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SUMMARY

A method has been developed for converting a matrix of direction cosines
into an equivalent Euler sequence. For a desired rotational sequence, the
analysis produced a set of five equations which require a sequential calcula-
tion of the Euler angles. The first angle is used to compute the second and
the second is used to compute the third. For a given direction cosine matrix,
the equations show that there are two Euler angle sets which will generate
that matrix and can be considered to be the result of either a "positive" or a
"negative" initial rotation. The results of the analysis will work throughout
the entire 360° angle range and also for the singular cases. For singular
cases the equations become indeterminate but the problem can be resolved if
one recognizes that the two angles not involved in the singular condition
simply add directly and that only their sum affects the direction cosines.

The results of the analysis have been generalized into two sets of equa-
tions, one of which applies to the classical or repeating sequences and the
other to the nonclassical or nonrepeating sequences. These equations have
been written as a Fortran IV subroutine and are presented in the appendixes of
the report.

INTRODUCTION

In a research program for a satellite attitude control system it was
found advantageous to write the equations of motion with the direction cosine
matrix as the kinematic variable. If parameters such as Euler angles are used
for these variables, as is often done, it 1is necessary to be able to convert
the direction cosine output to Euler angles and the reverse. The conversion
of Euler angles to direction cosines is simple and can be performed by the
multiplication of elementary rotation matrices or by the use of a standard
(e.g., refs. 1, 2, and 3) which gives the direction cosine matrix in terms of
Euler angles. It is clear that the calculation of the Euler angles from the
direction cosines is also possible,but a general method was by no means
obvious from inspection of the equations involved and no reference could be
found that gave a general method. In this report, a technique is given for
performing the conversion. The results are given such that if a direction
cosine matrix is specified and a rotation sequence given, the Euler angle



sequence that will produce the direction cosines can be computed. The results
for the technique have been written as a Fortran IV program presented in the
appendix.
TABLE OF SYMBOLS
Analysis Section
aij element of the direction cosine matrix
A direction cosine matrix, 3 X 3
Es(61) typical elementary rotation matrix; first rotation angle
81, about axis 3
oy eigenvector of the rotation subscripted
] rotation angle
Subscripts and Superscripts
1,2,3 coordinate axis for the rotation when used as a subscript
for E; order of rotation of the angles when used as a
subscript for 6
t transpose of matrix
I,J,K rotation sequence
Computer Program
TH(I) angle 6%
I,J,K rotation sequence
EULANG conversion subroutine name
. i ~/X(1)
ARTN(X(I),¥(1)) arctangent function routine, tan §(ET
ANATYSIS

The equations for converting the direction cosines to Euler angles will
be derived for a specific Euler sequence and will then be generalized for any
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sequence. For a 1,2,3 rotation sequence, the direction cosines matrix can be
generated by the multiplication of three elementary rotation matrices.

A = E5(63)E2(82)E1(01) (1)

" The elementary rotations are given by

1 o 0 )
Ei(61) = © cos 63 sin 6
0 -sin 63 cos 63
cos 8o 0 -sin 65
Ex(62) = 0 1 0 > (2)
sin 65 0] cos By
cos 83 sin 65 0
Ez(63) = | -sin 65 cos 63 0
0 0 1
J
Equation (1) may be written in the following form
Es®(63) A E1%(61) = Ex(02) (3)

The coordinates of the eigenvector of the middle rotation are given by
0

52 = |1 (&)

If both sides of equation (3) are multiplied by 85, the following equation
results

Est(es) A Elt(91)52 = Fz(62)02 = 02 (5)



Equation (5) may be rewritten in the form

A E;%(61)82 = E3(63)02 (6)

If the following two definitions are made for the portions of equation (6),

0
X(1) = E1%(81)82 ={ cos 631 (7)
sin 91
sin 63
Y(03) = E3(63)82 = | cos 83 (8)
0]

Then, equation (6) may be written in the form below, where 6, has been
eliminated from consideration.

A xX(01) = ¥(63) (9)

Equation (9) is a set of three equations

|
(@)

asz CcOs 631 + asz sin O3 = (10)

|

81> CcOs 01 + a3 sin 631 = sin 63
(11)

1

8z COS 671 + aps sin 63 cos Ba

And from equation (3), by expanding the left-hand side and equating the ai;
and a1z terms to the corresponding terms on the right-hand side, we obtain

8331 COS O3 - a3 sin 83 = cos 85
(12)
aszjl = sin 92

The desired Euler angles can be calculated from equations (10) through (12).
It is necessary first to solve for 61 from equation (10), then for 645 from

equation (11), and finally for 6, from equation (12). Note that all nine
elements are used.

The solution of equations (10) through (12) results in two sets of Euler
angles because the solution of equation (10) is double valued. For each value
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of 631, unique values of 6z and 65 are found from equations (11) and (12) so
that two distinct Euler sequences result for a given direction cosine matrix.
Physically the result means that it is possible ‘o reach a given position by
starting with either a "positive" or a "negative" rotation 631 followed by
the appropriate rotations, 85 and 83, to give the final position. For a non-
classical sequence such as the one used in the previous analysis (1,2,3), the
relation between the two sequences is as shown below.

case 1 61 >, 6o , 6s

(13)

case 2 61w, 65 = 7w, 6s £ =«

For the classical or repeating type sequence, the relation between the angles
is different and can be shown to be of the following form:

case 1 61 6o O3
(1%)

case 2 61 1w, - 02 , 6z £ 7

For each Buler sequence there is a singular case which requires special
handling. The repeating sequence is singular when sine 6, 1is zero and the
nonrepeating sequence 1is singular when cosine 6, is zero. When the 1,2,3
sequence 1s singular, the direction cosines asgs and ass are both zero and
the computation of 63 1is indeterminate. The problem can be resolved by
noting that 63 and 6z add directly. Since the direction cosine matrix only
specifies the final position, 61 and 63 may have any value so long as their
sum is correct. In the computation it is necessary to set 63 to some value,
possibly zero, and then proceed.

Once equations (10) through (12) have been derived, it is easy to see how
they could have been obtained by direct inspection of the direction cosine
matrix written in terms of Euler angles. For the 1,2,3 rotation sequence the
matrix is,

211 a1z 813
aza az2 az3
asi azz as33
cos 6. cos 6 cos B3 sin 6g sin 6, sin 83
2 3 + sin 63 sin 65 cos 83 - cos 63 sin 65 cos 65
- cOS 64 sin 6 cos 631 cos O3 sin 63 cos 83
2 3 - sin 63 sin 65 sin O3 + cos 63 sin 85 sin 63
sin 6o -sin 63 cos 63 cos 63 cos O

(18)



The following operations
ass = —sin 63 cos 63 , multiply by cos 63 .
(19)
ass = CcOS 03 cos 65 , multiply by sin 61
and adding the two equations yields equation (10)
aas cos 61 + ass sin B3 = 0 (20)
Next,
azi1 = sin 6o
together with the following operations
2312 = CO8 05 cos B3 , multiply by cos Og
_ (21)
asy = -cos 85 sin 85 , mltiply by -sin 03
and adding the last two equations, yields equations (12).
ai11 cos 63 - a-1 sin 63 = cos 6o
(22)
az1 = sin 62
Finally, to obtain equations (11), perform the following operations:
a1 = cos 63 sin B85 + sin 63 sin 65 cos O3 , multiply by cos 63
(23)
a13 = sin 63 sin 63 - cos 63 sin 65 cos 83 , multiply by sin 6,
and the two equations add to get
a1z cos 61 + a1s sin 63 = sin 63 (2k)
Similarly,
agp = cos B3 cos B3 - sin 63 sin 65 sin 65 , multiply by cos 63
(25)
ass = sin 631 cos 65 + cos O3 sin O sin 63 , multiply by sin 63
yields
ass cos 61 + apgs sin 631 = cos O3 (26)
The resulting equations (24) and (26) are equations (11).




An inspection of a direction cosine matrix written in terms of any other
Buler sequence will show that the same procedure can be followed with the
Jproper choice of terms. Also it should be noted that the solution sequence
could be in reverse order, 63, 61, 9, instead of 63, 83, 05.

The derivation that resulted in equations (10) through (12) can be gen-
eralized to apply to any Euler sequence since Eg(62)85 = dy. If the rotation

sequence is I, J, K, the direction cosine matrix will be given by
A = Ex(63)E;(62)E1(61) (27)

The first step is to form the eigenvector of the middle rotation, 53, and then
compute the column vectors

X(61) = EIt(el)aJ
(28)
Y(63) = Ex(63)d;
The equation to be used for the solution of 63 and 65 is then
A X(61) = Y(83) (29)
and 6, can be computed by use of equation (3) rewritten in the form
E;(62) = B b(0s) A E;%(61) (30)

A set of five equations similar to equations (10) through (12) will result
from the expansion of equations (29) and (30)- The 12 possible sets of equa-
tions are given in appendix A.

The 12 sets of equations that result from equations (29) and (30) can be
reduced to two sets of equations with an appropriate method of indexing the
direction cosine elements. One of the two sets applies to the classical or
repeating sequences and the other to the nonclassical or nonrepeating
sequences. These equations have been written as a Fortran IV subroutine pre-
sented in appendix B. For computing, the necessary input to the subroutine is
the array of nine direction cosines and the desired rotational sequence. The
output will be the three Euler angles. Since there are two Euler sequences
for a given direction cosine matrix, the program has been set up to compute
only one. If the other is desired, equations (13) or (14) can be used for
the conversion. Also, in the singular case computations, 6; has been set to
zero. For a sequence of computations this may cause a discontinuity in the
output. ©Smoothing may be accomplished by extrapolation of previous values of
61 and using this as the output value of 63 and subtracting the same amount
from 0s.
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CONCLUDING REMARKS

In the preceding analysis a method was developed for converting a matrix
of direction cosines into an Euler angle sequence. For a given rotational
sequence a set of five equations can be written which call for a sequential
calculation of the three Euler angles. The first angle is used in the calcu-
lation of the second and the second in the calculation of the third. The
equations show that for a given direction cosine matrix and a specified rota-
tional sequence there are two Euler angle sequences that satisfy the equa-
tions. The reason is that the particular values of the direction cosines may
be produced by an initially positive rotation followed by two others of
correct magnitude or an initially negative rotation and then two additional
rotations. For the singular case the conversion equations become indetermi-
nate but the first and last rotations add directly. The indeterminate condi-
tions arise because any two values of these angles will satisfy the direction
cosine matrix as long as thelr sum is correct. It is necessary to assume some
value for the first angle (zero or some extrapolated value from previous
calculations) and proceed with the computations.

The equations for the conversion have been generalized so that for a
given direction cosine matrix and any desired rotational sequence the Euler
angles can be computed. This set of equations has been written as a Fortran
Fortran IV computer subroutine and is presented in appendix B.

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif., 94035, March 10, 1967
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EQUATIONS REQUIRED TO CONVERT DIRECTION COSINES TO EULER ANGLES

233

als

az3

asi

az2

812

—a32

—az21

asi

—-ass

az3

—az2

212

APPENDIX A

FOR ALL 12 EULER SEQUENCES

1,2,3 Sequence
sin 83 + ags cos 63
sin 63 + aj1> coOs 63
sin 63 + apz cos 63
= sin Oo

sin 63 + aj) cos f5

1,3,2 Sequence
sin 63 - as3 cos 63
sin 64 - ajya Ccos 63
sin 83 + azg cos B3
= sin 65

sin 63 + ajij1 cos O3

2,1,3 Sequence
sin 61 + az1 cos B3
sin 631 - asy cos 071
sin 63 + a313 COS 91
= sin 65

sin 63 + aso COS O3

1

1]

sin

cos

cos

sin

cOs

sin

cOoS

cos

03

\C
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211

azi

asi

ailz

-a32

az2

asz

812

azs

aia

asi

—821,

az3

213

ass

az3

azai

ai

2,3,1 Sequence
sin 63 + a3z cos 63
sin 61 + as3 Ccos 63
sin 63 + ass cos 63
= sin 62

sin O3 + apzp cOs 83

3,1,2 Sequence
sin 61 + ag3 cos 93
sin 63 + as) cos 63
sin 63 + aji31 cos 63
= sin 65

sin O3 + aas cOs O3

3,2,1 Sequence
sin 631 - a1 CcOS 63
sin 63 - asz cos 63
sin 631 + agp cos 03
= sin 95

sin 83 + aszs cos O3

1,2,1 Sequence
sin 683 + aj> coOs O3
sin B, + agz cos 61
sin 61 + agz cos 83
sin 05 + azj1 cos B3

= cos 0Op

sin 63

cOSs 93

cos B

sin 63

cos 8O3

cos 6o

cos O3

cos 6o

-sin Ba
cos 63

sin 92




821

ali

azi

asz

Qoo

azz

aso

a1z

ai13

aszs

1,3,1 Sequence

sin 63
sin 63
sin 63

sin 6s

- 813 COS B3
+ as3 cos 631
+ agz cos O3

— ap31 COS 33

= cos 65

2,

sin 61
sin 63
sin 63

sin 65

1,2 Sequence
- apj] COS 63
+ agy cos B3
+ aj131 Ccos 03

- agz COS 64

= cos 0o

2,3,2 Sequence
sin 63 + aps cos 63
sin 61 + ajs cos 63
sin 63 + ass cos 63
sin 85 + ajs coOs B4

= cos 6o

3,1,3 Sequence
sin 61 + agy cos 63
sin 91 + ap] COS 91
sin 63 + a3 cos 63
sin 65 + apz COS 63

= cos 65

]

sin 63
cos O3

sin 65

sin B4
cos Oa

sin 65

-sin 05
cos 045

sin 6o

-sin O3
cos O3

sin 92
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3,2,3 Sequence
azi S8in 641 - aas cos 61
-a311 sin 63 + aj> cos 63
-a531 Sin 81 + ags cos 63
ass sSin 63 - ajis cos B3

ass = COS 92

1]

It}

sin 93
cos O3

sin 92




APPENDIX B

FORTRAN IV PROGRAM FOR DETERMINING EULER ANGLES FROM

A GIVEN DIRECTION COSINE MATRIX

SUBROUTINE EULANG (I,J,K,A,TH)
DIMENSION X(3), Y(3), TH(3), A(3,3)
IF (I.EQ.K) GO TO 103

L =1I- MOD(J,3)

IF (L.EQ.2) L = -1

C =1L
X(1) = A(K,J)*C
Y(1) = A(K,K)
TH(1) = ARTN(X(l) (1))

X(1) = sIN(TH(1 ))
Y(1) = COS(TH(l

101 X(3) = A(I,K)*X(1) - A(I,J)*Cc*y(1)
Y(3) = A(J, J)*Y(l - A(J,K)*c*X(1)
X(2) = A(K I)*C
Y(2) = A(I,I)*Y(3) + A(J,I)*C*X(3)
GO TO 104

103 N =6 - (K +J)
xX(1) = A(K,J)

= N - MOD(I,3)
IF (L.EQ.2) L = -1
C=1L

Y(1) = A(K,N)*C
TH(1) = ARTN(x(1),Y(1))

X(1) = SIN(TH(l))
Y(1) = cos(TH(1)

102 X(3) = -A(N, N)*X(l) + A(N,J)*C*Y(1)
Y(3) = A(J,Jd)*¥(1) - A(J,N )*C*X(l)
x(2) = a(3,1)%x(3) - A(N,I)*C*Y(3)
Y(2) = A(X,K)

10k TH(3) = ARTN(X(3),¥(3)
TH(2) = ARTN(X(2),Y(2)
RETURN
END
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