

From equations (11) and (16) it is easily seen that

8 23S3I
6.22 log I [8.4051 - 7_

P- 10 log 1I [8.40si 2353]" Tw J

If Tia =w

Tb = (-4 x 0-4)(To _ TW) 4 x 10-4 (Tw - To)

then equation (18) becomes

(Ta + Tb) P
ep - + T P (22)

10(Ta * Tb) + 6.22

where ep is in centibaTs.

Substituting equation (22) into equation (12), the dew-point temperature
becomes

TD - 258.4051 - log (Ta + Tb) P 1
1-1O(Ta + Tb) + 6.22 J
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III Launchor Data
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LAUNCHER DATA

Introduction

Launcher data provide the distance a missile moves along its launcher,
and the velocity and acceleration of the missile along the launcher. The
data are obtained from a high speed fixed camera. A fixed camera may be
defined as a camera that utilizes a fixed field of view for photographing
mi3sile flights. The fixed cameras used to obtain these data at WSMR may

be high speed 70m or high speed Mitchell cameras.

The procedure involves finding the distance the missile travels along
the launcher when given the distance the missile image moves along the
image of the launcher in the film plane.

Film Reading:

The film is rnad on the Telereadex (which is described in the
cinetheodolite section).

To aid in simplifying the reduction the camera is tilted through an
angle equal to the elevation angle of the launcher. The top edge of the
launcher image i then parallel to the lower edge of the film frame. The
contractor places tapes of c certain width along the launcher at fixed
intervals. The edge of one of these tapes is chosen as an origin for the
film measurement.

The film is road in the following manner:

a. The telereadex is zeroed on the first visible tape.

b. Machine counts are read from the zero tape to three other
tapes.

c. A reference point is chosen on the missile. Starting two
frames before blast, and without re-zeroing, this reference point is read
and the machine counts recorded for each frame until the missile leaves the
launcher.

Standard IRIG timing (Format A) is used on the film.
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Mathemat ._ -'vtlon:

In the following derivation, reference is made to the figure below:

¢XL

E D -xF

y

L

T ,F - S

ax

- X

FIGURE I

Line xF is the x-axis of the film plane

Line XL is the x-axis of the launcher plane

ST is the optical axis of the camera and is perpendicul ar to xF

A is the focal point of the camera

y is the unknown distance on the launcher

x is the projection of y on the film

BD is parallel to xF by construction

0 is the angle between the launcher and the film plane

a- 90' +

a - 90" - (e +
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Since

MABD -AAOC

BD L
then

D Lx()
BD ,- p-- -" --

(x

By applying the law of sines to ABIW we find

y BD
sin a sin

si0 BD

sin go" sin [ow9 - (0.*)j

x BD
cos * cos (e.*
YS CO S I * I

BD cos.#
C "os (e + 4)

y UBD cos ,

cos e cos # - sin (2)

By substituting equation I in equation 2

--x Cos 4

Y cos 0 cos * - sin e sin

x
Ym p P

L Cos e - -L tan # sin 8

From the right AASC in Fig. I it is soon that

tan 4 x + A
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by substitution

- -cos i- P- e

x
S"Ax Px

cos 8 - si - = sin

P x P s i

L (cos - sin e)

if
P AX

a =-5 (cos 8 -- r--sin 8)

-P
b =-P sin e

where a and b are constants,

then equation (4) beccmes:

a + bx (S)

Since the distance (y) between the tapes on the launcher is known
and the corresponding values of x are read on the film, the values of x
and y may be substituted in equation (S) for Tuo distances thus obtaining
two eqtations. a and b may be solved for in the following wannor:

If Yi is the known distanc6 from the origin on the launcher to the
ith tape and xi is the corresponding mea-ured distance on the film, then

x1

Yl , .a + b xI

x2
Y2 =-a + b x2

a Yl + b x1 YJ = X1

a Y2 + b x2 Y2 - x2
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and solving by determinants

&w l x1 l~y-lxy

,'l X1 Ylj ~ l 2 XY
x 2 X2 Y2 X1 X2 Y2 - xIX2 Yl
lYI X1 Yam2X2Y X2 Yl Y'2 - XI YI Y2

Y2 X2 Yl X2 - X1 Y'2

'Yl xlyj -2 Yl Y2 - xl Yl Y2
Y2 X2 Y2 I

These values may be substituted in

x3
Y3 a3* a+bF x3

as a check on the computation.

The a and b are then substituted in the equation

x t

where Yt is the distance the missile has moved at time (t) and xt is the

corresponding value of Yt on the film.

Velocity and acceleration may then be computed as des,-ribed in the
Velocity and Acceloration section.
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I Telescope, Orientation Systomm for Hislevel
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TELESCOPE ORIENTATION SYSTEM FOR MISLEVEL CORRECTION

Four target boards have been placed an equai distance from and approxi-
mately every 90" about each telescope camera. Each target board contains
two diamond shaped targets (Fig. 1) and has been set up so that a line through
the center of the two diamonds, which we will call the target axis, is precisely
parallel to the local tangent plane of the camera.

AGO.

FIGURE 1

Immediately before each missile firing having a requirement for attitude
data, orientation shots are taken for each camera. This is done by sighting
the telescope on each of the four target boards in turn and photographing them.
The data from these orientation shots from each telescope are used to determine
the mislevel of that particular camera, the phase angle of this mislevel, and
the frame edge referencing correction. These constants and the position data
of the missile are then used to find the correction to be applied to the V-angle
reading of the missile. The calculation of this mislevel correction also re-
quires the surveyed azimuth and elevation angles from the camera to the target
board in the 11STM system, the launcher and camra coordinates in the WSCS system
and the azimuth of fire to which the position data are referenced.

The coordinate system used in the reduction of the missile position data
is defined as the XYZ system (launcher tangent plane). In deriving the equations
for this orientation system it is necessary to set up a new coordinate system,
X'Y'Z'. The X' axis is positive along the line of sight from the ca'uera to the
target board. The Y' axis lies in the film plane perpendicular to the X' axis
and is directed positive to the right and parallel to the XY'plane. The Z'
axis also l es in the film plane perpendicular to the X11' plane, and positive
up. (Fig. 2).
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FIGURE 2

The V-angle is measured clockwise from the Z' axis to the target axis
image.

We will first consider the target axis. If the surveyed azimuth and
elevation angles from the camera to the Jth target are csj and csj then the
azimuth and elevation angles of the jth target axis in the local tangent plane
of the camera are:

j "sj + 900

Ctj 0 eti 
U

The direction cosines of the jth targ9t axia in the local tangent plane

are:

aj -cos tj

bj - sin atj

cj - 0

These direction cosines are then rotated into the launcher tangent plane
by the following rotational matrices:

bLj [A] [R] bj02(1)1,Cj) ,cj 102



where

CsA sin A 0]

[A] - -sin A cos A 0] (2)

and A is the azimuth of fire to which the position data are referenced.

ScOs a.k  sin ak ioCs O Ck 0 -Sin ck1 0s ok -sin ak

[Ri] i-Sin Ok cos 0 1 0 sin ak COS ak 0

0 1Lsin ck 0 COS Ek _ 0 1

[sin2 Ok + cos2 Ok cos Ck sin ak cos *k (cos Ck-1) cos ak sin c€

[ 5Iin ak Cos Ok (cos (k-l) cos 2 Ok + sin 2  cos Ck sin ak sin kj (3)

Ecos ak sin ck -sin ak sin ck cos jk

where ak an2 ek are the angle, thru which the direction cosines of the target
axis are rotated to obtain the direction cosines in the launcher tangent plane.
The angles are:

ak - tan" I ) (4)
Xk XLL

ck a tan
I  [(Xk XLY2 4 k YL) (5)

o+ Zk ZL

where Xk, Yk, Zk = WSCS coordinates of tne K th cariera

XL, YL, ZL = WSCS coordir.ates of the Launcher

P a radius of curvature from the launcher to the kth camera

The radius of curvature, p, is found from the following equation:

RN R

R sin2 k N cos 2 ak - sin 2 ak+I
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where

R a "-adius of curvature in the WSCS origin meridian = 20,847,227.51 ft.

N a radius of curvature in the prime vertical - 20,946,96S.81 ft,

It is now necessary to obtain the surveyed azimuth and elevation angles
of the jth target board in the launcher tangent plane.

The direction cosines of the surveyed azimuth and elevation angles
from the camera to the jth target board in the local tangent plano are:

asj a COS aSi COS Csj

bsj - sin asj cos csj

Csj a sin csj

These direction cosines are rotated into the launcher tangent plane by
the following rotational matrices:

where the rotational matrices [A] and [R] are as previously defined in 5quations
(2) and (3).

The surveyed azimuth and elevation angles in the launcher tangent plane are:

a sj - tan1 bL (8)a'Lj/)

F c'L
c tsj a tan-1  I1. ..... ... (9)Lca'Lj 2 + b'uj2)&]

Now that we have the direction cosines of the target axis and the surveyed
angles from the camera to the jth target board in the launcher tangent plane
(X, Y, Z syste~m) we will rotate the direction cosines of the jth target axis
into the X'Y'Z' system by the following rotational matrix:
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jal j Cos Q&Sj COS E'S sin al5  COS ClSil ~ a

bij -sin a'sj Cos c'sj 0 bLj (10)

l'ij I-CO als Sj f si 'sj -sin cX'sj sin c'sj Cos Els cL J

The true V-angle of the jth target axis in the X'Y'Z' system is:

Vtj .u tan" I b (I

The telescope may not be level, that is, the vertical axis about which
the camera rotates may not be parallel to the Z axis of the reference system.
Thus the Y' axis would not remain parallel to the XY plane. This results in
a V-angle error which will vary as the camera rotates in azimuth and bay be
expressed in terms of L, the angle of maximum tilt or mislevel, and OL, the

phase angle in the azimuth plane at maximum tilt. Also, the V-angle reading
-eference axis (frame edge) may not be perpendicular to the Y' axis. This
error may be expressed as AVo. These errors are determined in the following
manner:

Assume that the error equation is of the form:

AVj s (Vtj - VJ) a * L cos (a'sj - #L) (12)

L = maximum tilt

OL - phase angle of maximum tIt

Q'sj = azimuth angle from the camera to the jth target board in the
launcher tangent plane

Vtj - true V-angle of the jth target axis

V? - observed V-angle of the jth target axis

Equation (12) may be written as:

4Vj - AVo + M sin a'sj + N cos a'sj

where M - L sin #L

N a L Cos #L
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Using the least squaras solution the following matrt#:es zre formed:

n sin a' ~ E C05.fl'j: r1, 7Aa r~
sj 0 1Vj n

Cos of E sin 3'sj Cos a'sj Z C0 2 a' LAvj -1 pi

where n a number of targets used.

AVe. 1 and N ari then solved for. These valtes are substituted in the

following equation to obtain the correction (AVi) to be applied to the i t n

V-angle reading of the telescope:

AVi " AVo * M sin aI + N cos at

where

S tan'l

XMI Y5 a coordinates of the missile at the ith time.

Xc' Yc a launcher tangent plane coordinates of the kth telescope.

Then the corrected V-angle is given by

Vi " V *An

The Vi's are then used as input data for the N-station attitude
reduction.
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Computational Order of Formulae

Compute the rotational matrix

F cos A sin A 0

[A] - -sin A cos A

where A is the azimuth of fire to which the position data of the missile are
referenced.

Compute for the kth camera:

1- ak - tan! xk XL)

where t
XkYk Zk = W5CS coordinates of the K camera

XL, YL' z1 = IVSCS coordinates of the Launcher

2. The radius of curvature, p, from the launcher to the kth camera

P

- sin 2  I +

where

R - 20,847,227.51 ft.

N - 20,946,963.81 ft.

-1 [(Xk - XL) 2 + (Yk - YL)2]
3. ck tan- S+ Z k  -Z L

k L.

4,

Fsin2 ak + cos2 ak cos ck sin ak cos ak (cos ck-) Cos Ok sift k

[R] *in ak cos Ok (cos ek-1) cos 2 , + fln 0k cos ck sin ak sin ck

L -cos ak sin ck -sin ak sin ck cos Ck
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Compute for each target about the kth camera:

1. Azimuth and elevation angles of the jth target axis in the local
tangent plane.

Stj a Csj + 90"
ct
Ctj 0

where asj is the surveyed azimuth angle from the camera to the jth targetboard.

2. Direction cosines of the jth target axis in the local tangent plane

aj - cos atj

bj - sin atj

cj - 0

3. Direction cosines of the jth target axis in the launcher tangent plane

[Li - (A] (R]\,Li/ 4bc iI

4. Direction cosines of the surveyed azimuth and elevation angles from
the camera to the jth target board in the local tangent plane.

asj - cos asj cos Csj

bsj - sin asJ cos Esj

Csj o sin Csj

S. Direction cosines of the surveyed angles in the launcher tangent plane.

b j - [A] [R] bsj

CLj (csj0
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6. Surveyed angles in the launcher tangent plane.

01j r tan'1

cLi]

7. Direction cosines of the jth target axis in the X'Y'Z' system.

Fa2 Cos atCoxt sin Q Cos CSJ sin i a i]

-- sin C os

8. True V-angle for the jth target axis.

Vt tan-1 (/bt)
9. AVj a Vtj - V;

we V observed V-angle of the jth target axis.
3t

For the kth camera compute:

1. AVo# M and N are from the following:

IE n£sin as I ECos Qsj AV IAVj

E sin *;j I sin 2 ajj Z sin a ;j Cos a L -l M AVj sin a-

L Cos asj z sin aCsj Ji Ls J sAVJ Cos ij_

n a number of targets used.
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For the ith position data of the sissile va.te:

1. Azimuth of the kth camera with respect to the it" assile position

ai tan 1  -- Y,.i -X - xc;

where Xm, Ym * coordinates of the missile at the ith time

X,, Yc * launcher tangent plane coordinates of the kth camera.

2. The V-angle correction (AVi) to be applied to the ith observe

V-angle

AVi = AVo + M sin ai + N cos ai

3. The corrected V--nglo at the ith time

vi VI *v t

whero Vi observed V-angle reading at the ith time.
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-t aion Attitude -Solution

In this N-Station Attitude Solution a least squares procedure is employed
twice. In the first application the residuals are functions of the V-angies.
The attitude resulting from the first least squares procedure is then further
refined by minimizing the suz of the squares of the errors in tho V-angles.

The coordinate system used in the reduction of tho position data is
defined as the XYZ-system. In deriving the equations it is necessary to set
up a new coordinate system X', Y', V. The X' axis is positive zlonv th.e line
of sight from the camera to the missile. The Y' axis lies in the .i-. plane
parpendicuiar to the X' axis and directed positive to the right ar. parallel
to the XY plane. The Z' axis also lies in the film plane and is perpendicular
to the X'Y' plane and positive up.

In this coordinate system the direction cosines of the vector lying along
the missile image are sine and cosinp functions of the V-angle" The V-anglo
it measured clockwise from the Z' axis to the missile image, These direction
cosinos may be rotated into the XYZ-system by the following rotational matrices.

603(~s ai cos Cj -sin ai -cos ai sin C, (0'

mi tsin a i cos Ci cos ai -sin a i sin c in Vi

nin ci 0 COS Ei 9O osV)
li. mi , ni are the direction cosines of the image vector in the XYZ-system.

aj, ci are the azimuth and elevation angles of the missile with respect to tho ith
station.

The followiig figur* represents the situation that exists at each station:

S ' i
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t is perpendicular td t~i projection of the missile axis a~d since it

lies in the Y'Z' plane it is also perpendicular to X1. t is peipendicular
to the plane determined by tho missile axis and the line of sight and is
therefore perpendicular to the missile axis itself. The direction cosines
of 't in the X'Y'Z' system are 0, cos Vis -sin Vi and the direction cosines
(ui, vig wi) o! t in the XYZ system are obtained as follows.

c sin Ci COS i cos ai  -sin ai sin 0 COS

L;;J in i  O COs ri -sin Vi

If am, b,,, cm denote the direction cosines of the missile axis then

a. ui + bm vi +. Cm wi  cos (1)

4 is the angle between the missile axis -Avi t. Therefore, equation
(1) becomes

am ui + ba vi + cm -'i a 0 0)
The function to be minimized is the sun of the squares of the residuals.

The residuals are the cos #is which would be zero if no errors were present.

The least squares sun to be minimized becomes

S r (0 - a ui - bm vi - CS Wi) 2  (3)

and

Js . 0 - 2(am Eu2 + bm Eui vi + c.a zui wi)

. S • 0 - 2(am rui vi + bm Zvi2 + c. Zvi wi)
abm

as . 0 n 2am ui wi + bM -vi wi + cm Ewi 2 )
acm

The simultaneous equations are represented by

a. Zui 2 I ba rui vi + cm Eui Wj a 0

am ru i vi + bm Evi 2 + CM Zvi Wi . 0

am Etil wi + bm Zvi Wi + CM Ewi 2 . 0
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Any combination of two of the above equations is sufficient to yield
a non-trivial solution for am, bin, cm provided that at least two t vectors
are not parallel.

The proportional relationship betwe6n the direction cosines in &ny one

of the three possibie solutions is

ft:bm:c s a p:q:r

Solving the first two equations, p, q and r become

rui vi Eui wij
£Zvi2 

Zvi wi

I ui2 Zui wi

q Iut Yi Z:vi Wi

Zui2  Eui vi
r =

Eui vi Zvi2

Then if D * /p 2 - q2 4 r 2  p, q and r are direction numbers,

-I

b.+

( r
Ca~

Since D has both a positive and negative value it is necessary to deter-
mine the correct signs of am, bm, ca. Assuming that D is positive the correct
signs may be readily found.

The direction cosines of one of the missile axis projections give rise to
the following equation:

li am + mi bm + ni c , cos i (4)

where B is the angle between the missile axis and its projection in the
film plane. 0i is always an acute angle. Therefore

l i am + mi 40 + ni c. >0 (5)
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In the i.vent chat cos B is close to zero this equation is invalid for
that particular station. Therefore, it is advisable to check at least two
of the stations in the following manner.

If (I i am + mi bm + ni cm) > 0 for both stations then go signs of the
direction cosines are correct.

If (li an + mi bm + ni cu) IC 0 for both stations then the signs of
am, bm, c. mast be changed.

If t±, (li a * j b. + ni ca) from the two stations are opposite in
signs, the station with the larger absilute value of (Xi am + ai ba + ni cm)
is used to determine the correct signt of the direction cosines, by use of
the above logic.

The approximate attitude angles may now be obtained by using the
direction cosines of the missile axis.

CA - tan" 1 b ! (6)

CA" a tan"l Cp (7)
[a2. + b2m]'

We now attempt to compute a "most probable attitude". The function to
be minimized is the sum of the squares of the angular residuals. The angular
residuals are the differences between the measured V-angles and the most
probable V-angles. The most probable V-angle may be expressed as a function
of the most probable missile attitude and station lccation.

Since am, bm. cm are the direction cosines of the/ssile axis in the
XYZ-system, the direction cosines of the missile axis in the XIYZ-system
may be obtained by the following rotation:

,am) M (Cos si Cos ci *in Gi Cos Ci sin i ra

jb'M -Jsin aj, Cos aj 0f bmJ (S)

1$) os aj sin ci -sin Clj sin cj Cos Ci) c)

and it is easily seen that

tan Vj - bm - - s. (9)
cos -am coS ai sin ci - bm sin e.t sin ci + Ca cos ci

where Vj" is the most probabla V-angle.
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The most probable missile attitude is an approximate attitude plus a
small change in attitude. By the use of a Tayior's series expanxion, where
A equals the approximate attitude and AA equals the change in attitude, the
expression for the mot' probable V-angle becomes

f(A + AA) a f(A) + AA f'(A) + --- f"(A) + . (10)
2

Since AA is a very small change all higher order terms may be discarded
as negligible and the function to be minimized becomes

S a z[v i - fi (A) - WAfi ' (A)) 2  (11)

If we assume *A* CA to be close approximations of the attitudes then
from equation (9)

( i(A) - V

£.(A) = tan- 1  -a sin (12) 
-as cos ai sin ci - bm sin ai sin ti + cm cos &I

and ( vi 3V0
iAf*' (A) "- 4 (13)

where

aVio a sin Vi [cos VIj cot (aA- ai) -sin Vi" sin Ej] (14)
SAa

-sin 2 Vi* COS Ci

DEA "  sin (ZA " - ai) Cos 2 CA*
I

i, ici are azimuth and elevatiorL angles of the 
misiile with respect to.theith station.

Vi is the measured V-angle of the ith station. Then substituting equations

(12) and (13) in equation (ll

117



S-E -i^ a , A (16)

-n 0o 2 E vi (a- i f,, A. s -O' J

The simultaneous equations are

Ya 4vi -(a"vi V a' / 17
AsE ( *) 17 Te A (V\( i')(7

7A7 acA7 (i V KiSA

Solving these equations for Au and Ac. the most probable attitude

becomes

QA = GA + As (19)

CA - CA * + Ac (20)

AA and CA then become the new approximation of the attitude and a new

most probable attitude is computed.

This process is repeated until

A 1 .01

Ac 5 .01

Since am and Ac are small the sun of the squares of the residuals now
becomes

S = (Vi - Vi') 2  (21)
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We now proceed to the problem of locating and r,jecting V-angles
having errors greater than the errors to be expected.

Using the F test

F (22)

where

.2 (Vi -vi)2

2 . S(V Vi*)2

N-1

N - Number of stations used in the solution.

Substituting in equation (22)

(Vi - Vi*) 2

a =F

S-(Vi vi*)2

N-1

If one or more (Vi - Vi')2 > F [S-NV- Vi) 2

the station with the largest (Vi - Vi*) 2 is rejected and a new attitude is

computed. This process is repeated umtil all

(Vi - Vi*)2 <~ L

An approximate value of F computed for the degrees of freedom encountered
in this solution is

F a 17.44 + 15.792

At this point a further check .s made. If the variance of the V-angle
is greater than the maximumi allowable value, the station with the largest
(Vi - Vi*) 2 is rejected and a new attitude is computed.
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The variances of the V-angles are found by

a2 S (23)V N-2

2
and the variances of the attitude are then computed using the oV above and

the co-factors of the least squares determinant formed from equations (17)
and (18).

002  A 2  (24)
A -V

AC ,2v (2S)A

where A is the value of the determinant.

Definitions of symbols used in the solution

oil ti - Azimuth and Elevation angles of the missile with respect

to the ith station.

Xj, Yit Zi - Coordinates of the ith station (same system as the
missile coordinates) with respect to the launcher.

Xm Ym, Zm - Coordinates of the missile.

Vi - Observed V-angle from the ith station.

lis nin ni - Direction cosines of the image vector in the XYZ-system.

- Vector perpendicular to the missile axis.

ui, vi. wi - Direction cosines of t in the XYZ-systea.

am. bms cm - Directior cosines df the missile axis in the XYZ-system.

am, b;, c; - Direction cosines of the missile axis in the XtY'Z' system.

- Angle between the missile axis and its projection in the film
plane.

QA -, EA . - Approximate attitude angles.

Aa, Ac - Change in the attitude angles.

Vi* - A function of the approximate attitude.
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*A, tA - Final attitud.

O- varianc, of the V-angles.

002 VC - varianess of the attitude.-A' A
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COMPUTATIONAL ORDER OF FORMW

'1" tanl1  - z  - i)
(ya i) 2* (yaY* yj21i

Solve for lj. mi. "nd ni from

'"os at Cos ei -sin ai  -cos I sin 0

mi sin a1 cos cj cos ai -sin j sin s sin V (3)

Sin . 0 cos ci 408 V

and ul. Vie and vj

rcos G1 CosC .i sin m -0 seossin l r o

vi sin cos cj cos aj -sin ci.an £i 0 i (4)

Jzui V1  zuj Il i
" Zvi2- Zvi W i  

(S)

1Ev 12 ru wi

q (6)
Eut Vi Zvi Vj

Euj Euj v1

Iut vjt lvj2
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Dw

D - + * q2 r2  (6)

arnu-j(9)

bm (10)

D

Test

11 Sm IM + 81 nl CYA  0()

(12)

12S 2 m+R (2)

for any tv stations,

If both (1) and (2) are 30, %o bat ca have correci bpso

If both (1) and (2) are < 0. change sips of an. b, ca.

If (1% and (2) are opposite in sip take the one with larger absolute
value of li a% mi ba + nt cu and us the previus logic to chock signs.

Solve

(-Cosci Cos Ci sin aiCos C sincj C a

b'i-sin 41 COS Gj o0 bm]

tVcos Gj sin Ci -sin Gj sin cj cos ) k9 m

then Vj* - tan"I  (13)

- uie sin Vi " [cos Vi' cot (A° - 6) - Sl Vj* 3mR 91] (14)

aVif -sin 2 Vi" cos i (IS)

acA sin (aA* - m) c0s2 ci(
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Solve for Aa and A in the following equitions

Aar *ACE aLV i)(16)

\acIA \3°/ \clA(37 V E 7A7

Aa /Ei +CI k 3  A CE \ /a 2a E(Vi - Vi (17)

Compute
aA 0 aA* + 4l (18)

CA = CA* + Ac (19)

OAs CA now become the new approximations. Equations (13) thru (19) are

repeated until

AG 5 .01

Ac .01

S . E(Vi - Vi0) 2  (20)

Test if

(Vi v- Vi i)2  > F (21)

If one or more (Vi - Vi-)2 > F Fs-vi - 'i:]L N-1 i2

reject the station with the largest (Vt - Vi°)2 and recompute the attitude
until all

(Vi - Vi) 2 < F S-(Vi -vi)2

N-l

F v 17.44 + 15.792 /4-N (22)

If (t ) > 22S, reject the station with the largest (Vi -vie)
2

and recompute the attitude,
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Compute

cV2 a (23)

ubi Ajl ad A22 are th. cofsctors of the least squaes detenmat
foxued fiom equatlons (16) mmd (17) sad A is tie value of the dotreiat.

IiN(
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APPENDIX I. F-test for N-Station Attitude

The value of F for the F-test for the N-station attitude program iv an
approximate value found by linear interpolation for values of F in the
interval of 3 to 8 degrees of freedom at the 97.5% confidence level.

F3 a 17.44

F8 a 7.57

f1 
1

DF -

FDF N 17.44 + (7.57 - 17.44) DF 3I

a 17.44 + (-9,.87)
(-5/24) ~~i~

U 17.44 +
(s)(3) \ F

a 17.44 + .15.792 DF

DF in this case is N-i.

Therefore,

FDF a 17.44 + 15.792 )where N - no. of stations used.

The difference between the cvmputed P using this equation and F found
from the tables is shown below:

DF N F computed F table

2 3 25.08 38.51
3 4 17.44 17.44 most of the data will
4 5 13.49 12.22 1 fall in here.

S 6 11.13 lO.lj i
6 7 9.5 8.81
7 8
8 9 7.57 7.S7
9 10
10 11 6.39 6.94
17 18 4.44 6.04
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Ballistic Research Laboratories Report Mo. 774, Abe*dm Proving Growad, Md
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C. ATTITMD DATA

III Little Joe Primary Paint Pattern Attitude
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LITrLE JOE

Primary Paint Pattern Attitude

There are two opposing pairs of paint markers on the base of the Little
Joe comand module. That diameter of the base which passes through the centers
of either pair of paint markers is designated as the Primary Paint Pattern. In
Figure 1, either AB or CD asy be chosen as the primary paint pattefrn.

D

FIGURE I

The attitude of the primary paint pattern on the base may be used by the
project (NASA) to obtain roll data. If, for some reason, the attitude of this
paint pattern is not available it is possible to obtain the data by knowing th
following three things: (I) The attitude of any other paint pattern on the module
surface, (2) The attitude of the module, and (3) The true relationzhip of the
paint pattern being used to th3 primary paint potern.

Assuming we know the attitude (as, C ), in the x, y, z system, of a paint
stripe on the side of the module, the attitude of the module axis (am, em) in
the x, y, z system, and the actual angle (Am) between the strip projected onto
the base and the primary paint pattern, we may proceed as follows:
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If the module axis is rotated counter-clockwise about the z axis through
the azimuth angle (%) of the module and then counter.clockwise about the y axis
through an angle of (90* - cm) then the module is in a vertical position with
the module axis parallel to the z axis and the base parallel to the xy plane.
As the axis is being rotated through these angles, the paint stripe is also being
rotated through the same angles. Therefore, we can obtain the direction cosines
of the stripe when the module is in the verdical position by rotating the direc-
tion cosines of the stripe

a. = Cos s Cos

bs o sin Os cos CS

C3 a sin c.

through the following rotational mat-ix

a' os am sin Cm sin %~ sin cm -Cos Em" as>

Ibs -sin am Cos c 0 b
Y~os % cos € sin c. cos cm sin Cm

With the module in this vertical position we project the paint stripe onto
the xy plane. The direction cosines of this projection are

p (a,')2 + (bs')2]

bp- (a (bA)2]*_

cp 0

If the projection of the stripe onto the base is not coincident with the
primary paint pattern then the direction cosines of the projection must be
rotated through the angle (A*) as follows:
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The direction cosines of the projection of the stripe coincident with the
primary paint pattern are then rotated back to the original position by the
following matrix:

3pb cos a. sin cis -sin at, Cos ft Cos a's

ih bb ['si am sin cm CosCo sin:a cos cj

'The attitude of stripe projected onto the base oi the module and coincidinx
wihthe p,.imary paint pattern is then given by:

(GA 0 tan 1Ib~

CA (api b~~)-

133



C. ATTITUDE DATA

IV Little Joe Single Station Primary Paint Pattern Solution
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LI7LE JOB

Single Station Primary Paint Pattern Solution

The following is a method of determining the attitude data of the primary
paint pattern on the base of the command module when the V-angle of the paint
pattern is available from only one camera.

The position data of the module, the attitude data of the module ad
the V-angles of the primary paint pattern are required for this reduction.

The coordinate system used in the reduction of the position data is
defined as the x, y, z system. In deriving the equations for this attitude
reduction it is necessary to set up a new coordinate system x', y', z'.
The x' axis is positive along the line of sight from the camera to the module.
The y' axis lies in the film plane perpendicular to the x' axis and is directed
positive to the right and parallel to the xy plane. The z' axis also lies in
the film plane, perpendicular to the x'y' plane, and positive up.

In this coordinate system the direction cosines of the vector lying
along the paint pattern image are sine and cosine functions of the V-angles.
The V-angle is measured clockwise from the z' axis to the paint pattern image.
The direction cosines may be rotated into the x, y, z system by the following
rotational matrix.

fCosaCosC -sin a -cos asinc r0
.mj u sin acos c cos a -sin asin c jjin V
n sin 0 cos ) cosV

1, r. n are the direction cosines of the image vector in the x, y, z
system, a, c are the azimuth and elevation angles of the module with respect
to the camera.

The following figure represents the situation that exists at the station:

3g
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is perpendicular to the image of the paint pattern. Since it lies in
zhe y'z' plane it is also perpendicular to x'. t is perpendicular to the plane deter-
mined by the paint pattern and the line of sight and therefore is perpendicular
to the paint pattern itself. The direction cosines of it in the x1. y', z'
system are 0, cos V, -sin V. Tho direction cosines (u, v, w) of L in the y. z
system are obtained as follows:

ull cos acosc -sinc -cos a sin JL 0

v rin a cos c cos a -sin a sin c osV

1 sin 0 Cos C -sin V)

If ap, bp, cp denote the direction cosines of the paint pattern, then

ap u + bp V + cp w -cos4 (1)

is the angle between the paint pattern and t. Therefore, equation (I)
becomes

ap u + bp v + Cp w a 0 
(2)

am, bm, cm are the direction cosines of the module axis and are computed
from the attitude of the module. Since the module axis is perpendicular to the
paint pattern then

ap ap + bp bm + cp cm a 0 (3)

aso know that

ap a. + bp bp Cp c? . t

;...:ciore we have three simultaneous equations with three unknowns,

ap ap + bp bp + cp cp - I

ap u + bp v + cp u - 0

ap am +b bm + Cp cm a 0
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Solving these equations ie octa.n

(v cm - bm w)
ap D

-Cu cM - am W)

(u bm - am v) r
p D - 1"

where D . p2 + q2 + r
2

Since D has both a positive and negative value it is necessary to determine
the correct signs of ap, b , Cp. Assuming that D is positive the correct signs
may be readily found as fo~lows:

The direction cosines of the paint pattern image give rise to the equation:

1ap + a b p + n cp - cos a

where 0 is the angle between the paint pattern and its image in the film plane.
0 is always an acute angle. Therefore

I ap + a bp + n cp > 0

If I ap + m bp + n Cp < 0, then the signs of ap, bp, cp imust be changed.

The attitude angles are then obtained using the direction cosines of the
paint pattern.

DA a tan- b

cA " tan 
1  (Tb
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C. ATTITUDE DATA

V Angle of Attack
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ANGLE OF ATTACK

Introduction

The angle of attack is defined as ehe angle between the longitudinal
axis of the missile and a line along the direction of motion.

The cosine of the angle of ettack ia the dot product of a unit
vector lying along the missile axis and a unit vector lying along the
direction of motion. A unit vectcr lying along a line has as its components
the direction cosines of that line. By knowing the angle between a line
and the XY-plane (elevation angle) and the angle between the projection of
that line in the XY-plane and the X-axis (azimuth angle) a set of direction
cosines may be computed.

A unit vector lying along the missile axis has as its direction z.osines
the direction cosines of the missile attitude. The direction cosines for a
line along the direction of motion are the direction c-sines of the velocity
vector.

Mathematical Procedure:

Any available missile attitude data and trajectory data may be used to
compute the angle of attack data.

'he angle of attack will always be between 0 and 180 degrees. By
considering the sign of the sine and cosine, the proper quadrant is deter-
mined.

Definitions:

aA - azimuth attitude angle

EA - elevation attitude angle

6 - azimuth trajectory angle

0 elevation trajectory angle

A a angle of attack

, e and 0 must all be in the same coordinate system.

143 Preceding page blank



The d~rectiin cosines of the missile are:

an = Cos aA COS CA

bm - sin QA COS CA

cm a sin CA

The direction cosines along the direction of motion are:

aD 0 cos 0 POs

bD " sin 6 cos

CD 0 sin #

The dot product of the two vectors.s computed as follows:

cos A i ra AD , bm bD + cm cD

and

A w cos - 1 (a A D + bm bD + Cm CD)

The sine A is corputed as follows:

Sin 2L . o
22 A\ -2_ _ __ _

SiIA + cos + as m mao bmbD cmcD2 2 2

and
A Asin A - 2 sin co

tan A . sin A
cos A
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ASPECT ANGLE

Introduction

The aspect angle is defined as the angle between the longitudinal
axis of the missile and the line of sight from the missile to the object
whose aspect angle is being computed. (See Fig. 1)

The cosine of the aspect angle is the dot product of a unit ,';tor
lying along the missile axis and a unit vector lying along the line of
sight. The vector along the missile axis is directed from tail to nose
and the vector along the line of sight is directed toward the object
whose aspect angle is being measured.

A unit vector lying along a line has as its components the direction
cosines of that line. By knowing the angle between a line and the MY-plane
(elevacion angle) and the angle between the projection of that :2:e in
the XY-piane and the X-axis (azimuth angle) a set of direction cosines
may be computed.

A set of direction cosines for the unit vector lying along the ine of

sight may be conputed if the position of the missile and the position of the
object whose aspect angle is being measured are known, or if the "iook
angles" are known.

A unit vector lying along the missile axis has as its direction cosines
the direction cosines of the missile attitude.

Mathematical Procedure

Any available missile attitude data and either position data or "look
angle" data may be used to compute the aspect angle data.

The aspect angle will always be between 0 and 180 degrees. By
considering the sign of the sine and cosine, the prcper quadrant is deter-
mined,

Definition

Xm, Ym, Zm - Coordinates of missile position

Xc Yc, Zc - Coordinates of the camera or object whose aspect angle
is being computed

aA - azimuth attitude angle

EA - elevation attitude angle

AL - Aspect angle

Tnese data are in the same coordinate system.
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Compute:

The direction cosines of the missile axis are:

a = Cos a sin cm A A

b = sin a cos C
m A A

c = sin Em A

The direction cosines along the line of sight are:
X - X
C ma -

s R

Y - y
b c m

z C-mR

C m
c -
sR

where
2 m2 32 1/?

R= [(Xc  XM) + (Y y + (Z z M)

The dot product of the tvo vectors is computed as follows:

cos AL = a a + b b + c cL is m s mn s (1)

Al = Cos (a a + b b + c c )

The sine A. is computed as follows:

AL l Cos A /2 1- a a b b - c T c .,/2

sin - =f- = .

A o + b + c c i/2
L + cosAL 12M. a s m s n s 1

2 2 2

and

AT ALsir AL 2 sin -2 cos 2

sin A,
tan AL - cos AL
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IF "look angles" are known the direction cosines of the line of

sight Lecoume:

cs snc

where

ctL, £l, "look angles"

These direction cosines are then substituted in equation (1) to

determine the aspect angle.

if FIGURIE I
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GROUND DISTANCE AND TOTAL DISTANCE

Introduction

Ground distance is defined as the cumulative distance a missile travels
from a given point up to a time , as projected on the XY-plane.

Total distance is the cumulative distance a missile travels from a
given point up to a time Ti.

Mathematical Procedure:

Any available position data are used to obtain ground distance or

total distance,

Definitions:

Xj, Yj, Zj % coordinates of the missile at point j

DGi v Ground distance traveled

DTi = Total distance traveled

Ground distance:

i
DGi = . [(Xj - Xj4J)2 + (Yj - YjI)2]

Jul

Total distance:

iDri = [(Xj - Xj.I) 2 + (yj - *J_1)2 + (Zj -

Jul

If there is a break in position data, the distance traveled up to the
break is totaled and another summation is started again at the next available
position.
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P.VELOCITY AND ACCELERATIONr I Smoothed Positionsp Velocity and Acceleration (Moving Arc)
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SMOOTIED POSITIONS, VELOCITY & ACCELERATION (MOVING ARC)

Introduction

Bocause of the fact that all physical measurements contain some
random errors (or noise), it is usually desirable to compute from observed
data an estimate of the data which would have been observed by a noise-
free measuring system. This process of minimizing the errors in observa-
tions, called "smocthing",* can be done in many ways. The method discussed
in this report, "Least Squares Moving Arc Smoothing", is used in .RD to
compute smoothed position data from observations. These smoothe- iositions
are then differentiated to obtain velocities, and the velocitieb differenti-
ated to bbcain accelerations. Error estimates of the smoothed caza and
derivatives are computed in the form of standard deviations for each point.

*This process is also known as "filtering" or "adjustment of data".
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Moving Arc Smoothing

The Least Sruares Moving Arc Smoothing technique assumes that for a
short interval of N points the data can be closely approximated by a
second degree curve, it also assumes that the time interval between
data samples is constant and free from error.

Each point on the smoothed data curve is obtained by fitting a second
degree curve, using the least squares method, to N consecutive observation
points, and evaluating the fitted curve at its midpoint.

If a second degree curve of the form

x - AO + A1T + A2T
2

is fitted to N data points (Ti, xi) , then the smoothed data at any point
Ti is given by

xsi a Ao + A1 Ti + A2Ti
2  (1)

where i a t-N+l, t-N+2, N. , t 1 , t-2, t-l, t.

The midpoint of this interval, Tp, occurs at the point Ti, where

N-I
i - t -.

If equation (1) is rewritten so hat its origin is translated to the
midpoint, Tp, many simplifications in _e curve fitting and ovaluazion result.

x i Ao-+ A1 (Ti - TP) + A2 (Ti - Tp)2  (2) %

Since the time interval between data points is constant, Ti ! - Ti  AT,
and it can be seen that

Ti - Tp * (i-p) AT.

Equation (2) can be written

xsi a Ao + A: (i-p) AT + A2 (i-p)
2 AT2  (3)
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This is further simplified by the substitutions:

ai - AIAT

82 - A2LAT
2

so that x~i - a0 + a1 (i-p) + a2 (i-p)2  (4)

where (i-p) a -(N-I) It-(N-3) ,(H-3) (14-1)

Using the least squares procedure the sum of the squares of the( residualslis given-by

int iut
S I (xsi - i)2 - (a0 - al (i-p) & 82 (i-p) 2 

-Xi)
2  (S)

i-t-N~l ist.N+l

where xsi - smoothed position

xi - unsmoothed (observed) position

The sum S is minimized by equating its partial derivatives,

as ;S
.~-- and -'S to zero, and

3a 0  Cal a

solving the three resulting equations for &00 &1, and a2,

These equations are:

a0 N + al r(i-p) + a2 Z(i-p)
2 . ZX1

a0 r(i-p) + a, E(i-p)2 +a 2 r(i-p)
3 _ EXj (i-p) (6)

ao E (i-p)2 + al r(i-p)3 + a2 E(x-p)'4 _ EX, (i-p)
2

where all summations are over the interval from i-t-N~l to iut.
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Since (i-p) ranges from -(N-)to - steps of one,

2 2

the summations in equations (6) can be found from special nmerical
relationships to be:

E(i-p) * t(i-p)3 = 0

(i-p)2  N(N2 - I)
12

,, N(N2 - 1) (3f12 - 7)
,. ,L-) - 12 20

After substituting these values, equations (6) can be written in
matrix form:

N 0 N(N2 -1) /

0 NCN 2-1) 0 al 1xi (i-p)I (7)
12

N(N2 _1) 0 N(N2 -1) L3N2 -7) a2
12 12 20 ./ ( )

If A is the determinant of the coefficient matrix, and Aij the cofactor of

the element of the ith row and jth column, then the inverse of the coeffi-
cient matrix is formed froa:

A AAN2

A a a rZ ) (N-4)4

A21  A22  A231 0120
A A Al 0 N(N-) 0 (8)

rA51 ___ A3 -S12 1
N(N 2-1) (N2-4)
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Premultiplying equation (7) by equation (8) yields the solution in

matrix form for the unknowns ao, a,, and a,.

A1 2  A13fao T1 A x

a 2 1  A22  A23
al -A a Exi (i-p) (9)

a31 A32 633--i ( -x

2 A Ae -p)

or

( 3(3N 2-7) 01 N(N-4
( 4N(N 2-4) 1N(N 2 - 4 )  I t I NX

i a 0 N(2 21) 0 -- £ X, (i-p) (10)Ii N(~l) I i-t-N~l

-15 12 Is i t

a 2) (N(-4 ) N - l ) ( N 2 4 tN(N-4N+ I

These values can easily be found and substituted in equation 
(4) to

obtain the smoothed position of the arc at time TL. The curve evaluated

at its midpoint, Ti - Tp, is simply

Xsi , a0

The velocity is obtained by taking the first derivativo of the smoothed

position equation (4).

d Xsi d ja

La+a i-p)2](1
si dT dT o a (i-P) + A2
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Since (i-p) " _ T
tt

d I-- (i-p) • uT

and -d (i-p 2

Thus it can be seen that equation (11) can be written

a 2az (I-p)
x-. -+A (12)

The velocity at tha midpoint, i-p, iA given by

Is .1 (13)

Acceleration

The acceleration is computed from tho second derivative of the
smoothed posicion equation, or from equation (12)

d _ F 2&2
xsi (ir) • =6 -AT (i-p) (14)

This yields

x1 212 (15)aT
2

Stranard Do .ig~ions

To obtain the standard deviationg of the smwothed data and the deri-
vatives, it is first necossary to find the variance of the unszoothed data.

This variance is

02 , Z(x, - xsj) 2  (16)
x N-3
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The variance of a point on the smoothed curve is obtained as folows:

If xsi °  a1 (i-p) + s 2 (i-p) 2

x5 a2 a.2 axa

t 2I 2  +l Ol7)

Xs t q

(M2' 0ala 2

where - -
ago
axsl-(i-p)

aa1
aXs i (i-p)2

a&2

and

A11  2

= 2 02

A - -

a2 - cl2

02

Rla2 - 0
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By substituting these values in equation (17). the variance of Xsi

becomes

F1 8 f22 833 o1.Al 2  + - * ((~i-,*(8

Xsi  A t c (i-p) 2 2 U2 + (_p)4

+ 2 (i-p)2 02o

Evaluating (18) at the point i-p gives the variance

Ali 3(3N 2-7) 02

op - -A- x 4N( i-4)

or the standard deviation

OX( p  A OX (19)

The variance of the velocity is derived from aquation (12) as follows:

a1  1a2(i-p)(
Xsi  AT AT (12)

a iss a2 2 + 2 oal (20)

/ si Ial "l a za

where -

aa Ii AT

ai -_ 2(i-p)

and c2, a2 , and a..- are a in equation (17).
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Substituting these values, equation (20) becomes

K 0 2 AT 02~--

-A . 4 (i-p)2  (21)

The variance of velocity evaluatod at point ip is then

a 2 1 12
j5p w T2

and the standard deviation

1 I 2 (22)

L A T2 N(N 2-1)) J
The variance of the acceleration i3 obtained from equation (IS)

t i sTi)Is
2 a2

' °x~i ° \ 2 I

S(N 2-I)

xx
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The standard deviation of the acceleration is then

Ifj *Ox a 11 a X2] (23)°si " isp" L (22

Advancinx The Kidloint One Point

After evaluating the fitted curve on the interval t-N41 through t
to find the spoothed position, velocity and acceleration at the midpoint
p, the curve may be advanced one point, to cover the interval t-N 2 through
t~l, and evaluated at the new midpoint p0 a p l. The coofficient matrix
of equations (9) and (10) will remain the saw, but the sumationro about
the new midpoint must be recomputed,

If the previous suns are represented by

t

Ap * I xi
t-N~l

t

t-N+l

t
cp, I xi (i-p) 2

t-N.l

and the sua&tlons about the new midpoint (p') ire

t*1

t-N*2

t~l
B ID, a I xi (i-p')

t-N+2

t. 1
CD1 = I Xj, (i-ps).2
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then Apt, Bpt, CP# can be written as ftonctions of Apt Bps Cp, the points

to be dropped and added as follows:

Apt A p+.a Ap - xt-N+l + xt+l (24)

tI
Bp Bp+. I X (i-p')

t-Ne2

t.l
I xj (i-(p+1))

t-N+2

t+I t+1
I Xi j(i-p) - x

t-N+2 t.+xZ

r - N+I (i-p) + %t+! (i-P) - -+xi

u Z-) + x-pi + (i-p) - Apt (2S)

sincs p t - when )u-.1 i-p) a_'IH

6ad when i-t+l * (i-p) 0 (26)

Substituting these values in equation (25) yields

1p - Apt H x..N + 2 xt (27)
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CP c + I IXjd..pl) 2

t-N. 2

t [(i..p)2 2 (j * l.+I xi

tel t~jtl
xi~ Xjp 2 Xi x(I-p +t-N.2 I-. t-H*

t.1+ t-Ht2

C1  
2 P - A1, -p) Xt , ip) t 1 (i p 2 ( 8

Substituftn the rtlationMships Of equation (26) Into (28% yiblds

c Cp - 2 Bpi . Apo x XtZ 29

Su*!ariziug, the three eqution grg

A 1 , -A 1  t - ~ t ~ i 
( 2 4 )

t-N,1e " ~ Xt (27)

CP1  C1  -2 Bpi Apt. - ( ) X t.- ,1 , + xt, 1  (29)
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Increasing N and Advancing the Midpoint

After evaluating the fitted curve at the midpoint p of N points, it
may be desirable to advance the midpoint to p' = p4l not by dropping the
point xt.N+l and adding point xt+l, but by increasing the numb3r of points

to N' - N 2 by adding the two points xt+l and xt+2. In this case the

coefficient matrix must be recomputed and it cpn bo shown that the summe-
tions about the new midpoint (p'), are functions of the previous summations
and the two additional points.

Again, the previous sums are

t

t-N+l

t
B 1 xi (i-p)

t-N~l

t
Cp . I xi (i-p)

2

t-N+l

and the new sums are

t+2

t-N l

t+2
BP, I Xi (i-p')

t-N I

t+ 2
Cpt = I Xi (i-p')2

t-N+l

t+2 t
Then: A' M Xi xi +xt + xt+2

t-N+l t-N+1

Ap + Xtl + xt+2  (30)
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t+2 t#2 t+2

t-HeI t-N+1 t-N.1

B xt+I +ip *Xt+ 2 (i-P) Apr (31)

Sinlc whn N N+2 and p-t t-

for intel, (i-p) a

and for i-t.2, (i..p) . L-)(2

Using rolations (32)1 in equation(3)

Bp Bp, - Apo + Xt+1 + xt+2 (33)

t+2 t+? t+2 t+2
CPe Lx~~t2 £ i p 2  2 Xxi(i-p)e + x

C+ Xrtgl (i..p) 2 + xt+2 (i-p)2 ] 2 [Br P, Apo ]+ Apo
C- 2 Bps - Apo + xt~l (i-p)2 + xt+2 (i-p)2  (34)

or, substituting relations (32),

CP UP 2 Bp# - Apo + Xt+l + Xt2(35)

172



And summari zing

Apt w Ap + xt+1 + xt 2  (30)

BpI " Bp - AX + + - Xt.+2 (33)

ap -C - 2 Bp - A I+Xt+j + E'i±L) xt,2 (35)

Decrepaing N and Advancinz th_ Midpoint

By dropping the first two points of an arc, the midpoint is advanced
one point, Tius NI-N-2 and p'ap+l; Again the coefficient matrix must be
recomputed and the summations about the midpoint may be written as functions
of th, previous sums and the two points to be subtracted, xtoN+! and xt.N 2.

A sivilar procedure is used in decreasing the interval as was used in
increasing the interval yielding the following results for the summations
about the new midpoint.

Ap, " Ap - Xt.N+ 1 - Xt.N+2 (36)

BPI a Bp - Apt * N XtN+1 XtN. 2  (37)

-Cp, M Cp - 2 PI- Apt - X,.N+1 - XtN,2 (38)

where Ap, Bp, and CP are the previous ,umations.

Computational Procedure

A. Position. Velocity and Acceleration

Compute AT - Ti+ I - Ti
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Solve for a., al, a2 using the following matrix form

ta.4N(t42-4) N(N2-4) i-t-N i

12 t

-4)NN 2 lI ) Xi (i-p) 2

42 N0-)0 TI -4)tI +X,(-2

Then at the midpoint imp the smoothed position, velocity and acceleration
are:

si" AT

2a2

B. Standard Deviation

Compute the variance of the unsmoothed data by

o0 2 ,, Z X i - X s i ) 2
S  

iN-3

where xsi :a + al (i-p) , a2 (i-p)
2

(i-p) '--z _"-t 0- -( I -.. , . .. * _iR--3)
2 2 " 2 2
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ar:The standard deviations of the midpoint position and derivatives

axp F 3(2j2-7) a0~p L 4N(NZ2 4) J x

6T[
Q~S~[E-,-17 (]k~ Oxjj
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DETERMINATION OF MhE SMOOTHING INTERVAL

This is a simple method of determining the smoothing interval (N) to be
uzed for smoothed positions, velocities or accelerations,

When the variance and the sampling rate of the unsmoothed position
data are known it is possible to choose N such that the variance of the
midpoint of the smoothed positions, velocities or accelerations is equal
to, or less than the required variance.

Using equations (18), (22), and (23) we see --hat for positions,

L -4N(N2 - 4) a

velocities,

VN2-1)] a

and accelerations,

12 is AT2 GXp2 F P

N(N2 - 1) (N2 - 4) 0
L IJ X

The value on the right side of each of these equations is determined from
the unsmoothed position v:riance, ox, and the required variance (axsD, ols , or

s p), and the sampling rate. The only variable on the left side ofoach Pqua-

tion is N, which may then be varied to meet the desired requirements.

Table I has been prepared for this purpose and may be used in the follow-
ing manner. Ccmpute the right side of the equation for position, velocity or
acceleration. Under the appropriate column of the table find the value which
is equal to, or less than, the computed value and use the N associatod with
this value for the smoothing interval.

Graphs of Table I, with N extended to 100, are albo provideA.
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TABLE i
Position Velocity Acceler-tion

F3 3 2 _- [ " 12_is

S .696932 .316228 .534522
7 .577350 .188982 .218218
9 .50S382 .129099 .*13961

11 .4SS477 .095346 .068279
13 .418121 .074125 .044699
15 .388756 .059761 .031139
17 .364866 .049507 .022716

19 .344926 .041885 .017171
21 .3279S0 .036037 .013353
23 .313268 .031435 .010627
25 .300402 .027735 .008621
'27 .289007 .024708 .007108
29 .278820 .02219S .00S942
31 .269642 .020080 .005028
33 .261317 018282 .004299
35 .253719 .016737 .003710
37 .246749 .015397 .003228
39 .240324 .014228 .002830
41 .234377 .01319p .002497

D43 .2288S1 .012289 .002216
45 .223599 .011478 .001978
47 .218880 .010753 .001774
49 .214360 .010102 .001598
51 .210109 .009513 ,001446
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Do VELWC17Y AND ACCELERATION

II Smoothed Positions, Velocity and Acceleration (Orthogonal
PolynoMiatls) including tpecial Ntmerical Relationships

183 fteceding page blank



Smooched Positions, Velocity and Acceltration (Orthogonal Polynomials)

Introduction

In smoothing data by the usual mel.hod of least squares it is necessary to

choose in advance the degzee of polynonial whfhch will be used to appro:wimate
the data. This is necessary since the coefficients found are depelndent upon
the degree of curve being fitted. Often, however, it is not knoWn in advance
what degree curve will best fit the data. In such a case it is desirable to
fit several polynomials, each time increasing the degree used, until it is
seen that any further increases would not produce a significantly better fit.
The computation of successive polynomials is greatly simplified by the use of
the Orthogonal Polynomial procedure. This method determines the approximat-ng
polynomial in terms of another variable, so chosen that each cwrficient found

is independent of the others. This makes it possible to increase the degree
of curve used without making it necessary to recompute the previously-found
coofficients.

This program is generally used to smooth position data. The degree of
curve fitted is increased until an F-teit indicates that additional coefficients
of the polynomial would not be significantly different from zero. The smoothed
positions are then differentiated to obtain velocities, and the velocities dif-
ferentiated to obtan accelerations. The error estimets of the smoothed data
and derivatives are computed in the form of standard deviations for each point.
Coefficients of the original polynomial are derived in terms of tho new poly-
nomir-.
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Mathematical Derivation

Smoothed Position

If an approximating polynomial of the form

Xst = so + alt + a2t2 + a3t3 + Ak'aktk (1)

is rewritteh In terms of another variable which is a function of t such that the
coefficients are functions of the approximating polynomial and are independent
of one another, then the solution of the equation can be greatly simplified.
Such an equation is of the form

Xs t - bo Po,t + bl Fl,t + b2 P2,t + b3 P3,t + "• *bk Pkt (2)

where bo ' fO (aO, al, a2 90ak)

b1 , fl (ao, ale 22# ... P-k)

b2 ' f2 (aO, 81c a2, *..,ak)

bk - fk (a, al, a2, "9" ak)

and P oe (t)

71't r fl (t)

P2,t a f2 (t)

Pkt a fk Mt

The following procedure derives the coefficients (b-) such that they
satisfy the above raquiraments for the desired polynomial.

Using the least squares method on equation (1), the sm of the squares
of the residuals is given by

S E £(XSt - Xt) 2 - Z(a0 + alt + a2t
2 + " aktk - Xt) 2  (3)

where Xst * smoothed positions

Xt * observed positions

186



I-I
t = - - 3 e

k = degree of the polynomial

N a number of consecutive observation points.

The sum, S, is minimized by equating tho partial derivatives,

as . .aI. , as to zero, yielding kel equations in k+l unknowns.
F P 1  e ak

These equations are:

aoN 4 a1 1t + a2Et
2 + a3Et

3 + a4Et
4 + a5Et

5 + a6Zt 6 + "'" + akltk - EXr (4)

aoEt + alt 2 + a2Et
3 + a3Et4 + a4Et

5 + asLt6 + a6rt 7 + + akZt k l  Z

aoEt2 + alrt 3 + a2Et4 # a3Zt 5 ' a4rt
6 + aSt 7 + a6Et

8 + +. akZtk 2

a()t 3 + alt 4 + a2Zt
5 + a3 T.t6 + a4 t 7 + aSEt8 * a6Et

9 +*-o + ak~tk+3 -)t £ 3

aoEt'3 + alEt 5 + a2rt 6 + a3rt
7 + s4 Et8  ,a5t9 

+ a6 1t 1 O  + o akt + 4  4

aoEt 5 + alrt6 + a2Et7 + at 8 + a4Et 9 + a5Et
1 O + a6Et

11 + *.. + ak£:S -E 5

aogtk atl a k+ 2 + tk+3 * a4tk+4 + a5£tk+S + a6tk+6

+ a+ akatk +k a k

Since t ranges from -9 )to 7$ in steps of one, the summat;.ons

in equation (4) can be found from sraclal numerical relationships* to be:

*See page 37.
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Et = t 3 = Et Et7 =o 0
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If k a 1, then from equations (7) and (8),

02 - 1)9)

12

Since a0 and aI %re independent of one another and are functions c,! the

approximating polynomial, they satisfy the requirrments for the coefficients

of the desired polynomial. Therefore

let bo  N (11)

and bl (12)
N(N 2 -1)

12

To find the next two coefficients, b2 and b3 , we must first substitute the
general expressions for so and al (eq. 7 and 8) into equations 6(c thru g).

1
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Substituting equation (37) into (36) and evaluating for k = 2 yields

P0)t P2, - 0

By repeating this process for all k's it can be shown that

E(PO,t Pkt) = 0

From equation (33) we again see that

E(Plt)
2

Substituting this in equation (35b) yields

b (P0 PI,t) b2 Z(Plt P2,t) 
+  + bk E(P1,t Pkt) 0

Since from equation 37 we know that

z(Pot PI't) a 0

Then if k - 2

-(P1, t P2,t
) = 0

{. Again evaluating for each successive k it can be shown that

r(Plt Pkt) - 0

For all bj's substituted in equation (35) it is easily ieen that

r(pjt Pk*t) a 0, J '" k (38)

Since r(Pj t Pk,t) - 0, j # kthen by definition the Pj t's tre

orthogonal polynowials,
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Degree of Polynomial

To determine the degree of the poJynomial that gives the best fit we

must first compute an estimate (a2) of the variance of the raw data, and

for each jth coefficient an estimate (a2) of the variance of the data in
terms of the variance of the coefficients. We wish to test the hypothesis

that the true value of the jth coefficient is zero, so that a k < j degree
polynomial will adequately describe the data. Assuming that the true value

of the jth coefficient is zero, we use the P-test to determine whether the
difference between the two variance estimates (v2 and ,2) is significant.
If it is not, we conclude that the hypothesis is true, and set the jth

coefficient equal to its true value (bj - 0). When two consecutive coeffi-

cients (b. 1 and b') have been set equal to zero by this process, we assume
that the aegree of the best fitting polynomial is determined by the last
non-zero coefficient, k - j-2.

The estimated variance of the raw data is the sum of the squares of
the residuals divided by the degrees of freedom, the degrees of freedom
being the number of observations minus on, minus the degree of the curve.

2 (Xst - Xt) 2
02 DY.(39)

I D.P.

D.P. - (N - 1 - k)

The variance of the coefficients is given by the general equation

ogj a 02 Aj (40"A

where A is the determinant of the coefficient matrix, and Ljj is tile

cofactor of the element of the ith row and jth column. It can easily be
shown, using equation (35) and the fact that the Pj.t's are orthogonal
polynomials, that

* where the Qj's are as given in equations (27). (41)
Qj

Therefore

402 2)
bj Q2
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The b-'s and Pj t13 found in equations (31) and (33) are substituted in
equation (i) to obtain the smoothed positions and ,.he sunm of the squares of
the residuals is computee.

E(Xst -Xt)
2 - Z(bo Poot +bl PI ot + b2 P2zt 4 + bj pjot - Xt)2  (43)

.E2+ b2 E(post)2 + b2 ECplot) 2 + b2 ECzt)2 e~ + b 2 t(pjot)2

- 2b0 E(POt t ) - 2bl E(Piot Xt) -2b 2 E~~o Xt)-

- 2b, Z(Pi t

As was shoti previously in equation (33)

z(Pj,t Xt)
Oj rpj t)2

so that X(F Xt) s bj r(pj~t)2

Substituting this value in equation (43) yields

Z(Xst - Xt)2 .EX2 b2 E(Pt) 2 _ b2 E(P , 2  ;- E( )2 -

t 0 O t 1 ot) 28t(44)

-b~ E(Pjt)2

Using equation (39) the estimated variance is found to be a2. (s - t7
% D.F.

Another estimated variance of the raw data is found in terms of the jth
coefficient. From oquation (42)

a2 . j0 (45)3bj

where tho variance of the coefficient is given by

O -(bj - Bj)2

D.F,

b- comaputed coefficient

B- triie coefficient

D.F. -Degr-es of freedos: :1
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Equation (45) then becomes

;2 . Qj (bj (46)

Now we want to test if the hypothesis, Bj - 0, is true.

If in equation (46) va let Bj - 0, then

;2 Q.j bj2  (47)

02 and 2 are both sample variances. To test whether these two variances

are estimates of the same population variance the F-test is used.

if

f F (48)

02

then the hypothesis is accepted as being true and bj is set equal to zero. The

next coefficient is tested in the same manner. When two consecutive coeffi-
cients are set equal to zero the degree of the polynomial is determined from
the last coefficient which was significant. Thus

k - J-2

Velocity

The velocity is obtained by taking the first derivative of the smoothed

position equation (2)

Xst bo Po,t + bl Pl,t + b2 P2,t + +*° bk Pk,t (2)

d Xst dXst =  dt =t ( b0 P0,t +  bl Pl t , b2 P2#,t +  "'" +  bk Pk,t]

1 .

S00 bo t + b1 Pit + b2  2#t 
+  + bk kt] (49)
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The first derivatives of equation (31) are

P0)t "0

*2t 2t 
(50)

P3,t 3t_ - + Q2

Pk. = Pk-lot + t Pk-l~t " Qk-2 pk-l,t

Acceleration

The acceleration is computed from the second derivative of the smoothed
position equation, or from the first derivative of equation (49).

(Ist "U t)7 [bo 70,t + b, Flpt + b2 tt2,t k, b t'~t] (51)

The derivatives of equation (50) are

o't - 0

Pl't w 0

P2tt a 2 (52)

*3,t n 6t

kt a 24-1,t + t k-1Lt - 2 t

2 -2

2lo9

Pe.. .



Stangard Deviations

The standard deviation of the smoothed data is found as follows:

Xst a b .Pot + bl Plot * b2 P2,t bk Pk't (2)

The variance is

2 /. -v \\2 (a x s t N 2  2  ... . L 2 (

Xsher ab a l a2b
where - = Po~

Xst . (54)

- " = P2,t
2xs

t
ab 2  . P2.t

a___ a Pk~t

abk

From equation (42)

oa2 -

Substituting these relationships into qiation (53),

LT a 2 02 (72 02

2o

Xst (P~t)2- (P') j (P2,t)' " ' 
+ 

'" + (Pkt)2 
- O00 (SS)

whore = variance of the smoothed data

02 variance of the observed data
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The standard deviation is

' [O k jt) 2  (56)

o0 Qj

The standard deviation of the velocity is obtained as follows:
From equation (49) the velocity ir

s t u P [ + b, 't + b2  2,t + " bk Pk,t] (49)
At

The variance is

a 2 (Dst 12 ( s 02 + * 02 +. (2 (57
st \babo b/ bl / \lb 2 / 'bk5 bk

where

ab0  at

tt

ab1  at

aist P2-

ab2  At

;ist

abk At

and 2 2

bj Qj

M.



Using these values the vaiiance of the velocity becomes

o',  (O 0) 02 (58)t)2  o20 2  . - , . - - -- -- - -0 2. .0 25s8 )
xst  4t2 QO At2  QI At2  Q2

02 ,, At) 2

At2  Qk

and tho standard deviation of the velocity is

01tst t io Qj

The standard deviation of the acceleration is found by the same method
as that of the velocity.

From equation (51) the acceleration is
At I"L b1 0t~,t 3 at.

t [bo 0  + b, Plt + b2 ; b3 P'3.t + +" bk ] (SI)

The variance of the acceleration becomes

____ 2 (~sN 2 is5  2 (ai~ 2
2 Gb b0  + b ObD1  %&b~7 b2  4.yj bk (60)

where a**
xst . O.t
abo (At)?

-! St l.t

abi (&t)2

; .t 2.t
ab2  (At)2

by. (At)2
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|2

and a 2 . Cbj Q

Substituting these values in equation (60) yields

02 A 0' P. t) 2 02 (P2 0

C24. S 4 o+&
(st CAt) 1 (At) Qi (At)4

+ , 61)
C,&t) 4 Qk

The standard deviation is

k At) 2 (
- ... j C2

Original coefficients in terms of the new polynomial.

If it is desirable to obtain the coefficients of the approximating poly-
nomial in terms of the new regression polynomial this may be done by equating
equations (1) and (2) aid solving for the coefficients at the midpoint. Since

t ranges from - 1-i) to (-LL) the midpoint value of t will be zero..

Evaluating equation (1) and its derivatives at the midpoint we find

X 0  a 0

ISO a1

%so 21 a2  (64)

31 a3

i
Xso -if ai
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Equation (2) and its derivatives, at the midpoint (tsG), are as follows:

bo + b, Pi 0 + b4 P4,0 *b 6 P6,0 +* + bk Pk,O

is b, 1 ' +, b3  '0 + bS S' + o. 0+ bjk t k,0 (65)

+ b P+ b0 o.+ kP,

xsO b2  i 200 ~ 4  '4.0 ~ 6  F6.0 +k~ ,

X5 bj Pj'0 + bj, 2 Pj4216 +bIJ+ 4 PJ+4sO + *. bk Pk#O

Taking the ifdeiaieoftejhpolynomials of equation (31) yields

ic P *~ (t) 'tL~ - - 1 J2t (66)

Qj-2 -,

seenea h utioti

ii

j uk(P-2)

a. j 1 ' b. (66)
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This equation may also be written as

J uk

a1 U I *4~ bi (69)
jai

where Mi # (70)
it

Using quations (67) and (70) the following recursion equation is
obtained:

H1  ail~- (71)
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COMPUTATIONAL PROCEDURE

In computing the bj;s using equation (33), the X'. are usually all of
the sam,. sign and the Pj,t's change signs j times. In forming the sums a
large positive or negative value is accumulated as t varies, then after the
Pjt's change signs the accumulation approaches zero and nay or may not pass

through zero. This cycle is repeated until the frisal answer is obtained, It
is easily seen that the large accumulative values are far greater than the
final sum. Therefore in programming this problem on a single precision high
speed computer it is necessary to use double precision to obtain precise
answers. Those large sums may be avoided and single precision used if the
Xt's ere replaced with a residual (4j-lt). It can be shown in the following
manner that using this residual does not change the value of bj. The residual
is

aj-l,t * Xt bo Ptt -.b Plot bj-1I, Pj-,t

Then
,6j-l,t Pjot P (t (Xt bo P0 t b Plot ... bj-1, PJ-l't)

rajlt PJt * EXt Pjt " b0 EP0t Pjt - bl EPlt PJt -

- bj.l Pj-l t Pj t

Since

rPjbt Fk.t - 0 for j + k

z6j l,t Pj t - Ext Pj 't

Substituting this in equation (33) yields

bj E= - Jlt Pj~t

Qj

The trend of the signs of the residuals will, in general, be the same as
the orthogonal polynomial associated with the next significant b coefficient
and thus the large accumulations encountered using the Xt's are avoided.
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The computer program is written to fit up to a kmax degree curve to the
data.

The first step is to compute from jul through Jwkmax

0- N

SJI2 (N
2 _ J 2)]

4(4J 2 - 1)

where 11 s N s 2S1 is the number of points in the smoothing interval.

Then compute from t * - (-! ) through t a (-L)

plt a t

P2,t a 
t 2 .1Ql

7QO/

j,=t -PJ-2,t for J=3 thru jokmax

P2,t " 2t

p5at a P2.t + 
2t 2 -" Q2 N

P~~ ~ 1' JIt t JIt, ~ for Ju4 tkiru Juk.,ax\2 /P-j

f3,t = 6t

F41t -203,t + 6t:2 -203 \Q2/

fQ"[j- o -5touJk

,Jt M 2Pjt + t fj.l.t -5W ;)J-2,, for JS thu
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For each set of N data points compute

£Xt

b0t m --

6t a Xt - b0

32 =£ 62

t

The following steps are computed as j varies from I thru kma x for each set
of N data points.

r £~ 6t

b.
Qj

From equation (44) we see that

E(Xst - Xt) 2  t - bj Qj

Therefore the estimated variance from the residuals is computed using

- Qj b2
C12 a ...

D.F.

where D.F. - N-l-j

and the estimated variance from the coefficient is computed using

;2 -Qj bj2

3

Now the jth coefficient is tested for significance using the F values
associated with one degree of freedom for the numerator and N-l-j degrees of
freedom for the denominator.

If a2  > F, then bj is significant

and 6t is recomputed from

6t -
6t - bj PJ,t

s2 . E62
t

and if j -- kmax, then j is increased by one and the next coefficient is computeJ.
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If j - kmax the degree of the curve is kmax and smoothed positions are then

computed. (k kmax)

If 2. F, then bj is not significant and is set equal to zero.

If j 0- kmax and the previous coefficient is not equal to zero then j is

incretsed by one and the next coefficient is computed using the new residual.

If j -A kmax and the previous coefficient is equal to zero then the degree

of th- curve is (j-2) and smoothed positions are then computed (k n j-2).

If j - kmax and the prev.-us coefficient is equal to zero the degree of

the curve is equal to (j-2) and smoothed positions are computed. (k a j-2)

If j - kmax and the previous coefficient is not zero the degree of t=

curve becomes j-1 and smoothed vositions are computed. This logic is more
clearly explained by Figure 1.

The smoothed positions are computed as follows:

Xst - b0 + bl Pl~t + b2 P2,t 
+  °° + bk Pkt

or

Xst W Xt - 6t

The velocity is computed next from

0 1
Xst U At [bl + b2 A2,t + b3 A',t + + bk rkt]

and the acceleration is computed from

1 [2b2 + b3 P3,t + b4 P4t + +°" * bk Fkt]

The standard deviation of the position data is computed as follows,

The variance of the observed data is computed from
$2 2

D.F*

and the standard deviation of the smoothed zosition is

0 - 0  (pP t) 2 (P 2 t) 2  *(P t)2

xst  o QI 21 Q2 Qk
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Recompute Set
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nkmax?

No

Set
j3 j+1 k.j2k~ -2

FIGURE 1.

220)



Standard deviation of velocit:" is
a 1 ( .t)2  (3. .t)2  Pt)

02 QPk j'a j t it -. Z- -- + - +

st At IQ, Q2 Q3 Qk

Standard deviation of acceleration is

a~t At 2 Q3 + 4 Qk

Special Numerical Relationships

It is often desirable to obtain sums or sums of pow6rs of 'ntegers whose

values range from -0N2 3 N-1

For the range t a- . -L) (E-)~ , e (2 the sum of

the t's is obtained as follows:

1(t 1)2 tt2  N + N-3 ,

* Nt 1 - rt2 - -... N

Et N 2 2N .1-N 2 + 2N - 1

22

4N1
t - -I-- N

4

Et --- (N - N) - 0
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Zt2 is obtained from:

. .... + ( 1

4~ ) - Et3(!9 .i.L

3  st 2 + tt o N - -t3

Since £t - 0
2N3 +6N N 3 3N

3tt2  + N - --- -- * -22

£t2u [N--,+ 22 4N

£t N(N2 - 1)_
12

For £t 3 :

t 4Et3  6Et2  4Et N - 2~t "(Nj-)' - =)

L 22



Since Et - 0 and Zt 2 = N(N 2 - 1)
12

4Et3 + 6Et 2 + N N 4P + 4N3 + 6N
2 + 4N + 1 - N4 +. 4N3 - 6N2 .

.8N 3 + 8N 611(N 2 - 1)4t 3 = - --- N

24 12

Z, 1 -! 2N - 2N]
4 L 2 J

£t 3 . 0

The suumations of any -ower can be obtained in a similar manner.
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The following plots are provided as an &iW in estimating variances of

smoothed Positions, Velocitics and Accelerations.

224



lw

4-i 1+ + I 'AH TH I
1-4

4, 117 "Til
+ - - .1 k - A-

Detarmin I- L__ _[ 4,
I Tt-

I I _j 14 li- ILST _V. 111, r
C -T-

7 H
4- J-

4-
4

AlLFIT+f r-- tAli 111i IT
-Dal'11V00 r

00,
J1

+f_
ox.S t or ----- --

.5 
4-44+

-%I Mi rr.00
-1 ._T I I-00100

__Tr" 
... .......

T JT W 4L-4f 1 L I T l4ff I

IA

.2-
+

A
j- 7.. _1A I

T- A ItIT1-1 t-4-1 yL I - Id 11
I IT

Ij IT
4 ,

LLL 1 -1
+1441 :-I-f
-1 1 1 1-1-1 i f0

(t) No. of Points from Midpoint 225



F W- -T

1.' J~~1~~tUib 4t-1 fld

I,. 4Z

d.L and 4 deg[IL Rep*I'
(t)~". f Pins i-o MdpkL

4226



.4i i 1-- IT

:1114 L I__
t~4

_~~~- IiJ~ bL~

I T-4t

I f

.3 !Il Tit i

U JiLI. 4 iiIn il'

.2 o .i' llSfom~~p ~



-4J4+ fi-i -1j [L.

Tv L l4jide4I AII I~~I~- j 4 .t

*-4

0 Xtt

oxT

*5 ±2S ~4

J t-o fPit fo ipi 2



I i I

I O t 1 ~~th is~ 3ru and ror

'1 
I~~I 

.
4_41' 1 41

II f L

H LLT

A II I I

It

7I 7

4 1-

II-- 120 ~~ - 14S
(t) o. o Poits fom Mdpoit 22



11TIi.11,

i iT

- . . . I i i .I-4-L ,-
r - 11- 

4-'-

F + I

IA1

I- 4 r l

_2 t- _4 ~ ___

AS [4114~t 1' A I
41 T T_1~

r ~

L Lt.

0X
() No. oPinsfoMipit 23



INY4 jj t 1t

4 1  I

fr 1L r I~ V I

.4 F li

11 J,____ +. 1: [4

I-- -- -'!t HI' 'i

- L ~

Ati lis

iji

-JJ.-



J-~

IIIT

LI-1.. 
I L;

!U1' e~

4IKatLiL L L L A L L L L~- L
LT i1 I L

(t) NT fPonsfriidon



.08.
a 7[7- *... .I .

'6leci *

fori~;.2n',wt

.06 ' LIT

A1

At - L [- i i

.05t ~ 'I ''

ilLill

.04 j

1i4 I I il

.0I

02 .~

.01

25 '10 '20 12 2L30
(t) No. of Points from MIidpoint 23



wIq 1W-

.04S - -.3F T
iIr. ! A 'e

I I~i4 01
I c"1e~or f

IL i. ; . I I ' 11.- i I IIII L

.03S 1{ -"1iJ- il I~ 4  l

4.1 1 Lj

L...........It[~
* 3 I.Lst~I I IIj* ~~i~i

- 4 4

i - I 
I

_itI I
I a I I

+-*

.02 15~ lI

L1 1411:
-4i 1

0 30 140 ISO

(No. of Points from Midpoint23



"ul w- - - -- - - - -- .-- w - Y - -w

TL.w - h 1 . f u II 
i

IJI

4 . L

LL
1.2 ____________ Lii I- 

-7

14 
I'

10 I II . i JI

.21

.8 t~i26d

0 12; .j~ 13I

(t No.fp i t1ro i i n 3



it S

t~ er, -0 troL

-12III . l .3r I i I, 1 Ilm

4- 1

i.

jL LIif

A- I- ..

It - '

tilliJ 141

2 4 10
(t) o. f nt fr m M IO~i 3



-11 J

ILL I.5tr ,
J' ~i 

II

L I

I~~~~ A-~~--

4-1 1~' LI

Hx I
.OS I

.04!

I-,I

.02J

It .o of .ont .ro Il i 23I



.020 rj~~

uf!' ad Clcl It luru

.018 ''4,0 d~ 1 itl-o uro I*.Li:N{ N*~*- ,IV1iq4

.014 hf~~II 1L: i~ '
in I Ij~I f t~~

I+

.0121

.010 t FT -

008II '

r -F

IT,

Mt N lIo tfront M'idpoi ut 238



W V-o . .....

4- 
,

Opti:,~or;In -N#)ab dV, bcqfcr p ori ~ror

.0040

.0 3 £-r .T~i.1~t 
d re ~~roaL

-4.~ -L 1T

.0030 --.t. -4-1'' . '

4 4A **

*00 ~ J4a~

IJ 

I

I Ind

.010 - .10i

(t) No ,of l ola ,)m tikp l 3



ORTHOGONAL PULYNOMIAL REFERENCES

Kendall, M.G. and Stuart, H. The Advanced Theory of Statistics , Vol. II
Now York, Hafner Publishing Co. 19691

240



D. VELOCITY AND ACCELERATION

III Pwictions of Velocity and Acceleration
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FUNCTIONS OF VELOCITY AND ACCELERATION

The moving arc smoothing program and the orthogonal polynomial program
compute smoothed positions, velocity components and acceleration components.
The standard deviations of these data are also obtained. From these data

other derivative data may be computed. These data include trajectory angles,
the rate of charge of the trajectory angles, tangential and normal eccelera-
tion coLponents, total velocity, radius of curvature and rate of turn.

This report includes the derivation of the equations for these data-and
for their standard deviations.

Velocity:

The coordinates (x, y, z) of a point, P. on a curve are expressed as

functions of a third variable, or parameter, t, in the form

x fe(t)

y - fl(t) (1)

z " f2 (t).

When the parameter, t, is time. the functions, fi(t) are continuous and

if t varies continuously then the point (x, y, z) will trace the curve or path.

We then have a curvilinear motion and equations (1) are called the equations of

motion.

The velocity or time rate of change of the distance of the point, P, at

any instant is detormined by its velocity components.

dx
-F

Lt Y (2)

dz
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The' magnitude of the velocity, as seen in figure 1, is given by

SVt2 a j2 .2 +z 2 (3)

and Vt . j2 + j,2 2) (4)

z

P(x, y z)

N ~ I/

. /

y

FIGURE 1.

lit figure (1)
A, )' I - velocity component vectors

Vt a tangential veiocity vector

P(x, y, z) a point on the trajectory

* a trajectory elevation angle

a trajactory azimuth angle
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Trajectory angles:

The trajectory angles$ * and 0, are defined as the azimuth and elevation
angles, respectively, of the tangential velocity vector for a point, P, on a
trajectory. Figure (1) illustrates the situation at the point, P, on the tra-
jectory in the x. y, z coordinate system.

It can easily be seen that

* tanl- -) (S)

0o -tan "l Cj2  j'2' ] (6)

Total acceleracion:

The rate of change of the velocity with respect to time is called
acceleration. The total acceleration, A5, may be resolved into components
parallel to the coordinate axes in the same manner as velocity components
were determined.

That is,
di
dt

dt

di .-
dt

and As -("X2 + 92 + 72) s

This acceleration vector is not, like the velocity vector, always
directed along the tangent to the path. It may also be resolved into two
components, tangential, At. and normal, AN, giving the total acceleration

As - (AN2 + At2# f9)

Tar.ential acceleration:

The tangential component is in the direction of the tangent to the curve
and is equal to the time rate of change ofspaed at the point, P.
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w W-

d Vt
At = d

dt

d~2+ 2kdi + k £ (10)

At a~i X -2&dt dt dt
dt CJ2 +2 + 2)A -

and using equation (7)

Normal acceleration:

This component is normal to the tangent at Ihe point, P, and directed toward
the center of curvature (Fig. 2).

AN - rajectory

Path

C

FIGURE 2.

PPI is an arc of the circle of curvature through point P.

From equation (9) and Fig. 2 we see that

AN - (A5
2 - At2) (12)
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Substituting equations (8) and (11) into equation (12) yields

AN.2 + 2 + j2 ( 213)

Radius of curvature:

The shape of a curve at a point depends upon the rate of change of direc-
tion. This rate is called the curvature at the point. The radius of curvature
at the point is defined as the reciprocal of the curvature and may be found
in the following manner:

Referring to Figure 2, p is the radius of curvature at point P and

sin ( - 900) = A . (14)

Since
sin (0 - 90) a - cos 0

then cosu -AN 
(15)

The cosine of the angle, 0, may also be found from the following equation:

cos 0aAl A2 +P 1 02 + v1 v2 , (16)

where Al, pI, vl are the direction cosines of the line CP,

1 "(17)p

zP

and X2 , U21 v2 are the direction cosines of the vector* As,
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2 - ...X

IA2 -

As

V2 = J

AS

Then cos 8- - £ 4. z
p As 

(19)

and from equation (15)

AN -(20)

Since
2 X2 + +2 

(21)

and p is constant frot P to P1

then d... 0 x + y + z
dt 0

and *~. Xi+ + z Z j2 + (22)
p

or X + yy+ Z i +j2 + 2 + 2 .

x + y + z ' -(J2 + 2 J21. (23)

Substituting equation (3) into equation (23) yields:

x 4. y * z - - Vt2" 
(Z4)
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Then using this in equation (20) gives:

AN (25)

Using equations (3) and (13) the radius of curvature may also be found
from

p ~(j2 + j2 + 2&(6
P' ((5~' y) 2 + (Z ' j)2 + (j~.~ J .O (26)

Rate of turn:

In Figure (2) let the arc length PP1 be denoted by s, then

s - s. (27)
(.

'he time rate of change of the arc length is

and since

do

ds dw)

then

-w (29)

The arc length, s, may also be found from the following equation

s u = f 4 t dt (30)
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V -- - -

and the derivative of s with respect to t is

ds ~ dx~ d2 (dz92&. s dy' * ]tsl
t(31)

j2 +, .2 + 2)4- . Vt. (32)

Substituting equation (32) in equation (29) gives the angular raze
at which the arc is changing or the rate of turn

V.
1P (33)

Rate of change of trajectory angles:

The time rate of change of the azimuth trajectory angie is found by taking
the derivative of equation (5) with respoct to time.

-tan "I + , S

L - -2-+-2- -(34)

The time rate of change of the elevation trajectory angle is found in
the same manner.

em tan " I [ 2 + 2y . (6)

e d (j2 +2)*y- . i*X + V X ,2 21
at (2 2 + i2 (35)

(J2 + 2)t y - J(j V' k y)2 + .2)' (36)
Vt 2

Sand are in radians per second.
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Standard deviations:

In the following derivations the variances of the velocity andacceleration components gre thore variances obtained from the smoothedp sition reduction.

Trajectory angles:

The azimuth angle is

* tan- IS)

The variance of the angle is found in the following manner.

Since
M 5) -')

then the true azimuth angle, + A#, may be expressed in a T'kyor's series
expansion

+ 60) - f(i + ail*

U f- + C ' , ) - -- (. .
II 21

where At. A are residuals and the primes indicate differentiation with
respect to i and '.

Neglecting higher order terms in equation (38) gives

then Z(A) 2  r(A)2 . 2 A)2 + 2 , v E - a

If &i and Ay are random then E4 A approaches zero and therefore may be
negi£ectea,

n(A#)2 -(AI)2 * 4 £(A-)2 
(40)
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Variance is defined as the sum of the squares of the residuals divided by thenumber of observations; therefore we know

N or E(6*)2 a Na, 2  
(41)

and Ox2  N or E(Aj)2 a No 2  
(42)

b2 () 2  or E(A ) 2 a Na 2  
(43)

Y N

Substituting these equat-ions in equation (40) yields

002 9 C*2 + q2 (44)

where

_g/ (45)

Sr/ OR(46)

therefore

Y4 002 1 2 0.
x -- Y (47)

and the standard deviation of the azimuth angle is

0, ( 2 (48)\

The standard deviation of the elevation trajectory angle is found as
follows:

Fe tan-I (j 2 -- (6)
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The variance is derived in the same manner as the variance for the azimuth
angle and

(ae'\ 2  2a'\ 2
002 a~i 012. + a~ 0.2 ,i) (49)

where

j2 j2

a (J2 + 92)(J2 + k2 + 12)2

2 2(51)

(j2 + k 2 )(j 2 + k2 + J2)2

23O " , (52)

(S2\ ,(. ( 1 2 + P 2 -1 2 ) 2

then 1.( 22 + Z 2 ( J 2  k 2) 0.2

(j2 + 52 + 12)2

At this point wm will. make the follobiftg substitutions which will
simplify the writing of this equation:

. (j2 * 52) (54)

2 +2 o.2
(j2 + 2) •

Using these substitutions, and equation (3), equation (53) becomes

j2 o,2 + 62 012

o 2 , Vt4 (;6)

The atandard deviation of the elevation trajectory angle i.,

/12 0 2 + 2 a L(57

Velocity:

C (2 + 2 + 2 ()253



The variance of the velocity is derived as before and is given by the
following equation:

2 t 2 U q2 2 0.2 +* v"%U (58)

where

2 X2 *2j2,a2,j2 Vt (59)

(60)
"y 2 + 2+ 27 Vt 2

/avN 2 2 12 (61)

The standard deviation of the velocity is

0~t -( 2 + t2  2 j2 0.2 (62)

Tangential acceleration:

At iYi (11)(j2 + 2 j 2X' (z

Vt

The variance of the tangential acceleration becomes

t2  2  2  2
- P--.) o M;~. ( a1.2 3 tN

(...4.) OV "Bt 2 (63)
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where 2 At
IaN \ fVtx- At"*? .(X2 (64)

K-a\xVt2 /

A(P) 2  (66)

,/ t2 (67)
/jat-22 2 ;2

.24t (68)

*(69)- Vt. T"(

Substitutlng in equation (63) yields

At (PX)2  2 + (p2 o 2  (pZ)2 2 (P V (70)

The standard deviation of the tangential acceleration is

0A2 U- *2a" 1 (71
[At ) 2 oj2 + (Pr) 2 2 + (PZ) 2 q ~2+ G t 2  (71)

Normal accelorazion:

AN a( - At2). (12)

The variance of this acceleration is given by

2 -o~2 2 * ) 2 2 9
2. BY 1/ 2 z-- , o
3AN 2 Of(72)
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where 3 2 A , 2

and using equation (64)

A 2
A . A (Px)2  (74)

In a like manner

9l 2 a- 2  (Py)2  (75)

N2 -A 2 (76)

At2) Vt "i',,,*" '"1c,:9OA- [-A' (5 2 -6. Ax (77)

2 A2 Atj (77)

The variance of the normal acceleration is

-Aij 2 r~ 1 Vt

AN " a 2 a.2>>:l o " (rZ) ' oi2+ ,,:

Vt --t+ v<~AN (80), 4
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Using equations (64), (65) and (66)

2 kX2 ) 2 + (py) 2 o.2  o () 2 o2 • I(px)2  ,2AN \AY 1 '' x Y (Z zi k-AN/ OV X

+ (py)2 oy2 + (pz)l o2 (81)

The standard deviation of the normal acceleration is

O A, -X)2 Oi2 + (Py)2 0,2 + (Pz)' a! + V' ,

ONaL , AN (P)2 y +(1A

+ (Iy)2 0,.2 + (pz)2 oJ (82)

Rate of change of trajectory angles:

The rate of change of the azimuth angle is

J2 (34)

The variance is given by

012 2 Q2 * (83)

where
2 2 2
. c ,2 - + j2 Y 1) 2i 8

* - (87)
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Substituting in equation (83) yields

2 ~ ~ i +. -LL...tJ .2 ,L0.r4 02 ~*4......~... ~.2 (!2' + \=2 + X2 ;2 X 2 + y2y ) "+

and the standard deviation of the rate of change of che azimuuh trajbrtory
angle is

( - 2i 4)? a.2 + (x - 2 4)2of2 + 2 0112 + j2 j (89)

The rate of change of the eievation angle i

( 2  +  2)4 . j + , )(j2 + ,2) -  (36)

Vt2

From equation (54)

*( 2 + j2)kA (54)

" d (90)

Using these equations then equation (36) is

G V-2  (91)

It

The variance of the rate of change of the elevation angle is

0222
23 2 /a Ne a (92)G)

where2 222

Vt() 6Y 26 26 (93)

PeNi it) .61z,2 -( + 2j 0

Ka 2 Z-a)/ Vt4  2] a Vt j (94)
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.2 *2
/1 (96)

Equation (92) then becomes

2. (.Y - 2 ; )2 o2 * + 2i )2 q 2 + ,2 q 2 + L2 o (97)
vt4

where
3 2 ai2 2 0.2 (SS)

and since

(X- X y (90)

the variance is

where

QB o2 Ci2-+,CVL ;2 (9o8)

ay Ha

where these ( 10 0) ) 2
16, 2 F 2 (2 + ) ]

L a2 (100)

- -2 2VaX, [.1X-+ '11
N y. 12 + y 2)k(102)

Substituting these equations in equ-:tion (98) yields

- i ) 2 (;12 +~ G 5 2 a-2 + 2 62 ~2 kt2 a2 0..2
OZ2 4 yCli(103)
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From equation (97) the standard deviation of the rate of change of the elevation
angle is

[zc- 26 ;)2 Vt' 26;P j o12 . a0"1 (104)

Raaius of curvature:

Vt2

AN (A52  At2 ) .

The variailco of the radius of curvature is

* 2 , (~2 2  2 , 2

+ ap 2 (106)

where r ___ 2

a2 AN (2) IN~t (-At)..4
p~ AN a (107)

Using equations (64) and (105) then

K317 AN2 s )2(108)

and in a similar manner

2k_. AN  + p Atr Py (I09

N )2 0(109)

3 2  1 2AN ,p AtP 2 l)
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2  "Vt2 [As AS A M 2

xAN

p At ]2 F Vt - At 2
tqVt /1(112)

AN 2

Since

Vt2

then

and in a like manner

2pV 4v (py)\ (114)

The variance then becomes

o2 (21 AN + p At PX) 2 G.2 + (2f AN + p At py) 2 Oi2 + (21 AN + ; At Gj2

AN4

02 vt2 [(pX) 2  2 + (P.)2  ,2 (Pz)2 o.,2),
+ A 0 (116)

The standard deviation of the radius of curvature is

F
61I(; Aj + ^- At PX) 2 oC2 + (2j AN + p At Py) 2 Ok2 +(2z AN + p At pZ)2 012

AN' L

+ 02 Vt2 [(Px)2 a! 2 + (Py)2 a * (PZ) 2 oC2)]T (117)
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Rate of turn:

The rate of turn is

Vt (33)

or since

V 2
9. -4-(25)

te Vt (118)

The variance is

2 ~a 2 2 22f2i\204 2 . 2 + W 2 (119) +

.where

V, t (120)

Using equations (74) and (59)

2 ( At P l

j: - (121)
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and in the same manner

At3  1(122)

-2 + AN( Pz. 
(12)

r y "it a

then using equations (64) and (77)

(1 2S)

and

VN (126)

f ?w T.(127)

Tho variance ia then

2 ((p At pX + AN 1)2 Oj2. + (p At p .,+-AN ,)2 0,42 At PZ AN jJ2 o12)
a!2 Vt6

, (px) 2 ay2 + (PY), o y (pz) 2 ay2 (128)
AN2

and the standard deviation is

(p At Px + AN 1)2 012 + ('At Py + AN ) 2 o02 (p kt Pz A,\ 4-,! 042

[ Vt6

+ .(PX)2 €2 + (P )2 02 + (Pz) 2 °y2]:

A(12
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Computational Procedure

Using the vaioc:.ty and acceleration components obtained from a smoothing
routine and tne v'ariances of these components compute the following

Velocity:

vt a t.% ,2 + j2 (1)

Trajectory angles:

* - tan- (2)

e a tan - G (3)

where
G - (j2 + .2)4~ (4)

Tangential acceleration:

At " Vt CS)

Total accelaration:

As a (-2 + 2 . -2) (6)

Normal accelerationi

AN u (As2 - At2# (7)

Li.zc of change of trajectory angles:

(2

Z2 Z - Z . (9)
Vt2

wiere 4

X + Y .4.LL (10)
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Radius of curvature:

0.AN " 
(12)

Rate of turn:

* V
p 

(1 )
or if tho radius of curvature is aot avallable

; - -. t .(13)( Vt
Standard Dovations:

Velocity:

* ;.z , v 2 
(1.4)

Traj ectorl ,

°e " - v (16)

i6re 

--(17)
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I ngtntial accelertion:

(px) 2 , t V 2

(py) . (19)

P (20)

OAt 11 x)2 0.2 + (P )
2 a2 + (pz)

2 Qj2

i +J, (21)
I vt2

Norval acceleration:

IA

(~ ~~1 k 0.2 +y (P -)2 0v2  (p.)2 (2

Rte of change of trajectory angles:

(*- 2i 4)2 oj2 + ( - 2 $)2 o.2 + j2 2 4 2 2 1 &(3a; " 4 . .. 4-X " (23)

[( - 2 4)2 o.2 + (** 21 6) 2 02+ j2 Cd + &2 o (24)
2; Vt4 2

2hre x ) 2 - (C . F,)2 qj2 _2 62 O +2 "2 2
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Radius of curvaturo:

0.0 12d [E21AN + p At Px)2 ai2 + (2' AN + p At PY) 2 OP.2

*(21 AN +p At p7) a 2 *2 Vt2 X)2q2* + py) 2  2

(PZ) 2 at2(26)

Rlate of turn:

a* p At Px +AN .4 + (p At Py+ AN )2 Cp AtP AiL, 1

( L vt6

4.)2 2 (PY) 2 o 2 + yp)2 o,2 (
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ANGULAR VELOCITY AND ACCELERATION

Introduction:

This program computes the angular velocity and accelexation (tracking
rates) of a given Contraves camera. These tracking rates are inserted in
the Contraves Predetermined Function Generator (PFG), which permits auto-
matic tracking of a missile. The PFG directs the Contraves telescope to
a missile t-hose launch position and probable trajectory are known. The
Contraves operator has only to make slight corrections with the joy stick.
After the predetermined function has been completed the control automatically
remains in the hands of the operator. The PFG is used whenever extremely
high acceleration does not permit manual tracking or whenever the missile
is obscured from view during the first few seconds of flight.

Description of Predetermined Function Generator:

The PFG is, in principle, an electro-mechanical translator. The
elevation and azimuth functions are generated by cams the shapes of which
produce the functions in polar coordinates. A feeler :esting on the peri-
phery of each disc actuates a precision potentiometer as a function of the
radial coordinate of the cam. The potentiomLtet then supplies a voltage
proportional to the predetermined function to the theodolite. The :aus are
driven by a synchronous motor which insures that the time factor will be
exactly represented.

The starting pulse after amplification actuates a relay which starts
the synchronous motor and simultaneously closes the circuit from the poten-
tiometer to the theodolite. After about 19 seconds a limiting contact stops
the synchronous motor and returns the Contravos to the manual tracking mode.

The unit is of simple and sturdy constructlon. The two function cams
are slipped onto the shaft of a turntable calibrated in seconds. The posi-
tions of the potentiometer feelers are indicated by dials calibrated in
angular speed.

Definitions of symbols:

to = time at beginning of the interval

ti a time at end of the interval

ao a azimuth angle at time to

ai - azimuth angle at time ti

co - elevation angle at time to

'L . cion angle az time ti

preceding pae blank
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Per aIh v t at te t

&0 - azimuth velocity at time to

= azimuth velocity at time t o

= elevation velocity at time to

- elevation velocity at time t

Ivi - azimuth acceleration computed from azimuth velocity at
time ti

7vi a elevation acceleration computed from elevation velocity
at time ti

Spi = azimuth acceleration computed from azimuth angle at tims ti

p= - elevation acceleration computed from elevation angle at
tine ti

xi, yi, zi - coordinates of missile with respect to camex-a at the ita
time

VxiV Vyi,. Vzi - velocity components of missile with respect to camera
at the ith time

XL, YL, tL WSTM coordinates of launcher

XC, YC, RC a WSTM coordinates of camera

Xmi, Ymi, Zmi - coordinates of probable or standard trajectory at the ith
time

VXmi, VyMNi, Vzm i a velocity components of probable or standard trcjectory at

the ith time

CF - conversion factor for desirea units

QE = quadrant elevation of missile

A - azimuth of fire of missile to be launched

E = (QE of missile to be fired) - (QE of standard missile)

Mathematical Discussion:

The rates to be inserted into the PFG will be the azimuth and elevation
accelerations that best describe the changes which occur in the azimuth and
elevation during the time interval to thru ti. The PFG utilizes up to ten

of these angular accelerations and time intervals.
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The angular accelerations may be computed from either the angular

velocity or the position (angles).

Accelerations based on angular velocity are computed using the
following equations:

.=&i - &0

v1 ti - to

ti -to

Accelerations based on position (angles) are computed from:

2[ai - ao - & (ti - to)]( pi (ti - to) 2

2[Ei C - 1G (ti - to)]pi =
(i- to) 2

If1o - ;t, then azimuth accelerations computed from the two methods
will be equal and the position (angle) and azimuth velocity will be correct
at time ti.

If &O€ Si, then computing azimuth acceleration from the valocity will
introduce a constant error into the position at time t. but the azimuth velo-
city will be correct at ti .

If o 4' Ii and azimuth acceleration is computed from the po.. :ions, dn

K- error will be introduced in the azimuth velocity but the posit:on 4t ti will
be correct. However, the error in the azimuth velocity will proauce a cumu-
lative error in the succeeding positions. This cumilative error wil soon
exceed the constant position error introduced by the first method of ompu-
tation. Therefore the following reduction is based on the first metnod of
computing accelerations from velocities. The previous discussion also
applies to the elevaticn acceleration computation.

The angular velocities are derivedM follows:

If u - F(x, y, z)

and x f (t)

Y f2 (t)

z - f3 (t)
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then + N) + /u /

,'auN I'au'\ (uor u L t-V. +- v i + - vz

If a*u a- Y

and

where

acti -Yj

azt

aaq aui 301Substituting ax-, ay D in equation (1), it is easily -en that

xi!i- yiV. l

yi2 + Y1 (2)

xi * i 2 + 2T-

and ii pc- vi.yv~ 9> i +(Lv~ (3)
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where

aci -XI, Zi

ax (xj 2 + yi2) . (xi 2 + yi2 + Z 2)

ari -Yj zi

ay (xi2 + Yi 2 )*.. (Xi Yj 2 + Z 2)

aci (Xi 2 + y124

az (X12 + yi2 + Zi2 )

ai aei aci
.Substituting -- , ----- , -- in equation (3),

I (i 2 + yi2) VZi - zi (xj VXi + Yj V ) ()

(xi2 + y12)4 (Xi 2 + yi2 + Z1 2 )

Computational Procedure:

Angular velocities and accelerations of a camera may be computed from
either a standard trajectory supplied by the contractor or from the trajectory
data of a missile which has the same trajectory as than expected from the
missile to be firid. The trajectory used must be with respect to the missile
line of fire.

For each camera compute the coordinates of the launcher with respect to
the camera and rotate the coordinates through angle A as follows:

X a (YL - Yc) cos A + (XL XC) sin A

Y -(YL -YC) sin A + (XL- XC) cos A

Z -H L -H C

where I A a Azimuth of fire of missile tobe launched

XL, YL, HL - WSTM coordinates of launcher

XC, YC, HC - WSTM coordinates of camera
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The probabie or standard trajectory data for each ith time requiredis then rotated through angle E. The equations for rotating positions are:

YXi - Xi Cos -Zmi sin E

y1. a-y
mi Mi

Z -i a sin E + ZMi cos E

antl velocity components become:

Vxi Vx cos E - Vz i sin E

V - V iym nc
Vzi Vxmi sin E + Vzmi cos E

where

E - (QE of missile to be fired) - (QE of standard trajectory)

Xp, Yn, Zm - Coordinates of probable or sz.,dard trajectory at the i t h

time

V. 4. V.. V,;~ - Velccity components of probable or standard trajectory
at the ith time

The positions with respict to the camera at the Ith time then become:

xi a (X)CF * xYi

*i (Y)CF + Y-

zi a (Z)CF + Z'.

where CP - conversion factor to desired units.
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The angular velocities are computed as follows:

Xi Vyl - Yj Vxl
ai = xi2 + Yi2

(xi2 + yi2) Vzi - zi (Xl Vxj + yi Vvi)
(xi2 + Yi2)A (Xi 2 + y 2 + z 2)

and the angular accelerations, computed from the angular velocities, are:

Qv, tl - t(i -1)

Zvi t' - t

i iare in degrees/sec

,vis Zvi are in degrees/sec
2
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AX~~lrato tie (brnputational Procedure of tie .'*i~rVelroct.'
A1CCc Icrr ':f1 n a haidbooIk.

.~.... ~tvdof ComtUtiflg the ;)OSition 01. rac wit-,o
t:nc z :) rotate the :)OSitionI OF the ic sl :z * it--" t.

t.10 l . , Cn tairoupa the anjilc A, ~:3 tae-i tr.s i:j-c t .i~ i. t'C:

taiat it oJ1 : ita respec~t to tac cat;Kra. '11.c rotatio;1z. 0'v.x 5*0Ao71

co A .

cos A ICIs 'Z' 1
L 11 ni I

or

r 1

rxfi ~ x

[A] [L] Y. Y. 2
nu M I

MI. I n

Solving for X ,Y mi Zi yields

=cos A (Xi Cos E - Z sin E) -Y. sin A

Y . sin A\ (X j Cos L - Z m s in E) + Y c (3)
Tn'

I ne missile position with respect to tne Came~ra may thon lxe obtainc,: fromi

X X Mi + 0,Y1  YC)

"'n + (X L Y c 4

z ni + ( - 110
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or using equation (2) the rotation mid translation. becore1 L C1'

-Y,-X [x ii + ]'xL - 1 ,[A] ymi 'mil X (5)

L - J 1j - L L

If tihe -ositions are rotated and translated in the above manner then tac
velocity conp)oncnts must also be rotated through the samw angles as the positions
were. That is,

V- V! "

[A) [I; V y j (6)

Lvznd L zil
The results of equations (5) and (6) are then used in the equations for

finding the angular velocities and accelerations.

It may be of interest, at this point, to note that equation (S) above and
the equations for Xi 0 Yi Zi in the Handbook are riot cqual. This is explained

in the following paragraphs.

In the Handbook the coordinates of the launcher with respect to the camera

are first rotated through angle A by u7,e cf the inverse matrix [A] - .

YL YC x

[A)- IXL -Xc (7)

LHL iC LZ
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Siuc( j; is an ortho!onal transforTiation we have

cos A sin A 0

(A] [ = -'sin A cos A 0 (8)

0 0 1 ,
L

- s,.vi.-, for X, Y, Z in equation (7) yields the equations in the Iandbook.

X)sin A + (Y-Y)cos A

(XI X cos A - (YL YC) sinA (9)

Z L 11

The next step in the Handbook is to rotate thc position of the mtissile

at the i t  tiime through the angle Ei. In matrix from this beccies

KEI Ymi Ym (10)

L L
Equations (7) and (10) are then added to obtain the Xi, Yi, Z. listed{ in the Handbook.

"YL-Y
" Y iIXi

[^l L " c M il Y()
x- x rcj •I .[A] 1  J - L

L +E 
V y i I 

(1 1 )I Ii7
11L ' I mi' 1
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If it is desired to obtain the position of the missile with respect zo
the camera in the same reference system as ,n equation (5) then one More
rotation througn the angle A is necessary. Rotating equation (I1) through
angle A yields the following matrix form:

YL YC Mi Xi Xi

L .

or

[F L YC X. i
[X7] X + [A] [I YYi (13)

C-Z n. Z Li

and equation (13) is equal to equation ().

This last rotation is unnecessary because the only filings being con-
sidered in this reduction are the ,anguar velocities and accelciations. If
the azimuth anale, * were- to be corntuted from equation (5) it would differ
from the azimuth angle computed From equation (11) only by the constant ric.a
A. Computing the angular velocity using the azimuth angle in the case of
that computed from equation (5) yields

d ( I) =dt

and using equation (in, gives

d -A)

dt
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POSITIONAL DERIVATIVES FROM RANGE OR ANGULAR DERIVATIVES

Introduction:

This is a method used to compute the positional velocity and acceleration
components using derivative data obtained from ranging or angular measuring
systems.

The least squares method is employed to obtain the positional velocity
and acceleration components.

The equations used to compute the velocity and acceleration componefit:
and their variances are derived in this report.

Several applications of this technique are shown.

Mathematical Procedure:

Velocity Components

The coordinates (x. y, z) of a point, P. on a curve are expressed as
functions of a third variable, or parameter, t, in the form

u a F(x, y. z)

where x - fl(t)

Y 0 f 2 (t) (1)

z N f3 (t).

The velocity, or time rate of change of the moving point, P. at any
instant is found by taking the derivative of the function, u, with respect
to t.

du . B d av o(2)-=t 75x dy K570 3zt\/t

dX d n dz
where T , F and dt are the positional velocity components.
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Let ting

-A- aj

ax

. bI  (3)
Zy

a -

and substituting in equation (2) gives

d ij - I aj + k bj + I cj (4)

for the jth observation, j - 1, 2, 3 ... n.

Using the least squares procedure on equation (4). the sto of the squares of
the residuult is givau 'ly

n
S m I * , aV- bj -j] (5)

j.1

The sum, S, is ainimized by equating its partial derivatives, = , -,- ,Sy

and , to zero and solving the three rimultaneous equations for c ', and

i. Thes ^ equations are:

k Z(aj)2 + t :(aj bj) + E :(aj cj) w E(uj aj)

I E(aj bj) + I t(bj) 2 + Z £(bj cj) - £(aj bj) (6)

IZ(aj cj) * " 1(bj cj) + i EjcJ 2 a Z( tj cj).
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In matrix form these equations become

t~ ) (aj bj) r(aj Cj)- 'E(6 aj)1

Z(aA bj) r(bj)2  Z(bj C),' E (C bj)I (7)

(&J cj) r(bj cj) r(cj)2 J (Ci; c) m.

a y nd i may then be solved for using the following matrix form.

Ea2 ajb) Z(aj cj) 1rfja)L2 (aj bj) r(bj) 2  1(bj cj) E(tij bj) (8)

1(aj cj) r(bj cj) r(cj) 2  j 1z(i cj)

Variances of the Velocity Components

From equation (4), the residdal of the jth observation is

66j - (6j - A aj - bj - I cj). (9)

An estimate of the variance of C is defined as the sum of the residuals
squared divided by the degrees of freedom.

- __j (10)d. f.

where d.f.- n - 3, and n is the total number of observations.

The variances of the velocity components are computed using the 0o2

above and the elements of the inverse of the least squares coefficient
matrix. Rewriting equation (8) as

[VI - [AI- 2]87
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then the variance of [V] is a62 [A]"1 . If Aij is the element of the ith -ow

and jth column of (A]"' then the variances of the velocity components are

a12 , od All

Qk2 , 062 A22  (12)

12 w 762 A3 3 •

Acceleration Components

The acceleration, or time rate of change of the velocity, of the point,
P, at any instant is found by taking the derivative of the velocity of the
function with respect to t. From equation (4), the velocity of the function is

j - ,j * ' bj * i cj. (4)

The derivative of j with respect to t is

du . Uj - i i + aj dL AU + bj Ok + d * + cj d (13)

dt dt dt dt dt dt dt

dA a nd " are the acceleration components and
dt dt dtI o

+ *x

ft " (14)

di

and

. . j(is)
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Substituting equations (14) and (15) in equation (13),

j i aj , tj + j , aj +'bj +' cj. (16)

Using the least squares procedure on equation (16), the sum of the
squares of the residuals is given by

n

Sm R- ij- j - i j - *'aj-b -Y c1 ]
2Z,9 (17)

jal

The sum, S, is minimized by equating its partial derivatives as as and

as

A-. to zero and solving the three simultaneous equations for x, and z.

These equations are:

, E(aj) 2 + y Z(aj bj) + z £(aj cj) = Z[ j - ; aj - y bj - *Z cj) aj

x £(aj bj) + y E(bj) 2 + z* Z(bj cj) a 1.[' j -:[ * aj - y bj - 'Z° cj] bj (18)

xE(aj cj) + " y (bj cj) +z 0(cj)2 -Ej - aj - bj - *C] cj 5

In matrix form these equations become

Z(aj) 2  E(aj bj) Z(aj cj) Xr l ( - -* j - ' cj)aj

rCaj bj) L(bj) 2  r(bj cj) , Z(uj - aj - y- j - z cj) bj (19)

I~ 4.
LE(aj cj) r(bj cj) Z(cj) 2  _LzJ LZ( j - jj - Si - i j) cj •

Rewriting equation (19) in the form

[A] [ C)] [C], (20)

, y and z are solved for by using the matrix form

[0] - [A] "1 (C]. (21)
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Variances of the Acceleration Components

Using equetion (16), the residual of the jth observation is found to be

6Aj - 7uj - 1- j - j -*X aj - bj -icj]. (22)

An estimate of the variance of 'i is defined as the s,.= of the squares
of the residuals divided by the degrees of freedom.

G" (23)u d.f.

whore d.f.* n - 3, and n is the total number of observations.

,io varz.ances of the acceleration components are found using ell 2 above and

the elements of the inverse of the least squares coefficient matrix. This
matrix is the same as the inverse of the coefficient matrix used to compute the
velocities. Using equation (21), the variaice of (] is oit 2 [A]-I. Aij is

again the element of the ith row and jth column of [A]-I and

o2 n ot2 All

oy2 * oTJ2 A22  (24)

VE2 - oiU2 A33•

Applications

Dovap data: This system measures an ellipsoid of revolution about a
preselected transmitter and some ith receiver. Velocity components, u.V!,,
position data from any source and the time rate of change of the loop range
from dovap, are found as follows.

The loop range is

Uj a (Xt 2 + yt2 + Zt23 (Xi 2 + yi 2 + zi2]

where
xt& yt, zt are position coordinates of the missile with respect to

the transmitter at time t)

xi, yi zi are position coordinates of the misrile with respect to

the ith receiver at time t.
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Then ai
a j a .d, R" + 7 1

/au" y@

3Ui,\ /Zt Zj'
cj a " + RJ

where Rt - [xt2 + Yt2 + zt21k

Ri a (x i2 + zi2]

is the time rate of change, or velocity, of the loop range observed from

the ja dovap at time t.

aj, bj, cj and Oj aze computed for each statioi. and substituted in equation

(8) to solve for i, and i.

Acceleration components are found in a similar manner using position and
velocity data from any source and'the time rate of change of the velocity
of the loop range, aj, bj and cj are the same as those computed for velocities
and

a1 dt )Rt2  + i

dt Rt2  Ri2

cj dt " Rt "11 2

where Rt - [xt 2 + yt2 , zt2]'

t " t  + yt + ,Zt
Rt

and 

R

Ri = [xj2 + yi 2 + z12]k

f. xi i + yj + Z, Z

Ri
291



uj is the time rate of change of the velocity of the loop range.

Equation (19) may then be used to solve for ;, " and I.

Cinetheodolite data: This system measures a line in space defined by anazimuth angle (aj) and an elevation amglb (cj). Velocity components, usingposition from any source and the time rate of change of the azimuth and eleva-tion angles, are found in the following manner. In this case each azimuthangle is considered as an individual observation and each elevation angle isconsidered as an individual observation. If only azimuth angles are available
there is no solution for the velocity component in the z direction.

When

uj a tan

ax Wj- +yj,

ba xj
J ay xj2 +yj

3€ . 0 .

When U j tan +J-- z'
(xj2 + yjy--,tJ

a- x! Zj

X a (Xj 2 ' y (Xj 2  + + zI +

b . .. - yj z

ay (Xj2 + yj2)k (Xj2 + yj2  Zj2 -

_ 2,U_ (X 2 + yj2)

c 3 = xj2 + ),J2 + ZJ2
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In both Cases Xj, i . are Position coordinates with respect to the jththeodolite at time t. This frocess is -followed for each azimuth and elevationOf each theodolite at the tine t. The cofactors of the least squares cotbfficientmatrix are computed and from equation (8) 1,t, I are then found. 6j is therate of change of the angle.

The same process is used to compute acceleration com~ponents. The co-factors of the least squares matrix remain the ssas as those used to computevelocity components. When

Ua ci

then

,j da -y (xi,2 Y,2) +y4 x jx y-y)
dt (XJ2 + * )

j dc x2+Y2;

dt

When

uj a

then xz
aj = (xj2 + Yj Z 32)(x32 + y12).

bJ-7 4 Zj 2+77

(x.2 + y j2) (j 
CJ" (Xj + 2  

+Z

If we let

D j x 3j + 2  Z 1 2 )

then 
-1 xiz
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-- - wz

bj 2- z

+x ~ yj &

9

Taking the dorivaios of aj, bj and cj with respect to t. gives

DiP (Xj2 + yj2)(Xj + *Zj i
dt Dj2 (xj2 + yj2$..

xj zj [Dj (zj i + yj ) + (xj 2  Yj2) bJ]
Dj2 (xj 2 + yj2)4

b -Dj (x1
2 + yj 2 )yj t I j + )

b dt Dj2 (xJ2 + yj2) -

_1._zj [Dj (xii + yI ) + (xj 2 + yj 2 ) bj]

1)j2 (Xj2 + yj2

t j U c j (xj +y - (Xj 2 *y 2)_"dt D i 2 (xj2 + yj2)i

where dDJ aj.2 xj + 2yj + 2zj i.
dt

uj is the time rate of change of the velocity of the angle.

These values are computed for each angle of each theodolite at time t.
Equation (19) is then used to solve for ;, y and IF.

Velocimeter data: This system is a high frequency doppler system whic*
provides the time rate of change of the range.

LIj * (xj2 + YJ2 + 4 )

and !j
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j z Rj

where xj, yj, zj are position coordinates, from any source, with respect to

the velocimeter.

These values are substituted in equation (8) and i, , are computed.

To compute acceleration data, aj, b4 and cj are the same values as

computed for the velocities and

ij daj d1 Xj~ R__x____

a dt dt Rj Rj2

dbj d _( ;
d d zj R , j,

c~ dt dt 2
_. ({_, Rj- z

w h e r e +/jzi i

hj R R

6z is the time rate of change of the velocity of the range. Equation (19)

is then used to solve for x, y and z.
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EARTH CENTERED INERTIAL COORDINATE SYSTEM

In this disc',ssion we shall de, elope and derive the equations needed for
transforming component positions, component velocities, and conponent accelera-
tions in White Sands Cartesian System to component positions, component velocities
and component accelerations in an Earth Centered Inertial System.

WSCS is a left-handel! system, (x, y, z), with the x and y axes in a plane
tangent to the earth. Ir the following development the origin of the WSCS is
translated to the point cf tangency of this plane on the Clarke spheroid of
1866. The x-axis is aligned positive to th3 north; the y-axis positiwe to the
east; and the z-axis positive up along a plumb line at the point of tangency.

The ECI system, (Rx, Ry, Rz), is a right-handed cartesian system with its
origin fixed on the earth's spin axis in the equatorial plane. The orientation
of its axes remains fixed in space while its origin moves in a path through
space coincident with the earth's motion. The initial orientation of the 9CI
axes is determined for each mission as follows: the positive Rx axis Ixes in
the earth's equatorial plane directed toward the longitudinal meridian of the

missile launcher at missile flight time t - to; the positive Rz axis is directed
south along the earth's spin-axis; the Ry axis completes the right-handed set..

Definitions used in the derivation:

a is the semi-major axis; and b is the semi-minor axis of the Clarke
Spheroid of 1866,

# a3 the geodetic latitude of the 11SCS point of tangency.

e is the geocentric latitude of the WSCS point of tangency.

0 is related to 0 by 0 a tan - l b
2  tan

XL  is the longitude of the launcher. (Negative in the Western hemisphere.)

A kC  is the longitude of the WSCS point of tangency. (253"40' or -lu6020').

U is the earth's anguiar velocity in radians/sec. (+7.29211 x h-s).

t is the time relative to lift at which a coordinate point in WSCS .s to

be transformed into ECI coordinates.

AX - (AC + wt) - IL.

R is the geocentrc radius of the WSCS point of tangency definea or

R a
(R K sin 2 O).

where a2  b2
K-
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Procedure:

The )SCS is first rotated about the ea3t-west or y-axis thru an angle

of (90 -#) and yields the coordinate values (x', y', z'). (Seo Figure 1).

-x x cos (90 - *) - z sin f90 -

y' . y(1)

z' x sin (90 - *) + z coi (90 -)

or
x1 x sin *-z cos*

y- y (2)

z' x Cos + z sin *

In matrix form

xi sin ~ 0 -Cos* x

•l 0 1 0 Y(3)

o Cos € 0 sin

Earth's spin
axis z

90-#

xl..........

--- Longitude of WSCS
Point ,f Tangency

FIGURE 1.
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P. second rotation about the z' axis thru an angle of (18& AA yields
coordinate values (x". y". zoo) (Figure 2).

X1 ,Cos (1800 + 41) + yl sin (1800 AX)

Y" -x' sin (1800 + AA) + Y1 cos (1800 AA) L4)

or

*~ -X' Cos AX-y' sin AX

Y" X1 sin AX -y' cos Ax(5

Zoo~ ,

and in matrix notation

xo -Cos AX -sin A"'. 0 [X1

LY:Jsin:AX COS AX J Li (6)

Erhsspin
axis

of ouWC

FIGUR8 2.'

zo 180+A

-. rZ;j'- 
-X



The system (x", y', z") is a left-handed cartesian system which has its
axes parallel to the ECI system required. To convert the (x", y"', z") to a
right-handed cartesian system (x', y'u, z' ') with its axes parallel to,
and in the same direction as, the axes of the ECI system we have

zoII I " x
tt

,tI I .y (7)

It is now necessary to translate the (x1', y' zo') to the E origin

(Rx, Rys Rz). (Figure 3).

Rx - x''t + R cos 0 cos 44

Ry - y1,, - R cos 6 sin AX (8)

Rz - z''' - R sin 8.

Earth's spin axis

Long;tude of WSCS
Point of Tangency

Rz--Equator

FIGURE 3.
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In matrix'notation the complete rotation and translation from the left-
handed WSCS to t hp right-handed ECI coordinate system is

FRi -cos Ax -sin AX 0 sin * 0 -cos *' x]

0 1

R cos 8 cos A

-R co8 sin &A (9)

-sint

or
R -cos Al sin # -sin Ax Cos AX Cos x

Ssin AX sin -cos A cs 6A Cos 4 

RZ -COS 0 -sin

R cos 8 cos L.\

+ Rcos 6 sin A (10)

-R s i n 6 J

Co!ponent V uloc:ties
RxO Ry and Rz may be differentiated with respect to time to detormin©

the component velocities. The component velocities are derived as follows.
From eqjuals on (10)~

Rx v -x os AX sin- y sin A z cos AX cos + R coz cdsL A (11)

Ry w, x i - y coe s - z ain AX cos - co sin AX (12)
: ! Rz u -x, cos -z sin €-R sin 6. (03)
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Differentiating equation (11) with respect to time gives

dax co s )ddx dAA

Ax -x(-sin AX sin #) -cos Ax Sir *) -A- y (Cos ax)

-(sin AA) * z(-sin eX cos *) dA d-- CS CS
dR

-R(sn AA cos 8) + -A (cos 0 cos 6A) (14)
dt

where d(AX) • dx

dt dt

dR d d 3dt dt

ddt t--

Substituting these values in equation (14) yields
d4

Rx wx sin AX sin* - wy cos AA - wz sin AX cos * - wR sin AX cos e

- i cos Al sin€ - sin AX + i cos Al cos *

or
Rx Ix sin AX sin * - y cos AX - z sin aX cos * - R cos 0 sin 6)

- cos AX sin - sin AX + i cos A cos*. (1S)

Froo equation (12) we know

R a x sin AX sin 0 - y cos AX - z sin AX cos - R cos sin AA. (12)

Substituting this in equation (15) givws

Ax ,Ry- cos t -sin# -sin AX + Z Co. Ax Cos . (16)

Differentiating equAtion (12) in the same manner yields

ky - w[x cas AX sin *+ v sin AX - z cos AX cos 0 - R cos AX cos 8]

+ i sin ^A sin * - ) cos AX - z sin AA cos 4. (17)
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Substituting equation (11) into equation (17) we have

Ry = -Rx ksin AX sin* - 5 cos - sin A cos . (18)

Differentiating R. [equation (13)),

RZ • -a COS * -c sin*. (19)

Smmarizing the velocity components

Rx a y - X cos AX sin* -,sinAX * cos Ax cos (16)

•Y 0 -RX. + sin AX sin - cos AA- sin ax cos$ (18)

Rz - cos *- i sin #. (19)

In matrix form the velocity components in the -CI coordinate system are:

X] -Cos A sin # -sin AX Cos Ax Cos ] Ry
ttA~y rI in Ax sin # -Cos AX -sin AX cos #j Y W it (20)

. [ -CoS 4 0 -sin* _ L'i L0 J.

Component accelerations

The component accelerations are found by taking the first derivatives
of the component velocities and are iound in the following manner.

Differentiating equation (1S) with respect to time and collecting ters
yields

NX x cos AX sin 0 + w2 y sin 4X - w2 z cos cos *
-W2 -R cos AX Cos e + 2w sin AA sin 0 - 2w cos 6A

-
2w i sin AX cos - cos 6A sin 4 - 3 sin A +'* cos Al cos *

or
X "U2[X COS AX sin o + y sin AA - z cos AA cos * - R cos AX cos 61

+ 24[i sin Al sin o - ' COs Ax - i sin AX cos *] (21)

- cos Al sin * - ' sin &A + Y cos A) cos
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Using equations (11) and (18) we see-that

2w W2RX *2[ COS AX. Sin # * ,y Sinl A - Z COS AX. COS*

-P. cOS AX. C05 *] + 2w(i sin AA. sin CO & osA

-isin Ax. COS *J. (;2)

Making this substitution in equation (21) yields

R* -xcosA) sin, y sin AX * Zicos A). cos 2AY+ * 2RX, (23)

In a like manner fly and RZ be cow

iY x siiAX. sin y COS AX -sin AA COS, 2waR W2Ry (24)

R: * - cos* sin. (2S)

In matrix form, the acceleration components in the ECI coordinate system become

X -CS Al sin # -sinAX CO coAX COS# * 121y44i

Ry snAA sin 0 -cob AA -sin AA cos* # Y+ w -2Ax +uwy (26)

RZ -COS 0 -sin Y
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DERIVATIVE DATA AND WEATHER

Introduction

This program determines ground range, slant range, and height of the
issile above mean sea level from trajectory data components. True air

s.ieed, indicated air speed, mach number, dynamic pressure, drag accelera-
tion, drag force, and draR coefficient are computed frcm atmospheric data
ane trajectory data. Height above sea level as a function of density and
of pressure may be computed instead of ground range and slant range.

Air weather information is obtained irom a KSMR air weather site and
from a WSMR model atmosphere table. If the missile exceeds the altitude of
the observed air weather data, then a model upper atmosphere table is used
for the higher altitudes. Atmosph, ric data such as temperature (T), pressure.
(P), relative humidity (f), wind speed (Vw) and direction from which the wind
is coming (o) are interpolated to the height of the missile.

Telemetry data may be used if available; otherwise vacuum thrust (Fv)

and weight of fuel (Wf) will be set to zero for the entire trajectory.

Any available trajectory data in standard DRD format may be used.

The equations derived assumd that all quantities are expressed in a
consistent system of units (either the English or M.etric system for
position units, usually the Metric system for meteorological relationships).
In computing it is necessary to include conversion factors so that the
results will appear in the desired units.

Mathematical Derivations:

Slant Range (R.) and Ground Range (Ri):

Slant range is defined as the distance from a given position of the
missile to the origin. Ground range is the projection of the slant range
onto the XY plane.

Let X, Y, Z be the position coordinates of the missile. Then

Rs (X 2 + y2 + Z2)

Rg . (X 2 + y2).
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Height above Mean Sea Level (H): (See Figure 1)

1! - Height above Mean Sea Level (MSL)

Ho a Height of origin above MSL

Ro - Radius of the earth

RD - Distance from the center of the earth to the missile

To find the height of the missile above 01 it is necessary first
to compute the distance from the center of the eath to the missile, and
from this, to subtract the radius of the earth.

RD a [X2 + y 2 + (Ro + He + Z)2A

H - RD - o

True Air Speed (TAS):

Vx, Vy, Vz a Velocity components of missile at desired altitude

Wx, Vy# P.z - Velocity components of wind at desired altitude

Vw - Wind speed at desired altitude

0 - Direction from which wind is comlng at desired altitude

[H - Rotational matrix (defined in Rotation and Translation Section).

True air speed is defined as the ground speed of the missile corrected
for wind velocity. The components of the wind velocity are obtained using
the wind speed and wind direction from the air weather data at the desired
altitude and the rotational matrix [H. Since the wind speed from air
weather data is givn in knots, it must be converted to the (position u-i.cs/
sec) system used for the missile velocity before computation.

WX *VW Cos

.y =[N] [w sin e

Wz  0

TAS-[(Vx - Ix)2 + (Vy - ) * (V1 - 2z) )

316
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Tangontiai Acceleration (AT):

Ax, Ay, Az - Acceleration components of missiie at desired altitude

Tangential acceleration is the missile acceleration corrected for
wind velocity and true air speed.

AT [Ax(V x - Wx) + Ay(Vy - Wy) + Az(Vz - Wz)]
TAS

Density of Air (p):

P - Total air pressure at desired altitude (mb)

PD = Pressure of dry air at desired altitude (mb)

PD = Density of dry air at desired altitude 
(gm/r 3)

0' - Density of water vapor at desired altitude (gm/m
3)

Op = Partial pressure of water vapor

R, R' = gas constants for dry air and water vapor respectively

R* = universal gas constant

T, T' = Absolute temperature (*K) of dry air ana water vapor respectively

m, m' = Molecular weight of dry air and water vapor respectively (gm/mel)

f = Relative humidity (percent)

es - Saturation vapor pressure at the temaperature of the air in
question

Cs - Molar specific heat of a substance

Ci = internal molar specifi( heat due to rotations and vibrations

Ao n Latent heat of vaporizaticn

i - A chemica. constant of integration

S = Entropy of the substance
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Dry air is assumed to obey the perfect gas law, which states the
relationship between density, pressure, and temperature. However, the
atmosphere is composed of a mixture of dry air and water vapor, each of
which occupies the space independently. The density of the mixture is
the sum of the density of the dry air and the density of the water vapor.

The ideal gas law gives the density of dry air as

PD
Oa RT

or since PD P ep,

P - ep
D  IS K

The density of water vapor is given by

ep

R' T'

Since the universal gas constant, R*, u mR S IR', then R' MR

and PI a
a RT'

The desir.d total density, p = PD + P', is given by

P - ep m' ep

RT m RT'

or, since in a mixture of dry air and water vapor, T T',

-" [- ep + ep

" [- + ep



In this form of the equation all quantities are either known constants
(R, m, and m') or weather data observations (P, T), with the exception of
the partial pressure of water vapor, ep. This, hoever, can be *i 'iyea from

the relat've humidity observation (f) and the satexation vapor ,rssure (es).
By the definition of relative humidity,

ep

es

Therefore, ep a f es

The general equation for the vapor pressure of a substance. assuming
that the vapor obeys the ideal gas l, is obtained by integration of the
Clausius-Clapeyron equation:

Ine5- +S IT E I T f 0T (Cs - Ci) dT d~In as + --f- In (T Zd I i

A special case of this general equation is the Kirchhoff formula, in
which the integration is taken between temperature limits sufficiently close
for the specific heats to be regarded as constant. This gives the equation

B
In a. a A - T C In T.

Subatituting numerical values for the constants and measuring the temperature
ia *K, the value of e s in certibars is found from:

In e. T - 4.9283 In (T) + 51.92

The total density equation can then be writton:

1~ ~ F i' '(exp) 1

where "P+ f 4.8- ie g
where (exp) - f j6736 - 4.9283 in (T) 5l.9274



Indicated Air Speed (IAS):

Using the values computed for true air speed and total density at the
altitude in question, indicated air speed is found from:

IAS - TAS ( P

where po is the standard density" of air at sea level.

Mach Number (H) :

Vs - Velocity of soind

= Ratio of spe.cific heats c_ _

Cp - specific heat of dry air at constant pressure

Cv = specific heat of dry air at constant volume

R* - Universal gas constant

T a Temperature (CK) '

m a molecular weight of dry air

Mach number is defined as the ratio of the speed of an object to the
speed of sound in the undisturbed medium in which the object is traveling.

The velocity of sound in dry air at the observed temperature T is
givei, by:

Vs = ' R* T cm/sec - 65.795 /' ft/sec

Then, mach number is computed from

-AS - ' .0151987(TAS) (T) '

Vs  65.795 rT
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Dynamic PressreL

Dynamic pressure is the pressure, created by atmospheric pressure and
fluid friction, acting on the shell of the missile in flight. Dynamic
pressu'.e is computed from Bernoulli's equation of motion for an incompressible
fluid, that is,

I
q - (TAS)2

Drag ( DraI Coefficient CCn, and Drag Acceleration IAi-)

F a atmospheric thrust - (FV - f9 P)

PV a vacuum thrust

f* - area of the exit nozzle

P a pressure

W instantaneous mass - (Wo + WF)

WO N weight of the missile without fuel

WF a weight of the fuel

g - gravitational acceleration

go - gravitational acceleration at sea level, White Sands latitude

ep r pitch path angle

s - missile's geometrical cross section area

Drag is a function of thrust (F), instantaneous mass of the missile
(W), and drag acceleration (AD). Drag acceleration depends upon the
tangential acceleration (AT), the pitch path angle COp), and the gravita-

tional acceleration (g) at the latitude (t) and altitude (H).

The gravitational acceloration observed on the earth consists of the
actual attraction by the earth diminished by the effect of the centrifugal
acceleration caused by the earth's rotation. Since this rotation causes
points near the equator to move faster than those at higher latitudes, the
centrifugal force decreases as latitude increases. Consequently, the total
gravitations) acceleration increasos with increasing latitude, In addition,
the gravitational forns at any altitude is inversely proportional to the
square of ths distance from the center of the earth,
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The gravitational acceleration at latitude # and altitude H (in cm) can
be expressed by Ilelmert's equation:

g - (980.616 - 2.5928 cos 20 + .0069 cos
2 24 - 3.086 x 10-6 H) cm/sec 2

The gravitational acceleration at sea level (H-O) and White Sands
latitude (0) can then be computed as:

go - (980.616 - 2.5928 cos 20 + .0069 cos 2 20) cm/sec 2

Because of the inverse square relationship between gravitationsi
acceleration and distance from the center of the earth, the following
ratio exists:

.o -

or
g 0go R

\RD

Drag acceleration may easily be computed then, from

AD - AT + g sin Op

or, since sin 0p = TAS W
P TAS

A T xVx - Wx ) + AyVy - WY) + AzV z - Wz) g(V - Wz)
TAS L 1A' Z Zz

Drag force (D) is computed from:

D C3 F - WAD

whore C3 is a multiplier used to correct vacuum thrust for loss of thrust

due to jet vanes,

and F - Fv - fe P

W = WO + WF
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Finally, the drag coefficient (CD) , a nondimensional quantity, is

computed from:

D
qs

Height above HSL as a foncti.on of Pressure (lip)

a z lapse rate a rate of change of temperature with altitude

H - height above MSL or geopotential height

Z a altitude

G a dimensional constant

g - gravitational acceleration

To a Standard temperature at sea level

PO 0 Standard pressure at sea level

T* - Temperature defining' the Tropopause and constant temperature

of the stratosphere

P* = Pressure at tropopause

H* - Height of tropopause

The earth's atmosphere consists of the troposphere, tropopause and
stratosphere. The troposphere is that part of the atmosphere in which
temperature generally decreases with altitude, clouds form, and convection
occurs. It occupies the space above the earth's surface up to the topopause.

The tropopause is defined as the discontinuity surface separating the
stratosphere from the troposphere. It varies in height from about 55,000
feet at the equator to 25,000 feet at thu poles.

The stratosphere is that portion of the earth's atmosphere above the
tropopause. This air is free from all weather phenomena, practically
without moisture, and in general, an isothermai structure.

The method of computing height abovw 4SL as a function of pressure
differs for the troposphere and stratosphere.
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(A) In the Troposphere

The relationship betw,,en height and pressure in the troposphere is
dependent upon three fundamental relationships: the ideal gas law, the
lapse rate or change of temperature with altitude, and the hydrostatic
equation relating pressure, density, gravitational force and altitude.

Because of the changing gravitational force with altitude, the hydro-
static equation can be stated in terms of geopotential height rather than
simply geometric height. Geopotential height is the height of a given
point in the atmosphere in units proportional to the potential energy of
unit mass at this height, relative to sea level. This relationship
between geopotential and geometric height is given by G dl g dZ.

From this, the hydrostatic equation

dP p - g dZ

can be written

dP = - p G dil. (1)

The lapse rate, or change of temperet .re with change of height in the
dT

troposphere, is defined as a - The temperature 2t the height h

is given by T - To - all.

P
Finally, the ideal gas law, = - can be written as

P a oRT x pR(To - all). (2)

fFrom equations (1) and (2) we can fo:m the ratio

4

dP -PG d! -G (dli)
P pR (To - al]) R (To - a)

-dT
or, since dif - ,

a

dP G (dT) G d (TOr- L (3)
P agR (To - all) 7R (To -aH)(
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Equation (3) integrated between the limits of 0 and H b, comes

rHdP (H G d (To- a )
--p aR (To  aHd)

0o- H0
or

In G - -In T o(4 )

G
=f is set equal to n, equation (4) yields

Height as a function of pressure, Hp, is found Dy solving equation
(5) for H - Hp.

T ( I/fl (6)
H. - 1 -P a I ' 'i

(B) In the Stratosphere

The tropopause is by definition at the height H* such that the
temperature T* a (To - aH) is a constant, 216.660K. The temperature in

the stratosphere is assumed to remain constant at ToT'.

Thus, in the stratosphere, equation (3) becomes

dP .. G (di) (7)

Integrating this between the limits H* and H yields

In - CII. H') fa)
(-L RT

Using common logarithms, equation (8) becomes

log1 0  7 lOglo ( H). (9)
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G logl 0 e
Letting RT*

1og1o ) B 8 (ii - H.) (!0)

The know-i value of WI* can be substituted in equation (5) to find the
pressure at the tropopause:

0To

or

log10  n log10  VT a n* lnlo (1)
\1* TO 0

Equations (10) and (11) can be combined and solved for H n Hp.

loglo - log 10  Tnlo 0  B( - Ii

loglO ( n log 10  - H I*

B n lH *O glo 10910 P

Thus, in the stratosphere, height as a function of pressure is found
from

U ="* + _ [ logl O T) - log 0
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Height above MSL as a function of density (HO):

(A) In the Troposphere:

P
Differentiation of the ideal gas law, p a --- , y.elds

dP PdT I I dT
dD RT RT2  -- _

and the ratio

(dP dT

In the previous section (height as a function of pressure in the
troposphere) equation (3) gave the expression for

dP G dT
P aR T

Substituting this, we find

d G dT dT

aR T T

SG N dT dT
a Tji-- ) ~Tu (n T

Since in the troposphere T - To  a

d__P a (n-1) d (To - all)
p (To - a)

Integrating over the limits 0 to V

In pPFI, = (n-1)In ToTal|

or n -I
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Solving for H - Hp yields:

H ° " - 1) I
(B) In the Stratosphere

Since the stratospheie is as3umed to have a constant tpmerature
T*, the ideal gas law becozss

P

The standard density of air at sea level (zero altitude), po, msy
4be expressed as

~O RT0

Taking the common logarithm of the ratic - yields the

relationship: Po

p T P

log1,. .iL log (4)+ log 0

Po'/ 10 (T)1 "P

By substituting in this oqua ion the expression found previously

(i in the stratosphere) for logl0  [ n logl0 ( 7.*
we find:

logl0 E logl0  + n logl0  - B(H - w)

log10  ) (n-I) lO- B - )
log 10  kTOI
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The term [Ln-1) log,, ( j is a constant, equal to

log10 (- -0.527139.
Substituting this and solving for li = Hp yields the final equation

for height as a function of density in the stratosphere:

log10  liog 1o 0  all + H

H ' j log10lo log ..0
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TABLE OF CONSTANTS

Radius of the earth R0 20,897,038.00 ft

Dry air aas constant R 2.8704 x 106 cm2/sec 2 ('K)

Molecular weight of dry aiv m 28.966 gm/mol

Molecular weight of water vapor m' 18.016 gm/mol

Ratio of specific heats Y 1,40112 (dimensionless)

Gravitational acceleration at sea 90 32,i.8 ft/sec 2 - 979.569 cm/sec2

level, White Sands latitude

Lapse rate a .0065 'C/M

Dimensional constant G 32.1405 ft/sec,

Standard temperature at sea level To  288.16*K

Standard pressure at sea level PO 1013.25 mb

Standa d density at sea ievel 0o  1225.OG ga./ 3

Temperature at Tropopi-ise T* 216.66*K

Pressure at Tropopause P* 226,32 ab

Density at Tropopause O* 363.92 gmim3

Height of Tropopause at White If* 11,000 m a 36,089.227 ft
Sands latitude

G
Constant - n 5.2561 (dimensionless)

aR

G lOgl0 e
Constant = Go e B 0.2087367 x 10-4 /ft

RT3*
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Computational Steps:

From position data at the jth time CXj. YJ, Zj):

Ground range Rgj = (Xi , YOP05. units (1)

Slant range R5j S (X~ + + z) pos. units (2)

Height above L 2 + y2 + R + HRDjU - x j . l (Rji .z~pos. units (3)

H R~j pos. units (4)

wheve C1 is a multiplier to convert position data to foot.

Interpolate the itmospheric data (Tempratures pressure, relative
humidity$ wind velocity and wind direction) to Hj,

InterpolAte tolometry data (vacuum thrust and weight of fuel) to
the time of the position datai. I

The linear interpolation program used is as described in the
"Methematical Miscellaneous Section" of this report.

Gravitational acceleration

gj 32.138 o-"2feet/sOC2  (5)

Density 
. * 3 8 f ~ ~ x j

Li a*4.8F T 273.16 jgrams/rn3

where (OXPJ) U T66;l - 4. 9283 InC?3  273.16) # 51,9274) (8)
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Wind Velocity components

J -- 1.6989639 Vj COS[Wxj cI 3O 8

Wyj (M -1.6889639_ Vj sin Oj pos. units/sec. (7)

Wzj

L I

where -1.6889639 is the conversion factor from knots to feet per second.

True Air speed

TASJ * [(VXi - WXj) 2 + (Vyj - Wyj) 2  (VzJ - WZJ) 2  Pos.units/sec.(8)

Indicated Air speed

IASj - (TAS)j 1 pos. unitsf'sec. (9)

Mach Number

M (0.0151987) (C1) (TAS)j [Tj + 273.16] dimensionless (10)

Dynamic Pressure

qj - (9.701661) [C1 (TAS)*]I (pj) 10- 7 lbs/ft 2  (II)

Tangential Acceleration

AT- Axj(Vxj - WXj) + Ayj(Vyj - Wyj) + Azj(Vzj - WZ) (12)A~j- = (Tkc) j (z

pos. units/sec2 or G's
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Drag Acceleration

3 C4 TVZ) - Lzj pos units/sec 2 or G's (13)A~j =A~j * (TA5)j

± ATj is in G's, C4 - 1.0

If ATj is in (units/sec2), C4 = g-
Cl

Atmospheric thrust

Fj 0 0, if no telemetry data available (14a)

Fj = C3 FV - (2.088576) fe Pj (Ibs) (14b)

where C3 is a multiplier to correct vacuum thrust for loss of

thrust due to jet vanes, and 2.088576 is a conversion factor from

millibars to lbs/ft2.

Drag Dj - Fj - (wo + WFj) L (ibs) (IS)
CS 

is iS

If ATj is in G's, C 32.174

gj

If ATj is in (units/sec2), C5  2"174

Drag toeificient

CL) dimensionless (16)

C , qj s
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Height above MSL as a function of Pressure

In Troposphere:

H~ ~F Tp F 1./n

or

pj - 14S,446,67 
- 00.1902551V2 Q pos. units (17a)

In Stratosphere

+ n l o g o1 0  j l o g l o0

or

Hpj a 4 ,901.8987 - 20,80S.8517 In pOS. Units (17b)

Height above MSL as a function of Density

In Troposphere:

T l lOk "--or
H 14S,446.67 00e.23495688S 1in POS. units (is&)

In Stratosphere:

- -ol

~Djal', B (og1  ) -j log O
or

lfj w 10,834.9234 - 20.80S.8517 In pos. units (18b)
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DATA DITI-Y ROUrINE

Int roduct ion

TiP. purpose of this routine is to find and eliminate gross errars (blunders)
from a set of equally-spaced data poiats and, where sufficient "'good" points
are available about a rejected point, tc compute a "replacement" point ior that
data sample.

The test is based on the assumption that there is nn~ significant change
in the variance of thi dats over a group of N consezutive points (Ti, Xi).
Two sets of fourth ;ifferences nquared are computed,0 AC k using consecutive
points and b~ using every other point. The variance o2t each set is computed
and the individual differences tested for significant ..riations, using the
Snedecor F-test. Differences which are greater than the-acceptable limit are
set equal to zero. The data points themselve5 are then accepted as "good" or
rejected as "bad" depending upon the number and position: of zeros in the
difference sets. A rejected point is replaced by solving for the midpoint of
a 2nd degree curve fitted to the data about tho rejecv.d point.

Theory

The sets of fourth differences squared are computed from the fcllowing:

ACj (Xi - 4Xi..i + 6Xi-2 - 4Xj..3 + 4 )

AU (Xi - -4Xi_2 + 6X1..4 - iXj. 6

If the data includes a blunder error (E) at point i, it will appear as
(NOISH B)2 in the AC19 at i and 1P4, as approximately 16B2 at iP1 and 1'-3,
and as approximately 36E2 &t A12. In the AE's the error will appear &s

4 (NOISE + E)2 at i and i+8, as approxim~tely 16E^ at 1+2 and i+6, and as
approximately 36E2 at 1+4. Therefore if the AIC's at points i-el, 1+2, and
ie-3 and the AE's at i+2, 1+4 and 1+6 are' all greater than the critical level
determined from the variance of tie diffior-,nces and the tables of Snedecor
F-test values, it is probable that the data kit Xj contains a gross error.

The varianqe of'the AC's (as) and the variance of the AE's (02) are
computed from:E

N N
I2 ac IC A1Ei

C2=i~xS and 0 a
C N-4 E N-

where (N-4) and (N-8) are the respective degrees of freedoma.
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A. Testing .AC's adAE's

The individual Y-Is to be rejected are found using the Snedecor F-test.
The value ef F is selected whose degrees of freedom for the numerator equals
one, and whose degrees of freedom for the denominator equals (N-4), the number

of ACs. Then any ACi a o (FIDF) should be rajected. F is computed using a

954 confidence level.

f one or more ACs are rejected they are replaced with zeroes, and the
degrzes of freadom decreased by one for each AC rejected. Then a new variance,
2
cis computed, q new value of F selected, and the test repeated until no

additional AC's are rejected.

The *1E's are tasted and rejected in a similar manner.

If the variance of the data (without the blunder error points) is desired
it is easily computed froui the variate difference procedure since

o12 (KI) 2  
___i)2 . CKI)2 V2

X (2K)I (N-K) I

where K is the order of difference taken.

Using fourth differencus this becomes

2

X 2X4)I C 70

B. Tastin .- e Data Points Xi

In zet.a the data points from ixl to N it is necessary to assxe that the
AC's exist an have not been rejected for i-1 thru i-4 and i-N-l thru i-N,4, and
also that the AE's exist and have not been rejected for the points i-3 thru i=8
and i-N+l thru i-N 6. This forces the test to accept the first three and the las'
three points as boing good data points.

If an error exists at point i we could expect the AC's at points i, iil, i+2,
1.3, and 14 to be rejected, and also the AE's at i, i+2., i4, 1 6, and 1 8 to be
rejected. If the error is small the AC's at i and i+4 and the AE's at i and i 8
may not be rejected.

Therefore if ali 6 values (ACi 2l ACi 2 ACi+3, AE+2 AEi+4, AEi+6) have
been rejected, there is probably an error at point i. if none of these, or only
some, have been rejected, then the point Xi is accepted as a good data point.

Since two consecutive errors at points i-2 and i-I or at points i+l and I2
could a!: cause these six a's to be rejected, It is necessary to test further.
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If the point i+l or i-I were in error both AEi+ 3 and AEi+ 5 would be

rejected. But if either of these has ndt been rejected, we assume that the
error detected is at data point i. I

If both AE's have heen rejected, we test ACj and ACi,4. If these have
both been rejected, data point i is as5uved to be in error. If either or both
has been accepted then data point i is accepted as s good point, and we go on
to testing for errors at point i+l.

This logic is more clearly explained by the following diagram:

IESTING POIN4T i

Compute SUP 1
SUM 1 C.ACI+ + ACI+ 2 + ACi4.3 + AEI 2 + AI+4 

+ AEi+6

goodRdatatNo es ::::: SUM 2 7-- SUAccept X i as o sesCompute SM 2

~~[good data OsSM1 0 -- UReject Xi as No y C t

b d data' - oS SUM 2 --0? SUM143'

Test__Point Reject Xi as .
Xi+l /bad data
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if the point i+1 or i-I were in orior both AEip3 and 6Ei+5 would be
rejected. But if either of these has ndt been rejected, we assume that the
error detected is at data point i. I

If both AE'b have been rejected, we test 6Ci and ACi+4, If these, have
both been rejectsd, data pcint i is assuried to be in error. If either or both
has been accepted then data point i is accepted as a good point, and we go on
to testing for orrors at point P1l.

This logic is more clearly explained by the following diagram:

TESTING POINT i

compute *211M 1

SU 4 ~ ~ C+ %i, E+ E+ ~+
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The above tests will work in most cases. However, as will happen i.. "
editing procedure, situations can arise where good points will be indicat-:i a-
being in error and points with errors only slightly larger than the noise rat,,
go undetected. The test will also work through points of discontinuity since
the event itself will usually produce only one or two 4's that will be rejf ted.
To avoid deleting good points a further check is made. From the surrounding.
data a replacement point,'X ij, is computed. If (X3, - yi) 2 < (FlDF)O2 then Xi

wiil be retained. F is computed using a 91A confidtnce level.

C. Replacement of Bad Points

The puint in error is replaced by solhzvng for the midpoint of a 2nd degree

curve fitted to the data about the point in err, i A maximum of 3 points before
and 3 points after the point to be repliced are used in a weighted least squares

procedure.

The data point3 are assigned weights. If the data point at i is accepted as
good the weight is set equal to one. If the data point at i is in error the
weight is set equal to zero. Any data point whose weight is equal to zero is
replaced if there af'o sufficient data before and after the point.

Let the data point to be replaced be at point i. Then there are sufficient
data to replace the point ii

twi-l tui+3Wt t.3 and IWt ! 1and  I Wt I
t-i-3 t-i-3 , t-i+l

The replacement point Xsi is computed from the following equations. All

summations are from t-i-3 to t-i+3.

Xsi. M A(S6 ) - B(S7) + C(8)._
A(Sl) - B(S2) + C(S3)

where
A - (S3)(SS) - (S4)(S4)

B - (S2)(SS) - (33)(S4)

C *. (92)(S4) - (S3)(S3)

and
Sl Ewt
S2 E r- t (t-i)

53 = rWt (t-i)2

S4 EWt (ti)33

$S E Wt. (t-i)4
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S6 '~EXt lit

S8 zEXt lit (t-i)2

Proceduro

In this application there are usually M4 coiisec'tive sets of N data points.
Although the cditing routine aszumes automatically that the 3 points at the
beginning and end of each set are good data points, by overlapping the testing
of adjoining sets tho number of data points ac'-epted without testing is Minimized.

In aditing the firzt set ve use the ffrst (N1+9) points and computs 6C's and
AE's thru i-N.9. This allows us to compute the Wils thru iuN.3 and replaco if
necessary data points thru i-N.

Ilo edit each succeeding set we must have available from the previous set
the last 12 data points from iu-N-2 to i-N'9, the last 6 Wi from iuN-2 to i-N.3,
and tha last 9 AC's and AE'S from i-N.1 to i-N.9.

1. Lot NuSO

2 Compute AC's and AE's.

AC1 a (X4 4X4..j + 6Xi.. - 4Xi..3 + Xj..4 ) 2 , j_5 to H+9

AEi - (Xi - 4Xj..2 +X"1- 4 - 4X1..6 +Xi._8) 2, 1.9 to N4+9

Set AC4,AE6, AE7, and AE8 - .0000001

3. if any computed A-0,. set A"'.000000I

4. Compute degrees of freedom:

DFc - (N+9)-4 - N+5

DFE - (N.9)-8 a N+l

S. Compute variances

N+9
2 1 %C

OC i-s.
D FC

N. 9

DFE
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6. Compute value of F or F test (95)

a 3.799 + 11.73
DFC

F * a 3.799 + 11.73
DFE

7. Compute critical values

2
CVc - C (Fc)

CVE .C2"E(~C E ¢ (FE)

8. TIEST: if Ac Z CVc* set ACj - O i-5 to N+9.

If AEi x CVE. set AEj n o 1.9 to N+9.

9. If any AC's were set equal to zero in test @ decrease the degrees of
2freedom by the number of a's set equal to zero, recompute c# FCO CVC. and repeat

test ®.

If any AE's were set equal'to zero in test 80 decrease the degrees of
freedom by the number of A's set equal to zeroo recompute o, FE$ CVE, and repeat

test

Repeat step G until no more A's are set equal to zero.

10. Computo variance of data and its critical value

2 2 /
2 ~. ~ a ( 36.4~

0X 70 CV ' 70 DFC

11. Test data points Xi, i*4 to N+3 (see diagram)

SUM 1(t) - Acj~1  ACj 2 + ACij+ + A=i+2 + EL+4 + 4Ei6

If SUM 14(i) 0 0, 3et Wi - l and go to (1.1)

If SUM l(i) • 0, compute:

SUM 2(1) " AEi,3 + &Ei+5
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If SUM 2(i) 0, set Wi - 0 and go to (i+l)

If SUM 2(1) * 0, compute:

SUM 3(i) ACi + ACi+ 4

If SUM 3(i) 0 0, set WI - I

If SUM 3(i) = 0, set WI = 0

On first set of N points set Wi  I for iml, 2# 3.

Go to (i+l).

12. Replace bag points Xi, i-4 to N

If Wi - 1, Xi Xi

(V If Wi - 0, compute new Xi as follows:

SIA = (Wi. 3 + Wi. 2 + Wi-I)

SIB - (Wi+1 + Wi+ 2 . + WJi 3 )

TEST: Is (SlA a 1) and (SIB i 1) and.(SlA + SIB 3)?

If NO, then Xi can not be replaced.

If YES, let SI a (S1A'+ SIB) and continue:

t-i+3
S2 - . Wt (t-i)

t-i-3

S3 nt-i+3 Wt (t-i) 2

S4 -
(ti+3

Wt (t-i) 4

SS a tvi.3Wt (t-i) 4

347



t-i+3

S6 I Xt Wt
twi-3

t-i-3

tai-3

so a ( ~~ t-i)2• S8 " Xt Wt (')

A - (S3) (SS) - (S4) (S4)

B v (SZ) (S5) - (S3) kS4)

C - (SZ) (S4). - (S3) (S3)

Thon2 - B(S7 +CSLA(Si) - B(S2) + C(S_)

If (Xs - Xi) 2 a CVx, Replace Xi with Xaj.

13. To edit each succeeding set we must have available from the previous
set:

the last 12 Xi's from i-N-2 to-i=N 9

the Iazt 6 Wi's from i-N-2 to IN+3

the last 9 AC's and AE's from iuNel to imN+9

14. If the last set of points does not have 50 points, enough points from

the (M_-)th set ars included to uake the proper number.
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APPEiNDIX I, F-test for Data Editing

F.-tests for the data editing routine are approximate F's found by linear
interpolation for values of F in the interval of 10 to 40 degrees of freedom
for both a 95% confidence level and t 99% confidence level.

For 9S%:

i Flo - 4.96
3>

I.AO a 4.08

F " 4.96 (4.08 - 4.9o)

" 4.96 + ---...--

4.6*35.20 LL 1
3 10/

"4.96 * 113- 1,17

11,73DF

For 99%:

Flo w 10,04

F4 0 - 7.31

FDF , 10.04 * (7.,3 - 10.04'

0.04. (-2.731

- 10.04 + 36.0
- 1.0 - DF 3.,14

36 .4OF

-~~~ '109 3.
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INTERPOLATION

A general purpose interpolation program is available for linear
interpolation of any data in DRD standard format. The program does not
extrapolate and, if any breaks in the input times occur, will not ino.r-
polate in these breaks. (Th time interval which defines a break in the
input times is specified by the user in the load card information). The
first output time specified must be equal to or greater than the start
time of the input, and the output rate of time, a constant At, must be
specified. This output rate may be equal to, greater or less than the
input data rate.

3

353 Precedingpage blank ,



-- --w

G. MISCELLANEOUS

III Variate-Differences

pfecedim ge bln
355



VARIATE DIFFEREN("zS

Introduction

The variate difference technique is a method of estimating the
variance of the random element in a time-series by use of successive
differences. It assumes that the non-random compo.tent of the series
can be represented by a polynomial. Then the successive differencing
of the series will gradually eliminate this polynomial con:ent, but
will not eliminate the random component. After the polynomial component
becomes negligible, the variance of the random element remaining is
estimated from the differenced data.

Mathematical Discussion

Let the time-series X(t) whose variance is to be estimated consist
of N values of (ti, Xi}, i=l, 2, --. , N. If it is assumed that X(t)
can be approximated by a jth degree polynumiai

Y(t) - a. + alt + a2 t 2 + .i- * aj tJ

then the variance of the data (o ) can be estimated from the variance
of tCe residuals (2), where

At - [X(t) - Y(t)].

If Y(t) is a (J-l)th degree polynomial passing through the J points

Xt-l, Xt-2, "., Xt.J, it may be expressed as

Yt*i ao + ali + a2i
2  + "" a(J-l) i(i-l.

This polynomial, evaluated at point Xt, becomes simply Yt ao.

It can be shown that the difference

At a Xt " Yt

is given by the jth variate diffezence at point t.

The variance of these residuals can be found from

I N-j

where T is the average of the residuals.

Preceding page blank' 3S7



If the (j-l)th polynomial is the pt-fttting curve for the given

data, a will approach zero and the dea'rts of freedom (N-j-i) will be
increased by one.

Then:

I N-j

Since the a's are functions of the X's, tne relationship between

al and a2 can be expressed as

or, since oi 02 2
xi xi X

and
2t- 02 c aA t+l

then i-t 2

For the jth order of differences

I'J ax (j:)37

{ 21(2j) '
•n u s 01 o \ ,j 1) ,

Hence, the variance of the data, aj, is fand 1rom

.!y2

or N-j

a ( j l ) 2  i -l

S, - N-j
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Computer Program

The computer program will accept a maximum of SOO data points in or.e
interval. Up to joth varicte differences may be computed for a maximum oi
10 data fields in any run.

Table 1 gives the values of for J-1 thru 10.

. Tr.$LE 1

2J 2

1 1/2 6 1/924

2 1/6 7 1/34.2

3 1/20 8 112,870

4 ./70 9 1/48,620

S 1/2S2 10 l/84,7S6

"umerical Examile

Assume that the series {ti, Xi) can best bt appoxi ated by a 2nd

degree polynomial

Y(t) • ao + at t + a2 t2,

The coefficients Ro, al, &2 cfn he found by fitting the curve to the

points (-1, X-1), (-2, X.2) and (-3, X-3), using the veruations:

X. 3 - so - 3aI + 9a 2

X-2 - k - i.sl + 4a2

X.1 -0 ao of + A2
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h.;e coefficients are given by:

ac x 3X I - 3X.2 X-3

al ', (SX.1 - 8X_. + 3X-3)/2

a 2  (X. - 2X. 2 + X-3)/2

The polynomial evaluated at the point t-O becomes

Y(t) - 3X.1 - 3X-2 + X-3

By constructing a difference table it is easily seen that the third
differences (since Y(t) is a 2nd degree curve) will be equal to

A (Xt - Yt) - (Xt - 3xt.I + 3Xt - Xt_3).

DIFFERENCE TABLE (1)

Data 1st Differences 2nd Differences 3rd Differences

X2  42 - X1 ..

X3 X3 - X2  X3 - 2X2 + X1  -

X4 X4 - X3 X4 - 2X3 + "X2  X4 - 3X3 
+ 3X2 - Xl

Xs X5 " X4 KS5 - 2X4 
+ X3  Xs - 3X4 + 3X 3 - X-

Xn n xn-l Xn - 2Xn_1 + Xn_ 2  Xn - 3 Xn.l + 3Xn_2 - Xn_3
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The data Xi, ii to 12, are as given in the table below. The sets of

1st, 2nd, 3rd, and 4th differences have been computed and also entered in
the table.

I

Xi  1st as 2nd 4's 3rd A's 4th a's

1 4.

2 9 5 ......

3 9 10 S-

4. 28 9 -1 -6 --

5 42 14 5 6 12

6 55 13 -1 [ -6 -12

7 69 14 1 2 8

88 19 5 4 2

9 106 18 -1 -6 -10

10 .130 24 6 7 13

11 155 25 1 -5 -12

12 179 24 -1 -2 3

For each set of differences, compute a variance estimate for the A's,

i N

end a varianca estimate for the data, 02 0jo}[.
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Differences A2 . l. 02
7 1 X

1 293.54 1/2 )46.77

2 11.70 1/6 1.95

3 26.88 1/20 1.344

4 97.25 1/70 1.389

Since the variance estimate obtained from he set of third differences
is the minimum, we conclude that the data is best descrUed by a 2nd degree
polynomial, and that tho variance estimate of the randon compotent of the

data is a = 1.344.
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RADAR CROSS SECTION

Introduction

The radar cross-section (a) is the area intercepting that amount of
poweT which, when scattered isotropically, produces an echo equal to that
observed from the target. The rqds cross-section of a target varies
with the aspect angle (except in the case where the target is a sphere)
and also with the frequency (havelength) of the radar. Radar cross-section
is, in general, not e simple function of geometrical cross-section, and
hence must be determined enpirically rather than by theoretical calculations.

Definitions of Symbols

a w Radar Cross-section

at w Radar cross-section of target (missile)

as w Radar cross-section of calibration sphere

PT 0 Power transmitted by the radar

PR = Power received by the radar

PRt - Power received from target at Range Rt

PRs 3 Power received from sphere at Range R.

PA - Equivalent power received from sphere at targot Range Rt

G a Gain of radar antenna

A = Waveleilgth of radar transmission

R Slant range from radar to target

Al - Effective antenna capture area

- Constant obtained from sphere calibration

Mathematical Discussion

The basic radar equation used in the cross-section reduction can be
derived in the following way: Assume that the radar intenna is omnidirect-
ional, that is, it transmits power tiniformly in all directions. Then, the
power density (or power per unit area) at a distance R is equal to th,.
transmitted power divided by the surface area of a sphere of radius R:

Power density at R PT

(omnidire:tional antenna) 4rR2
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Since most radars employ directive antennas, the power density at any
distance R will vary from that of an omnidirectional antenna by a factor G,
called the "gain" of the antenna in the direction in question. Thus:

Power density at R . PT G
(directive antenna) 4sR 2

The total power incident upon the radar target at distance R equals
the product of power density and target cross-section area (o).

(rPT G
Power incident on target let- i o\4 wR2 /

This incident power is then re-radiated in all directions, The
re-radiated power density at the distance R (for example, re-radiated power
density back at the radar receiving antenna) equals the incident power at
the target divided by the surface area of a sphere of radius R.

(PT a
Power density at receiving antenna ,,- ---j,\4wR2J 4wR 2

The signal strength received by the radar antenna (PR) is determined
by the power density at the antenna and the effective antenn ' capture
area (AR).

PR FCT 2QR ) AR,

Antenna theory provides the relationship between antonna gain and
effective antenna area:

G a4AR where A is the wavolength of the radiation

or GA2
AR U

4v
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Thus, the power received by the radar is given by

sR P T0 G__ f(-a GA2 '
\,41TR2) TR2) K42
PT G2 A2 o 

(1)
or PR (4ff) 3 R

This is one of the more common forms of the "radar equation",*

Solving (1) for target cross-section (a), we find:

(4r) 3  R4  pR (2)

PT G2 A
2

Since for a~ny given radar PT, G, andA should be constant, equation
(2) may be written:

a a K R4 PR

where K a (4n)3 (3)
PT G2 A2

Because of the difficulties of measuring PT., G, and A, a simple
method of determining K has been developed, by comparison of the target
data with data obtained by tracking a sphre. of known radius under
identical conditions.

(_ Thus, using the subscript t for target (missile)and f ao• the calibra-
tion sphere, we have:

at X RtPRtas  K R4 ~

at f s 4)

*The radar equation as derived above and as used in the cross-section rmduc:io;,
is based upon the assumption of free-space transmission of electromagnetic
radiation, No attempt has been made as yet to introduce corrections for
atmospheric offeots.
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Equation (4) becomes much simplified if the ratio -i--equals one;

therefore it is desirable to derive an expression for Pks, the power which

wouid b-. received from the sphere of cross-section as if it were at the same
range as the target.

Since as K R'4 PRS,s

P~s " US 4(5)Rs K RS

Since PRs is commonly measured not in watts but in decibels (db),
Equation (5) becomes, by definition*,

PRS (db) - 10 log1 0

- 10 log1 0 as - 10 log1 0 X - 40 log10 Rs

or. si nce a. and K are constant for any given radar calibration,

Pp4 (db) - -40 log10 Rs + S. (6)

The received power data (Pps (db)) from the sphere calibration track
may be evaluated at several points Rs, and the pairs of values t,

Ppsi (db), (i-l to n), substituted in equation (6) to obtain n values of Bi.
Since thesa may vary somewhat because of random fluctuations inherent in
physical measuring systOms, an average T is computed.

n

Thus., using equation (6), with RS Rt, the equivalent power Pks is
computed.

PI (db) a-40 log10 Rt + 1F(7)

Equation (4) now becomes

PRt

*Definition of db: Quantity (db) -10 loitla Q-arnQantity )
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or again, since P and PI are measured in db:

ot(db) = PRt(db) - PAs(db) + 10 logl0 as (8)

In order to convert ot(db) into units of area, the reference area is

usually taken as one square meter (if os was computed in square meters).

Thus

at (M2) 1 antilog10 (at (db)) (9)

Computer Program

Since cross-section varies with aspect angle and since range aata is
needed in computing a, the cross-section reduction program must have as

* part of its input the radar output tape from the DRD Velocity and Accelera-
tion program (discussed separately). The other necessary inputs are a digital
tape of the "power received vs time" data, the radar coordinates in the sama

0 system as the "V and A" data, the cross-section (ps) of the calibration sphere
used, and a hand-computed value of the I of equation 17).

The program produces a listing of the following functions, vs time:

slant range (in feet, neters or yards)

altitude (feet.or meters)

aspect angla (degrees)

cross-section (square meters)

cross-section (db above I square meter)

logl0 (range) (feet or meters)

power received frow target (db)

The altitude listed is the same as that computed by the V and A
program. The aspect angle is defined as the angle between the target
velocity vector and the line of sight to the radar.

The "power received" data input to the reduction may be recorded
originally in any one of three ways:
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1. The radar automatic gain control (AGC) signal, a measure of
received power strength, may be recorded in analog form on magnetic tape,
and digitized by the DRD telemetr/ station digitizer.

2. Thd received radar pulses may be displayed on an A-scope ana
photographed by either strip or frame cameras with timing, and the receivcd
power measurements (peak amplitude of the pulses) read on a Telereadex
(front projector). The card output of the reader is then transferred to
digital magnetic tape in the same format as that of the telemetry digitizvr
output.

3. The AGC signal may be recorded on Sanborn strip recorders,
which must be read manually. These can also be digitized on the Telereadex,
and the data processed as above.

Once the "power received" data has been converted to its digital tape
format (the same format used for digitized FM telemetry data), processing
is identical for all three types of raw data.
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ABSTRACT

The matrix equation used to rotate position data from one left-handed

Cartesian system to another is developed by successive rotations about the

coordinate axes through the geodetic positions of the origins of the two

systems. A final rotation then references the system to the line of fire

of the missile. The matrix to accomplish these rotations in ono step is

derived in this report, and its inverse solution is also presented.

S

,receding page blank
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ROTATIONS OF CARTESIAN COORDINATE SYSTEMS

Introductio:

Tlis report derives the matrix equation used to rotate position data
fro, one left-handed Crtesian system to another left-handed Cartesian sys-
tem. The matrix is developed by st.ccessive rotations about the coordinate
axes through the geodetic positions of the origins of the two systems and
through a final rotation to refex ence the system to the line of fire of the
nissilc. Tie inverse solution is also derived,

The C,,rtesian systcr3 to be considered here are defined as coordinate
systems (x, y, z) in which x and y lie in a plane parallel to the plane
tangent to Clarke's Spheroid of 1866 at the origins. The z coordinates are
perpendicular to the xy planes anu p.ostive ipwards. 7he original Cartesian
system is oriented on true North.

flathemitical Derivation:

Definitioas of symbols used in the derivation:

40, A0 geodetic positions fcr the original origin.

4t, )t geodetic positions for the -,ew origin,

0 and 4t are positive in tl:'- northern hemisphere.

A. and At are positive in the western hemisphere.

a azimuth of firel - th azimuth to which the new system is
orieuted and r-asured positive clockwise from north.

( xt, yt, Zt Cartesian coordinates of the new origin; xt positive north,
yt positiva sast, zt positive upwards and perpendiculgr to
the xt Yt piane.

x, y, z Cartesian coordinates of a point to bo rotated to the new
Carteaian system.

xf, y', z' the cbordinates of the point in the new system; x' positive
along the azimuth in the new reference Flane, y' positive
to the right of the azimuth in 'he new reference plana, and
z' positive upwards azid ptrpe:.dicular to the new reference
plane.

6X x - xt; Ay = y - yt; &z = z - zt .

1Azimuth of fire n this report refers to trzie azimuth which is measured from
the meridian of the new origin, 0 degrees being Lorth.

Preceding page blank
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Figure I shows the tangent planes of the origin3 of the two systeas.

N z

IW - NoE Csrttsian

/'A ( Origina l

Q

FRGURE I

OPQ represents the equatorial plane.

The first rotatiou is about the y axis, through an angle of (90' -#0)
to a plane parsllel to the equatorial plans.

Ax, ~.
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[xf [sin O 0 Cos *, [Axi

oyl 0 1 0 (1)

zd Lcos *o 0 siro Az

Then rotate about the z' axis through the angle (A0 " At).

AZ' & AZ"

Ax' Axel

Ay"

JAxe# (A0 - Xt) -sin (A() - At) 01 AxI]L41 i sin (A0 - At) c:JS k - X,) 01 A (2)
LAz" L o 0 liL ,,z

Combining equations (I) and (2) yields the following matrix form.

4x" rsin 0o cca (Ao - At) -Sir, (X0 - At) -Cos C Cos (A0 - . ]AX]

L ":jksin 40 sin (A 0  " t) cos f' 0- t) -Cos 00 sin (A 0 - At 'ay (3)

_Az z cos €0 0 Sin 0

Rotate about the y" axis through an angle (90 - Ct). such that the referonce
plane is tangent to the new origin.

AZ"

Ax" Ax '

Si 9 ° -38

- 385



AxI] Fsin ] CS t AI

ay * 0 0 A0 4

A z"'j -Cos 0 sin t.L

Equations (3) and (4) yield the following matrix form.

Fall 12 a3 [AX]

Ayoff a2 a22 a23 Ay

LztI [a31 a32 a3 LAzi

where

a-l - sin *0 sin +t cos (0- At) + cos '0 cos ot

a1 2 v -sin ot sin (A0 - At)

a13 w -cos 00 sin ot cos (A0 - At) + sin 40 cos ot

a21 a sin #0 sin (X0 - At)

a22 u cOs (0 - At)

a23 K -cos 0 sin (An - At)

a31 = -sin *0 cos #t cos (A0  X .,) + sin ot cos 0

a32 a cos ot sin (X0 - At)

a33 COS 0 cos ct Cos ( 0 - At) + sin 0 sin ot

The final rotation is about the z'" axis through an angle, a, which

oTients thi system to the line of fire.
Az"'I a

.Ay..
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[x '1 tCos a sin a 0] xi

L':j -Lsin a COS a 0iL:Y:: (6)

Substituting equation (5) in equation (6) yields

Y' E 2 c22 c23 hy (7)

ZI c31 c32  c 3 3  z

where
C1 1 - sin 0 sint cos a cos (A0 - At) + cos 40 cos #t cos a

+ sin f0 sin a sin (A0 - At)

C12 - -sin ft cos a sin (AO0 - At) + sin a cos (A0 - At)

C13 - -cos *0 sin It cos a cos (A0 - At) + sin *0 cos #t cos U

- Cos *0 sin a sin (X0 - At)

c 2 1 - -sin 80 sin It sin ( cos (A0  A At) - CO4 *0 cos It sin a

+ sin 80 cos a sin (A0 - At)

c22 = + sin It sin a sin (X -At) + cos acos (X . It)

c2 3 - cos 80 sin It sin a cos (XO - At) - sin 40 cos *t sin a

- cos 80 cos a sin (o - At)

c 3 1  - sin 0 cos t cos (A0 - At) + sin ct Cos 0

c32  cos #tsin (AO0 - At)

c3 3  cos f0 cos ct Cos (A0  At) + sin o sin *t
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Making the following substitution in equation (7)

Cll C12  c 1 3 1

[C] - c2l c2 2  c23 (8)

C31 c2 33

gives the matrix equation

d [C] A (9)

where x' is positive along the line of fire, y' is positive to the right of x'
and z' is positive upwards and perpendicular to the x' y' plane.

The reverse solution is found from the matrix equation

[Ax]x

Ay [C]- 1  yo

The determinant of the matrix C is

Icd- I

therefore, equation (10) is an orthogonal transformation or a transformat.ionr
of rotatio.. In an orthogonal transformation the inverse matrix (C]"1 is
equal to the transpose, [C]', of [C].

Therefore

FCll c21 c31]

M - = [C]P c12  c22  c.3 2  (11)

Li3 c23 c33
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The most common usages of these rotations are to rotate fron, the .v:.ite

Sands Cartesian Coordinate system to a launcher tangent Cartesian syster. or

from a local tangent plane to WSCS. In the W11SCS system the origin is the

'intersection of latitude, *0, 33'05'00" north and longitude, A0, 106*20,001

west. At this point the EN-plane is tangent to the surface of the Clarke

Spheroid of !866. The E-axis is an cast-west line tangent to the Clarke

Spheroid at the origin, positive in the eastward direction. The N-axis is

a north-south line lying on the meridian and tangent to the Clarke Spheroid

at the origin, positive in the northward direction. The z-axis is porpendi-

cular to the EN-plane and positive upwards.

The WSCS origin has been given an arbitrary value of E a SOO,000.00 feet

and N a 500,000.00 feet. These values were selected so as to cause the E

and N coordinates to be positive within the limits of the range.

Geodetic azimuth is measured from the meridian of the new origin, zero

degrees being south. Since true azimuth is geodetic azimuth 1180, it is

measured off the meridian of the new origin, 0 degrees being north. A

transverse Mercator azimuth (WSTM or UTh) 3s measured from a line that passes

through the new origin and is parallel to the central meridian of the trans-

verse Mercator system. The azimuth is measured with 0 degrees being transverse

Mercator north.

North

34* / 34

/-, 3'

West 330 .l . --- East

"\ "32°
I A 1

32-/' I *.

II I\

I I South

FIGIJR 3.

Figure 3 illustrates the geodetic lines and transverse Mercator li;ios. The

solid lines designate UTH or WSTM grid lines. The dotted lines show longitude

and latitude. Au is the difference between geodetic north and grid north.
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The azimuth of fire (a) used in the previous equations is the true azimuth.
If a transverse Mercator azimuth (arT is given, the true azimuth may be found
from the following equation.

G -=aTM + 2 sin' (in Ot sin

where
AX - longitude of the central meridian of the transverse Mercator

system iess the longitude of the new origin (At).

Ot = latitude of the new origin.

The following diagram describes the correction (Aa) to be added to

the transverse Mercator azimuth to obtain the true azimuth.

0'P - 0'P' a nP sin vt

n PP' - 20'P sin A
A

t - 2nP sin *t sin
SAc PP'

2 sin - - n

- 2 sin tt sin _X

Aa - 2 sin 1 sin sin 7,
Ls-

Central Meridian of the
transverse Mercator system

t
FI V"RE 4.

For small differences of longitude, (AX sin Ot) may be subs-ituted for

2 sin1  (sn 4 therefore the equation for true aziu.ai becomes:

a = aj*.j + AX sin 4.
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POWER SPECTRAL DENSITY ANALYSIS

USING TE AEL ANALYZER

Introduction

ITe AEL Spectrum Analyzer was built by American Electronic Laboratories, Inc,,
of Colmar, Pertnsylvania. The analyzer is designed to separate a complex signal
into its various frequency components and determine the relative magnitudes or
power levels of each of these components. The analyzer consists basicslly of 3
banks of 20 filters, oa-h having a different center frequency and bandwidth, a
set of integrators which sum the continuous outputs of each of the filters, and
a commutated readout which samples, digitizes and records the data from each inte-
grator in turn. The complete set of 60 filters covers the entire band from 10
cps to 10 KC.

Two sets of white noise calibration signals may be passed thru the analyzer
in addition to the d-ta signal: The first, white noise machine calibration, is
necessary to compute a correction factor fir each filter to compensate for any
nonlinearity in filter gain adjustments. The second, another white noise input
which is related to the data by known factors, is necessary if the digital cutput
of the analyzer is to be calibrated in the physical units of the input data,

The computer program is required to accept the raw data input, compute and
apply the neceasary correction factors &nd calibration constants, and generate
several types of data output in formats suitable for a variety of listing and
plotting requirements.

Derivation of Relationships

The spectrum analyzer is a device which receives a complex signal as
input and separates the signal into its various frequency components. This
analyzer consists of three banks of twenty filters each, the first bank of
20 filters covering the frequency range of 10 to 100 cycles per second, the
second bank 100 cps to 1 KC, and the third 1 KC to 10 KC. Only one bank of
filters may be used in a single pass of the input signal, In order to cover
the complete frequency range of the analyzer, three passes of the input signal
must be made. A commutated readout samples each of the twenty filters once
each second or tenth of a socond, A frame of data consists of time and these
twenty digitized readouts. The last readout of a pass is called last frame
data, i,e.,, there will be 3 last frames for one complete analysis,

Two white noise calibrating signals are passed through the analyzer in
addition to the data signal, (White noise is a random signal which has uniform
power diatribution throughout the frequency range of the analyzer.) The band-
widths of th* filters of the analyzer are so designed that, when white noise
is processed, the output of each filter will have 0,5 db gain over the output
of the filter which preceeded it. This characteristic is used to copute a
correctior factor for fine adjustment uf the analyzer, If the machine is out
of adjustment, the actusl gain of each filter will not equal the predicted
gain, in which capo a correction factor is computed for the filter which is in
error. Three banks of white noise data are processed, utilizing all 60 filtero,
but only the last frames of the white noise calibrations are recorded on the
data tape.
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"!he second calibration signal is also a white noise (data) signal, -his
signal has known relational factors between it and a given function value, thus
allowing the data signal to be calibrated in the proper physical units. Only
the 3 last frame outputs of the calibration are recorded.

A "group" of data con3ists of three banks of last frame white noise
(r&chine) calibrations, three banks of last frame white noise (data) calibrations
associated with the data, and N frames of data for each of the three banks for
the period of anaiysis. Sometimes reduction of only the last frame data will be
requested,

"Pot" Factor Calculations

The input -oltage to the analyzer is attenuated by a potentiometer, When
.witching from -ne bank of filters to -another it is usually necessary to change
the potentiomter (pot) setting to achieve optimum output. In order to relate
all biunks of information to each other- the data from each bank must be multiplied
by a pot facor, This means that there will be three white noise (machine) pot
factors (one for each bank), three white noise (data) pot factors, and three pot
factors for data to '.e computed. The pot factor to be used for any bank B is the
square of one over the pot setting for that bank of data, The pot settings used
will be supplied by tne program requestor.

2
P. F.a/IN

White Noise Correction Factor3

The white anise (machine) correction ftctnr for each filter compensates
for fine adjustment of the analyzer. The analyzer is designed to have 0,5 db
gain between any two adjacent filters when processing white noise. Tho correc-
tion factors are calc-.lated using the white noise (machine) calibrations multi-
plied by their appropriate pot factors.

Lot Mx c (WN4)(PFB) be the white noise (machine) data output of the

Jt filter corrected by the pot factor for bank B, where

B 1 1 for filter numbers I s j s 20

B a 2 for filters 21 . j < 40

B a 3 for filters 41 s j £ 60,

Then the 0.5 db Lain criterio7 between adjacent filters leads to the
followint relationships fot filter correction factors, Rj.
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10 loglo ,S5 db
R~ 1 m/

10 log 0 /)}
,, 05 db

7kR2 M2

10 aol JM 0, db.

Using filter number 1 as a reference and solving for the correction factors
R1, CJ = 1, 2, - , 60), leads to the equations:

R 1, by definition,

R2 .lO (1 OS)('Mi
612/

3/ (05 R !4 3 M0 5r A 05  /M

R l(0'/ (2/"1 1 0)13
4 

"144

* 10(205) \i;)7)

Filter Bandwidth Factors

The different filters of the analyzer have different bandwidths. In
order to properly compare the outputs of the various filters as a function per
cycle it is necessary to normalize the data by dividing each filter's output
by thae filter's bandwidth. All normalized data are then in units of filter
output per cycle of bandwidth

The bandwidth of the ith filter is given by the difference between the
lower band edge frequency (L) of the Jth filter and the lower band edge fre
quency of the (j~l)th filter, where the lower band edge frequencies of adjacent
filters are related by the 0,5 dib criterion previously used in computing white
noise correction factors,
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That is,

BWj a L(Jl) . (.J)

and ( u d
log I M(.r j > ) o(s d ,

or

From this it can be shown that

1ogl1 (L2) a 005 + loglo (L1)

loglo (L3) a OOS lg (L2 ) U ;OS + 0 5 1 (glO

loglO (L4) -0,05 + loglO (L3) 005. OOS .0,0. log0  (L1 )

" (3)(6,05) . loglo (L1 )

loglO (Lj) 0 0O5 + log1 o (Li- 1 ) (0,05)(J-1) loglO (LI),

Since L a 10 cps and lOg (LI) 1 o00 this expression for the hlower band

edge frequency can bo written

logIo (Lj) (J.1)(OOS) 1 40

or
L . (J- )(0 4 0S ) 1) , IO - ) o O S (iO) .

Then the bandwidth of the jth filter can be found fromB~j L,,i. 1 ) - . )1

* 10 [ 1oi)(oS) . io(J-)(os)]

W 10 [I0(J1'( 0Sj[10( G5) - I]

-[Io(J-l)(,OS)] [IO (1.122- 1

j3 (1.22).
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Oata Calibration

in order to calibrate thz data in some physical units, a calibration
signal of known RMS value must be analyzed and digitized, The calibration
furnished by the data user may be either a sine wave or a white noise signal;
however, the calibration signal processed on the analyzer will always be a
white noise signal. If a sine wave is furnished it will be examined to deter-
mine its RMS value and tha output of a white noise generator, matched to this
RMS vatue, will be fed to the analyzer for the calibration,

The fo)lowing is the derivation of th; calibration constant . which is
used to convert machine count values of -r.alyzer output tc engineering units
First it will be shown that K is the s.me constant for every filter; then the
formula for finding K will be derived, In practice, because of smali variations
in actual filter outputs, a separate Kj should be computed for each filter
(j a 1 to 60) and the average value of all 60 Kj's used in the reduction for
all filters, thus increasing the statistical reliability of the estimate,

A. Proof that K is the same constant for each filter, i. e., K1 a K2 w -- K60

The total output power of the noise calibration is the 3Lan of the ou-puts
of the 60 filters:

60Pn AI V outi,(I

However, the output of each filter is given in terms of a relative
machine count value,

Pe-ot v Kj Dj, where Kj is the caiibration constant for the

filter and Di the machine count value,
(

The design characteristics of the analyzer are such that the power output
relationship between filters is given byz

Poutj

10* 0
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The normalized power output (power/cycle) of any filter is gzven
by

Pout 1  Poutj
power/cycle "

BWIBWlO'-d

or since Poutj " Kj Dj

BW1  BwI[lo'OJ(J-1 )1 -

Again utilizing the derign characteristics of the analyzer it is
seen that:

.S(J-!) u 10 og

or

DI Di (6)

Substituting equaticn (6) into equatioi (4) gives

K! Dj K

or simply

S1 MI Kj for all

B, Derivation of the Formulz for Computing K

The total power output of th& w.ite noisre geno~rtor can be divided into
two fractional parts: that portion of the generator's frequency range which
is wsalyzed by the PSD analyzer. and that porticn of the noise -ener tor's
frequency range which is not analyzad by the analyzer,

ThMt is:
I" B14A", A .N "

where
PN = total powor output of white noise Sene?ator

5WA w Band width of PSD analyzer

BWN w Band width of noise generator

(BIV (A\'
__,- "-- _ fractions of noise power analyzed and not anal -,..cd respectively,
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But toat part of the noise generator's output which is analyzed is aJso
-e Lr.al power outpit of the 60 filters

/ B \ 60
N-) 1. Pout-,

Substituting this, equation (8) becones;

60

PN iout. P fIV'l.J- 1 4 )% N

By definition of white noise, which states that the normalized power
per cycle output at any frequency in the band equals the total power output
averaged over the total frequency band, we have

60=~ PO
Poutou

- BWj BW A

But since Pout- " TL L (12)
T

equation (11) can be written

60
I Poutj
Jul K~ D (13)

BWA BWj T

(where T is the period of integration,

Substituting equation (13) into equation (10) gives

PN aKj D BIV PN(14)
BWj T BWN,'(4

which can be solved for K;

KAPN8AT 
5BW BA j

*7-he factor T in equation (12) is the result of th.e fact that machine count output

e an lyzeZ is the readout of an integrator, Dj m K Jo f(t) dt, and is thus in

units of "(power/cycle) x time", Since we wish to deal simply in normalized (ower!
cycle this time factor must be cr-,:ipensated for.
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For the white noise gcnerator in the PSD analyzer the constants are:

BWN a (27 KC) w/2 a 42,4 KC

A . (BWN - 10 KC) - 32.4 KC

RWA w 10 KC.

-Substituting these values in (15),

-1 32.4 )F BW T ]
- 424 (10 KC) Dj J

- (2.35849 x 10) IN T W(16)
Di

which can be evaluated from the white uoise data calibration for any analysis
group,

Data Oittput Types

A great variety of output data types may be requested from the program.
However, for any given run only one data type will be requested. The form of
the output requested may be listings, plots, or both,

For the sake of ease of reference, the 33 data types are numbered, and
defined tis belcw,

1. Data I is the digital deta output of the analyzer corrected for a factor
of "System Zero" and formatted as the input to the 7094 reduction program.

2. Data 2 is the most basic output data type, it is simply the raw data
corrected for the appiupriate pot factors and white noise (machine) calibration.
Data 2j n is the relative power contained in the jth filter bandwidth, summed
over the time interval (tn - to),

Data 2j,n = (Data ljn)(PoFoB)(Rj)

where P.F.. is the pot factor for the bank of filters containing the jth filter
and Rj is the white noise (machine) correction factor for the jth filter.

3, Data 3J, n is the relgtive power per cycle contained in the jth filter

bandwidth sumed over tjO time interal (tn - to) normalized by the width of
'- ": thData 2j ,n

he jth filter in cycles. Data 3jn •
B40

402



q- - W __ 
_ IV1

4-5: The RMS values of the power measurements of data types 2 and 3 give the
relative G's and relative G's per cycle outputs in the jth filter in the time
interval (tn - to),

Data 4 jn r / Data 2j n

Data D,,ataa'~ta.Jn

6-9. Data types 2-5 are total power or G measurements over the time intervals
(tn - t0 ) where n a 1, 2, --- , N give the successive time points of analyzer

output, Data types 6.9 are the average relative power or G's in the jth filter
bandwidth, averaged over the total integration time tN,

Data 2jN where Data 2 is the last frame data of the
Data 6 j,N (N t o ) JN

Sth filter and tN is the time of last fram e,

Data 3j,N Data 2j,

Similarly, Data 
74 N • Data

(tN I to) (BWj)(t N - to)

Data 8JN.N J IN

(tN to) (tN - to)

Data 9J,N N Sj_,N Data 3j,N

(t to) (tN - tn)
Dat/ DJta 2

(tN to) BW.

10-13, Data types 10 thru 13 are derived from types 2.5 and the calibration

constant K, which expresses the relative data in the proper physi.al units

Data 104 n a K Data 2 r!. .. p ower in the jth band-Daa O n " bta J:,

width in the time interval (tn tO)

K IData 23,n

Data llj, n  a K Data 3 K Data 2j*. .

,)at . I / , ,)ita n " / K L),td j

Data 13j n  /K Data Sj n  V K'Data 3jn BW
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14.17. Data types 14 thru 17 are the calibrated last frame data averaged overthe total integration time, (TN - TO)

K Data 2 1,N
Data )4j,N a K Data 

6J,N " K - TO)

Data 1 5 4,N a K Data 7J, N 0 K Data 2j N

BWj (Th - TO)

' K Data 2J.N
Data 16J,N w / - - Data EjoN •  (TN - TO)

Data 17j,FN 0 / - 'ata 9jN (TN - T) BW

Requests for data typos 14 thru 17 will always be for last frame only
reductions.

18-33. Data types 18 thru 33 are incremental data types showing the changes
and rates of change of data from one point to the next in the analysis. When
the time interval at between adjacent time points (tn - tn.l) is one second,

the rates of change of data types 22-25 and 30-33 will be numerically equal to
their respective incremental data types 18-21 and 26-29,

Data 18jn a Data 2j,n - Data 2 jn-l

Data 2J n - Data 2 j,n- 1
Data 1 9 j,n 0 BWj

DataData Data 2jn.Daa2j~n •  jjn " ~ -

Data 2 1  1 (Data 2 j~n - Data 2

Daa2J, n  B BWj n-

Data 2 2jn a Data 18j,n/(tn - re 1)

Data 23j n  Data 19j,n/(tn . tn. 1)

Data 2 4j,n a Data 20jn/(tn - re. I)
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Diata 25i n~ a Data 21 j n/(tn - tn-i)

Data 26jn a K(Data 2 j,n - Data jnl

Daa (atK - Data 2.fl)

Data 28 * /= (/ Data - /n Data 2~-

Data 4'9j a KT (Fl~at a - vrData 2
FnBW J,n 2 j,n-1

Data 30 * Data 2 6 j,n/(tn - tn..i)

Data 31 J,n a Data 27j~n/(tn . tn..1)

Data 32 *o Data 28jn(n -,

Data 33jn *Data 294 /t -t )
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Input to the Program

The input to the program will be supplied on IBM tape in a 90 character
per record BCD format All records except the group identifying record will
be in the following fprmat:

Characters I - 7 lime (XXXX XXX) seconds

8 - 9 Code number for type of data (98, 97, or 00)

10 Bank number (1, 2, or 3)

11 14

15 - 18

19 - 22 20 four-place machine count outputs of analyzer

97 -90

hree code numbers are possible in characters 8 and 9: 98 indicates white
noise Lmachine) calibrations; 97 indicates white noise (data) calibration; and
00 indicates data, "Last frame data" is indicated by a minus sign over the
bank number in character 10, The 20 four-place outputs of the analyzer comprise
one frame of data, ie, one commUtated readout of the twenty filters in ona
bank. There is a commutated readout for each second of the analysis. (If
any output is negative, it is signed in the low order position.)

The fi.rst record of a group is tne identifying record, The first 8
characters of the identifier are "GROUP" followed by a blank and the two identi-
fying numbers, The remaining (82) characters may contain any information or
comment desired, or be blanks,

( The 2nd, 3rd, and 4th records of a group are the white noise calibration
records for banks 1, 2, and 3 respectively- The 3 white noise (data) cali-
bration records, if present, will be the next records on the tape, Then
follow'the data records from time T1 thru time TN for bank 1, data from time T1
thru time TN for bank 2, and data from time Tl thru time TN for bank 3, The

computer program will be required to sort the dat. records by time and generate
identifying frame numbers so that "frame n data" will refer to the output at
time Tn of all three banks of filters, numbers 1 thru 60, Groups of data

(i.e,, succe3sive runs) are stacked on the tapes

Additional information supplied witn each group will be:

a. Potentiometer settings used: 3 white noise (machine) pot settings;
3 white noise (data) calibration pot settings if calibrations are used; and 3
data pot settings, All pot settings are two digits, ranging from 0,1 to £-9.
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b, Time duration (T) of white noise (data) calibration, ranging from
000,0OU to 999,999 seconds,

c. Time duration of data (TD), ranging from 000,000 to 999.999
seconds,

d, Calibration value (PN) for white noise (data) calibration, ranging
from 000.000 to 999,999, physical units to be specified,

Thi program request will also indicate whether or not only last fraze
analysis is desired, as well as the output listing and plotting requirementS
for each run.

Program Outputs

A.-Listings - Two types of listings will be needed, The first w:. be a
continuous list of the data type requested as a function of time, that is, for
a given time, tna (or frame number), the outputs of all 60 filters at that time
(for that frame) will be listed, Such a list may be requested for all :ime
points of the analysis, for an interval of time points, or for a specific time
point or frame number, A suggested format to list one time point (frame) is
below:

Time tn Filter Nos, Data Type No,

(F7.3 format) I - 5 Data Nj.ltn Data NJ2,tn -. Data

6 - 0 Data NJ-Cptn Data NJ,,tn ... Daa N ml0,tn

11 - 15

16 - 20

55 60 Data NJsS, n Data No ta N

The secon! type of listing will be a continuous list sorted by filter
numbers. The output of a single filter, or filters, or a specified interial
of filters may be required,

If plots are requested as the program output, a listing of the plotting
information must also be made. This should include all plotting information
specified by the program request (time or frame numbers or intervals, data
type, etc.) aid also all plotting parameters computed by the program (scale
factors, board and data offsets, etc.).
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B, Plots

There are two types of plots which will be required: bar graphs and
continuous line plots, These will be made using the EAK 3440 Dataplotter.
Input to the pl)tter is an IBM tape written at 200BPI in BCD mode. Although
the bataplotter can accept formats of a variety of word and record lengths,
the following standard forimat should be used:

Each record shall contain one data word of 12 BCD characters and shall
represent one data point or plotter command function. The first 6 characters
are for the X value and the second 6 for Y, The first character is the command
X code, the second the sign of X, and characters 3 through 6 are the X data,
high order first, Character 7 is the command Y code, character 8 the sign of Y,
and characters 9 through 12 are the Y data, high order first. An end of file
is required at the beginning as well as the end of each plot. At the end of
th& last plot on the tape, at least two or three EOF characters should appear,

The following is a list of the plotter comiand codes available:

COMMAND X CODE Y CODE

Skip the data 0 0

Plot the X and Y data 1

Set the X and Y scale factors 2 2

Set X scale factor 2 0

Set Y scale factor 0

Set X and Y data offset 3 3

Set X data offset 3 0

Set Y data offset 0 3

Sot X and Y board offset 4 4

Set X board offset 4 0

Set Y board offset 0 4

Select symbol 0 S

Pen down 0 6

Pen up 0 7

Start new curve 0 8

Stop p!ot 0 9
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Before beginning a plot thr.-e sets of variablis must be specified to zne
plotter. These are the X and Y scale factors, the X and Y board offsets, anc.
the A and Y data offsets, The three records specifying th-.s informat-on .
be the first three records on the plotter tape, The .ption should be avai:.3.e
either to specify these quantities as load card variables with the program re-
quest or to compute them when preparing the plotter tape.

Scale Factors (XXXIX)

The scale factor settings for X and Y determine the number of counts per
half-inch of plot. The scale factor used should be determined from the range
of the data and the paper size to be used Norirally plots will je requested
on either 7 x 10 in-h or 10 x 15 inch paper.

Board Offsets (t XX)

The nor ial origin of the plot board is the center of the board Other
points on the board and their coordinates (in half-inches, X ji,.en first) are:
Upper left (-30, 30), Upper right (30, 30), Lower right (30, -30), .ower left
(-30, -30), The board offset command is used to relocate the origin at any

other location on the board. The origin is transferred to the coordinates
that are listed with the command For example, the command to relocate the
ori3in at the lower left hand corner of che board allowing one inch margins
on the paper (that is, two half-inches) would specifted by the 12 character
record

4 - 00284 . 0028,

The board offset command is usually used to locate the coordinates (3 0)
at the plot origin, The pap'r wjill always be -)laced on the plotting board so
that this point is at the board coordinates (0 -20), allowing one inch margins
on the paper.

Data Offset (-XXXX)

The data offset commm,d causes the X and Y data offset values to be
algebraically added to their respective data point values before the point
is plotted, Normally this command is not used, However, it is necessary to
specify it the beginning of each plot that the data offset value is (0, 0)°
That is, the command 3 + 00003 + 0000 should be the third command on each
plotting tape

General Instructions

At the beginning of each plotting tape, and between plots on the same
tape, there should be one EOF character. After the last plot on the tape there
should be at ieait two or three EOF characters.

The first plotter commands for each plot must be used to set the X and Y
scale factors, X and Y board offsets and X and Y data offsets. Even if any of
these values are zero, they still must be specifically set to that value,
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After these three comrinnd- are givc... the next ccmmand should be '

pen up" Then the coordinates ef the first data point snot;ld le g1\' :d

repeated about ten times Th.s is to allow the pen time to De posit-onue
in the proper place for the first point before actually beginning the niot
Then should follow the command "Pen oown", the first data point repeated
once mnre, and the successive du.ta points in turn

The maximum efficiency on the plotter is achieved by plotting at hign
speed. However, in order to plot accurately at high speeds, the points to be
;lotted must be close together Accurate high speed plots can best be pro-
duced when the vector distance between consecutive points on the line is no
greater than 1/8 inch Thus any line segment (particularly the sides of bars
on bai grahs) should be specified by a succ3ssion of points no more than
1/8 inch apart

Continuous Line Plots

Lxne plots may be requested of the continuous output data of any filter
as a function of time (or frame numberj Time may run from to thru tN (time

of last frame) or over any specified time interval The data types which may
be plotted in this way include types 2 thru S. 10 thru 13, and any of the
incremental data types 18 thru 33 (Data types 6 thru 9 and 14 thru 17 are
"last frame only" data types, and are always plotted as bar graphs of data
vs, filter number )

The X scale factor for line plots is determined from the time interval
to be plotted and the paper size used The Y scale factor is determined from
the maximum value the data reaches For data types 2 thru S and 10 thru 13,
this maximum is reached in the last frame of the analysis; for any of the
incremental data types 18 thru 33, the program must search for the maximum
value, For relative data (uncalibrated), that is, any of types 2 thru 5 and
18 thru 25, the data maximum should be set equal to 100% of full scale, and
data values plotted as percentage points For calibrated data there should be
the option availablc to in-crt a uesircd max.mum value as 100% full scale, or
the factor should be chosen knowing the data maxii.ium and paper size to be used so

(s that the divisions on the graph paper correspond to convenient (even) data values,

Bar Graphs

The outputs of data types 6 thru -) and 14 thru 17 will always be plotted
as bar graphs In addition, a bar graph of any single frame or frames of any
data type vs filter nimber! may be requested. The filter interval to be
graphed may include all 60 filters, or any bank of twenty at a time.

Potting a bar giaph is more complicated than plotting a continuous line
plot. The bars will be drawn with the plotter in "line plot" mode Thus
eac'. line should be specified by a succession of points, no more than 1/8 inch
apart, to maintain high speed and accuracy on the plotter.

A convenient shape of bar graph is achieved by making the bars twice as
wid- as the spaces between them This leads to the formula;
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(N[S + B] - S) - full width of graph,

where N is the number of bars (20 nr 60)

S is the width of a space

B a 2S is the width of a bar,

The formula should be solved for S. the width of d space between bars,subject to the restriction that S s 1/4 inch, to maintain a balanced appearance.
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SYMBOLS USED IN COMPUTATIONAL PROCEDURE

B 1 I, 2. 3 a bank number

J Al, 2, , 60 a filter number

PSM(B), PSC(B), PSD(B) a Pot Settings for Machine correction, Calibration,
and Data for bank (B), respectively (load -ard variables)

PFM(B), PFC(B), PFD(B) a Pot Factors for Machine correction, Calibration, anu
Data for bank (B), respectively

v '(J) - Output, in machine counts, of lact frame Whlite Noise (machine)

calibration of the jth filter

R(J) - White Noise correction factor for Jrh filter

BIV(J) - Bandwidth of jth filter

K - Calibration constant computed if data calibration is present

i) -Total power output of white noise generator, used in computing constanz
K (load card variable)

TC - Time duration (seconds) of Calibration , u3ed in computing K (load card
variable)

D(J) - Output, i7 machine counts, of last frame white noise Data calibration of
the jth filter It should be corrected by its appropriate pot factors and
white noise (machine) correction factors before computing K,
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COMPUTATIONAL PROCEDURE

Note: Wherever index B occurs, do B a 1, 2, 3.

Wherever index J occurs, do J a 1, 2, .-,, 60.

If both J and B occur in a product, 1i will be determined from the following
relationships:

for I I J S 20, B. 1

for 21 ! J .s 40, B 2

for 41 s J s 60, B 3,

1. Compute pot factors

2, Compute white noise (machine) correction factors, R(J):

Let M(J) a [WN(J)j x [PFW(B)]

Let R(l) a 1.

R (J)a 1 J-1

for 2 < J S 60

3, Compute combined correction factor for each filter, F(J):

F(J) a PFW(B) x R(J)

4, Compute filter bandwidths, BW(J):

BW(J) a (1 22) [ 1 0 (J-')(.OS)]

S. If white noise (data) calibration is present, compute constant

a. Correct data calibrari;, iO(J) from jth filter

D(J) a (Last frame calibration value machine counts of Tth

filter) x PFC(B) x R(J)
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b. K(J) u(2,35849 x 0' NTB(J
D(J)

OWP*'for (J) a 1, 2, *.,60

1 60
c. K = K(J)

Jul

6. For each frame o2l uata ard each filter compute the requestea data
type. Data n(j,t,) where j is the filter number and t is the (time/frame
numb,.-) index.

7, Prepare requested output listings and plotter tapes,
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