CASE FILE
COPY

A COMPUTER PROGRAM FOR

FITTING SMOOTH SURFACES

TO AN AIRCRAFT CONFIGURATION
AND OTHER THREE-DIMENSIONAL GEOMETRIES

Charlotte B. Craidon
Langley Research Center
Hampton, Va. 23665

[^0]
PAGE MISSING FROM AVAILABLE VERSION

Page
SUMMARY 1
INTRODUCTION 1
SYMBOLS 3
PROBLEM DESCRIPTION AND METHOD OF SOLUTION 4
PROGRAM DESCRIPTION 6
LABELED COMMON 6
OVERLAY ARRANGEMENT 8
PROGRAMS AND SUBPROGRAMS 10
Program D3400 10
Program START 12
Program SURF 26
Subroutine PACH 27
Subroutine SPFIT 31
Program ORTCON 36
Subroutine OTHPLT 40
Subroutine PLOTIT 43
Program XPLT 47
Subroutine XCUT 51
Subroutine PLANEX 54
Subroutine VSOLV 59
Function KUBSOL 60
Subroutine CUBIC 62
Subroutine PLTROT 64
Function IPCOF 66
Langley Library Subroutine SIMEQ 67
PROGRAM USE 70
PROGRAM IDENTIFICATION 70
PROGRAM SETUP FOR A COMPILE AND EXECUTE 70
DESCRIPTION OF INPUT DATA CARDS 71
Configuration 71
Alternate Surface-Description Input 77
Option Card 79
Plot Cards 79
Page
DESCRIPTION OF PROGRAM OUTPUT 84
Input Data Printout 84
Cross-Section Plot Printout 84
Plot Vector File 84
MACHINE SETUP 84
OPERATIONAL DETAILS 84
CONCLUDING REMARKS 85
APPENDLX A - PARAMETRIC CUBIC SPLINE SPACE CURVES 86
APPENDIX B - BICUBIC SURFACE PATCHES 90
APPENDIX C - DESCRIPTION OF FILE AND METHOD OF STORAGE FOR SURFACE PATCH EQUATIONS 92
APPENDIX D - ORTHOGRAPHIC PROJECTIONS USING ${ }^{-}$SURFACE PATCH EQUATIONS 93
APPENDIX E - CROSS-SECTION OR CONTOUR PLOTS USING SURFACE PATCH EQUATIONS 96
RE FERENCES 102
TABLE 103
FIGURES 104

A COMPUTER PROGRAM FOR FITTING SMOOTH SURFACES

TO AN AIRCRAFT CONFIGURATION AND OTHER

THREE-DIMENSIONAL GEOMETRIES

Charlotte B. Craidon
Langley Research Center

SUMMARY

A digital computer program (D3400) that uses a three-dimensional geometric technique for fitting a smooth surface to the component parts of an aircraft configuration is presented. The resulting surface equations are useful in performing various kinds of calculations in which a three-dimensional mathematical description is necessary.

Program options may be used to compute information for three-view and orthographic projections of the configuration as well as cross-section plots at any orientation through the configuration. These operations were implemented to validate the usefulness and versatility of the surface equations. Output from this program has been used to drive Calcomp, Gerber, and Varian plotters and for on-line display on a cathode-ray-tube device.

The aircraft (Harris) geometry input section of the program may be easily replaced with a surface point description in a different form. Therefore, the program could be of use for any three-dimensional surface equations.

At the present time, the program can only be applied to relatively smooth surfaces; that is, there must be no abrupt changes in curvature. This deficiency is overcome to some degree by using the airplane component parts or, stated another way, by using a collection of surfaces.

INTRODUCTION

Aerospace vehicles, automobiles, and ships are examples of objects which require smooth curved surfaces to establish their exterior shapes. An integral part of the design, development, and manufacture of these objects is the construction of surface models which can be analyzed for their interaction with the environment in which they are to operate. The most useful models from the point of view of versatility and exactness of definition are mathematical models.

The simplest mathematical model of a three-dimensional surface is a set of planes which are defined by points and approximate the curved surface. In order to obtain an
accurate definition using a discrete set of planes, a large number of points on the surface must be defined. Preparing and manipulating the data which yield a planar approximation of a surface is laborious if an accurate definition is desired. Another difficulty with planar approximation occurs when cross sections or contours of curved surfaces are necessary. Planar approximation yields a very rough cross section or contour unless an extremely large number of points are used to define the surface.

In recent years a high-order accurate method for mathematical modeling of smooth three-dimensional surfaces has been developed. (See ref. 1.) This method is based on approximating an arbitrary surface by piecing together surface "patches." Each patch is defined by four boundary curves and is bicubic with respect to two parametric variables in the interior. A patch is therefore defined by four corner points, the first derivative of the corner points with respect to two parametric variables, and the cross derivatives of the corner points with respect to the parametric variables. The patch-equation definition yields a smooth representation of an arbitrary surface with relatively few points of definition. It also yields smooth approximations to cross sections and contour plots.

The purpose of this report is to describe a computer program which is based on the use of sets of bicubic patches to define a relatively smooth surface. (See ref. 2.) In particular the data description for the program is oriented toward aircraft configurations. This allows the organization of data for the various components to be identical with the data used for several standardized aerodynamic analysis computer programs. (See ref. 3.) The aircraft data description has become known as the Harris Wave Drag geometry.

The program can also be used to model arbitrary three-dimensional objects by using an alternate data input format. The data-point input to the program is not required to be equally spaced in any coordinate variable. However, there are some restrictions on the number of points in the descriptive lines for the same surface.

A three-dimensional parametric cubic spline technique is used to curve fit the input data points roughly describing the surface. From the curve fit, the derivatives of the sur face patches with respect to the parametric variable at the corner points are established. The cross derivatives of the patch representations with respect to the parametric variables are not used in this program. The values of the corner points and the derivatives at the corner points constitute the information necessary to solve the patch equation. In this way 36 pieces of information are required to define a patch; however, only 12 pieces of information must be supplied as input. The remainder is determined from the spline fit. Appendix A describes the cubic spline fit technique and appendix B, the patch equations.

The entire aircraft geometry or other three-dimensional object is converted into surface patch form. Each patch definition is identical in matrix structure which simplifies the organization of the computer program and data base. (See appendix C.) All
computations, such as rotations, are performed directly on patch equations rather than on interpolated $\mathrm{x}-, \mathrm{y}-$, and z -coordinates.

The computer program has the ability to display the orthographic projections of the input description of the surface and the enriched description of the surface based on the patch definition. (See appendix D.) The desired angles of orientation for viewing the surface are inputs to the computer program and the transformation based on these angles is applied to the patch definition. An option of the program tests the derivatives normal to the surface and deletes those points from the orthographic projection which are facing away from the observer. This option gives the program a partial hidden-line capability which works very well for convex closed surfaces. Figures 1 to 3 are examples of orthographic projections.

The program is also capable of producing plots of the surface coordinates of a cross section at any desired orientation. (See appendix E.) Figures 4 to 6 are examples of cross-section plots. The cross-section calculations consist of the simultaneous solution of the patch equations and the equation of a plane. The plane is defined by three points which are input to the program.

SYMBOLS

A,B,C,D parametric cubic spline coefficients
$a, b, c, d \quad$ plane equation coefficients
$\overline{\mathrm{B}} \quad$ boundary matrix

L chord length

M blending function matrix
$\overline{\mathrm{M}} \quad$ Mach number

N surface normal vector

P a vector whose components are functions of t
$\mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{3} \quad$ points used to define a plane

S component of surface patch equation
diagonal vectors
t independent variable in cubic equation
u,w independent variables in patch equation

V a vector whose components are functions of u and w
v unit vector
$\mathrm{x}, \mathrm{y}, \mathrm{z} \quad$ coordinates of a point
$\theta \quad$ pitch angle
$\bar{\theta} \quad$ roll angle for Mach plane orientation
$\phi \quad$ roll angle
$\psi \quad$ yaw angle

PROBLEM DESCRIPTION AND METHOD OF SOLUTION

The numerical model of the input airplane configuration is assumed to be symmetrical about the XZ-plane (positive Y-side) and may include any combination of components: wing, body, pods, fins, and canards. The wing is made up of airfoil sections, the fuselage is defined by either circular or arbitrary sections, the pods are defined similar to the fuselage, and fins and canards are defined similar to the wings.

The configuration is usually positioned with its nose at the origin and with the length of the body stretching in the positive X-direction.

The coordinate system used for this program is a right-handed Cartesian coordinate system as illustrated in sketch (a).

Since the modeling technique expects to approximate a smooth surface, sufficient input data points with no abrupt changes in curvature should be supplied. A threedimensional parametric cubic spline technique is used for the patch boundary-curve definitions in which the coordinates are expressed as cubic functions of one variable. A series of adjacent polynomial segments between each given point is used to represent the curve. The length of each segment is used as the parameter and later normalized to 1. Linear segments are used when a line consists of less than three points.

The cubic spline curve fitting subroutine uses a technique from a paper by Timothy Johnson of Massachusetts Institute of Technology and is summarized in appendix A.

The $x-, y-$, and z-coordinates of a surface patch are each single-valued cubic functions of two parameters, u and w. The coefficients of these cubics are expressed in terms of end points and partial and cross derivatives with respect to the u and w parameters. The result is a parametric bicubic representation of three-dimensional surfaces. Sketch (b) shows a typical patch.

Sketch (b)

Each patch equation requires 48 pieces of information.
A summary of the bicubic surface patch equation form is given in appendix B and the storage file description of the surface patches is given in appendix C.

The orthographic projections illustrated in this report are created by applying the three-dimensional rotation equations directly to the patch equations describing the body surface for plotting the aircraft at any desired viewing angle. The rotated patch equations are projected into the two-dimensional patch form of the paper plane. An enriched
surface may be obtained from the rotated and projected patch equations by holding u constant and varying w from 0.0 to 1.0 , then by holding w constant and varying u from 0.0 to 1.0 .

The orthographic plotting routine also includes a hidden-line option where the normal vectors are computed from the rotated and projected form of the patches. A positive normal vector indicates that the point is visible and a negative normal vector indicates that the vector points away from the viewer and thus is not visible. The method used for the orthographic projections is given in appendix D .

Another routine has been written to compute and plot the surface coordinates of a cross section through the body at any desired orientation. The calculations consist of the simultaneous solution of the patch equations and the equation of a plane. The method is described in appendix E .

PROGRAM DESCRIPTION

LABELED COMMON

The following list contains the FORTRAN variables appearing in labeled COMMON.

COMMON label PATPLT	FORTRAN variable	Description
	XMIN	Minimum x-value for plotting
	XMAX	Maximum x-value for plotting
	YMIN	Minimum y-value for plotting
	YMAX	Maximum y-value for plotting
	ZMIN	Minimum z-value for plotting
	ZMAX	Maximum z-value for plotting
		Total number of objects (or components) which
		could form an aircraft configuration

THREED

ABCDE(8)	Identification
HORZ	X -axis of the paper plane
VERT	Y -axis of the paper plane
TEST1	Hidden-line option flag

FORTRAN variable

PHI
THETA
PSI
PLOTSZ
TYPE
NOU

NOW

ISIDE

KODE
XSECT
$\mathrm{ABCDE}(8)$
PPL1(3)

PPL2 (3)

PPL3 (3)
PLOTSZ
HPAGE
VPAGE
INP
NOU

NOW

ISIDE

Identification
Origin of cross-section plot and one point in three-point-plane definition

Second point in three-point-plane definition; or X-intercept, roll angle, and Mach number in plane-angle definition

Third point in three-point-plane definition
Scale factor
Horizontal paper origin
Twice the vertical paper origin
Specifies kind of plane input
Number of points to interpolate for each patch in u-direction

Number of points to interpolate for each patch in w-direction

Flag for examining object or object and its mirror image

COMMON label	FORTRAN variable	Print code
	IPRIN	Flag for plot-option branch
	KODE	X-intercept for Mach plane
	XSTAT	Roll angle for Mach plane orientation
	THETR	Mach number

OVERLAY ARRANGEMENT

Program D3400 is set up in the overlay mode and sketch (c) illustrates the overlay arrangement.

Sketch (c)

The control program $(0,0)$ calls in the other parts of the program as they are needed. The initialization overlay $(1,0)$ reads cards defining the body surface, converts the input to actual units, and temporarily stores the surface description as a series of lines. Cubic
spline fairing is performed on curved lines defining the body surface in overlay $(2,0)$ and surface patch equations are constructed and temporarily stored. Overlay (3,0) generates orthographic plot information using the patch equations, and overlay $(4,0)$ generates crosssectional plot information using the patch equations.

PROGRAMS AND SUBPROGRAMS

Program D3400

Program D3400 (overlay (0,0)) is the control program. This program initiates loading and execution of other parts of the program as required. The flow chart and the FORTRAN statements for this overlay are as follows:


```
            OVERLAY(CBC,O,O)
            PRUGRAM 034001LINPUT=201,OUTPUT=201,TAPE10=201,
            1TAPE5=INPUT,TAPE6=OUTPUT,TAPE7)
```

CUMMON/PATPLT/
LXMIN, XMAX, YMIN, YMAX, LMIN, ZMAX,NOBJ

```
            03400 (SPAUE) - SURFACE PATCH DEFINITION EQUATIONS
                        ICONVERTS A SURFACE POINT DESCRIPTION
                TO THREE DIMENSIONAL SURFACE PATCH EQUATIONS)
            pkugramer - charloite b. Ckaidon
            CAC=3LCBC
            RECALL=6HRECALL
            call pSEudO
            wRITE (6,20)
            FOKMAT (IHLIOX,24HPROGRAM 03400 (SPADE) - ,34HSURFACE PATCH DEFINI
            LTIUN EqUatIONS//%
            INPUT SURFACE POINT DESCRIPTIUN AND PRUCESS
            FUR TAPE IO AND FOR LABELED CUMMON PATPPLT
            continue
            calL uVERLAY (CBC,1,0,0)
            compute anu sture patch equations
            call overlay (Cac,2,0,0)
            READ (5,כO) ITYPE
            FORMAT (14)
            IF (ENDFILE ;) 90,00
            GO TU (70,00,50), ITYPE
            THKEE DIMENSIONAL PLOTS
            CuivI livue
            CALL UVEKLAY (CJC,3,0,0)
            GU TU 40
            GRUSS SECTIUN PLUTS
            GALL uVERLAY (CoC̈,4,0,0)
            GU TO 40
            CALL NFRAME CALL CALPLT(0.,0.,999) $ STOP
            ENO UF 03400
            ENO
```


Program START

Program START (overlay (1,0)) reads the configuration description cards and prints them, changes the input values to actual units where necessary, computes the minimum and maximum dimensions of the given configuration, and temporarily stores the airplane description as a series of lines. The flow chart and the FORTRAN statements for this overlay are as follows:


```
OVERLAY(CBC,1,0)
PROGRAM START
```

INPUTS AIKCKAFT SURFACE DESCRIPTION.
FORMS INTO UESCRIPTIVE LINES WRITTEN ON TAPE 10,
and cumputes minimums and maximums
COMMON/PATPLT/
LXMIN, XMAX, YMIN, YHAX, LMIN, LMAX,NEEBJ
EIMENSION DLOCK (75001
DIMENSIUN XAF (30), WAFORG $(20,4)$,WAFORD $(20,3,30), T 2 O R O(20,30)$
EqUIVALENCE (BLUCK,XAF), (BLOCK(31), WAFORG),
1(BLOCK(111),WAFURD), ($\mathrm{LLOCK}(1911)$,TZURD)
OIMENSION XFUS $(30,4), \operatorname{ZFUS}(30,4)$, FUSARU(30,4$), F \operatorname{FOSRAD}(30,4)$,
1 SFUS $(30,30,6)$
EQUIVALENCE (BLUCK,xFUS), (BLOCK(121), LFUS), (BLOCK(241),FUSARD),
$1($ BLUCK (361), FUSRAD), (BLUCK(241), SFUS)
DIMENSIUN PODUKG $(9,3), X P G D(9,30), \operatorname{PODORD}(9,30), X P O D 1(9,30)$
EQUIVALENCE (BLUCK, POOURG), (BLUCK(28), XPOD), (BLOCK(298), PUUORO),
1(BLOCK(508), XPUU1)
OIMENSIGN FINURG $(6,2,4), \lambda F I N(6,10), F I N O R D(6,2,10)$,
LFINXC($0,2,10)$, FINX3($6,2,10)$
EQUIVALEINCE (BLUCK,FINURG), (BLOCK(49), XFIN), (BLOCK(LO9), FINORD),
1(BLUCK (229),FINX2), (ELUCK(349),FINX3)
OIMENSION CANURG $(2,2,4), X C A N(2,10)$, CANORO $(2,2,10)$,
1 CANOR1 (2,2,10), CAIVLRX(2,2,10)
EQUIVALENCE (BLUCK,CANURG), (BLUCK(17), XCAN), (BLUCK(37),CANORO),
(($\mathrm{BLUCK}(77), C$ AiNURI), (BLÜCK(117),CANURX)
UIMENSIUN ABC(8), ABCD(ठ), ANSIN(30), ANCOS(30), NAME(2)
OIMENSIUN NRAUX(4),NFORX(4)
OLMENSION ALRT (31,3)
DATA PI/3.14159205/
REWIND 10
FURMAT (OALO)
FORMAT (IX8ALO)
FUKMAT (1OF7.0)
READ IU CARU AND CARD OF CUNIRÖL INIEGERS
READ (5,10) AIGC
If (ENUFILE 5) 35,40
CALL NFRAME \$ CALL CALPLT(0.,0.,999) \$ STOP
CONTINUE
WKITE (6,50) ABG
FURMAT (23X,34HAIRCKAFT CONFIGURATIUN UESCRIPTIUN//IXBAIO/)
READ $(5,10)$ ABCD
WRITE $(6,60)$ AOCO
FURMAT (1X8ALO/)
DECODE (72,70,AJCD) JO,J1,J2,J3,J4,J5,J6, NWAF, NWAFOR, NFUS, (NRADX(I
1), NFORX(I), $1=1,4$), NP, NPOOUR, NF, NFINOK, NCAN, NCANOR

```
        WRITE (10) ABC
```

 NOBJ \(=0\)
 c
C
c
IF (JO.NE.L) GU IO 80
READ $(5,10)$ ABCD
WRITE $(6,20)$ ABCO
c
c
wING
c
$80 \quad J J=I A B S(J 1)$
IF (JJ.NE. 1) GU TU 290
$\mathrm{N}=\mathrm{IABS}$ (NwAFOR)
NREC $=(N+9) / 10$
$11=-9$
$12=0$
DO 90 NN=1,NREC
$\operatorname{kEAD}(5,10)$ ABCD
WRITE (0,20) ABCO
$11=11+10$
$12=12+10$
decuue (70,30,ABCD) (XAF(I),I=I1,I2)
cont inue
$00100 \quad \mathrm{I}=1$, Natat
READ $(5,10)$ ABCD
WRITE $(6,20)$ ABCD
DECODE (28,30,ABCD) (WAFCRG(I,J),J=1,4)
cuividinue
IF (Jl.LT.O) GU TO 130
DU $1 \angle 0$ NN=1,NWAF
$11=-9$
$12=0$
DC $110 \mathrm{NL}=1$, NREC
KEAD $(5,10)$ AOCD
WRITE (6,20) ABCD
$11=11+10$
$12=12+10$
deciode (70,30,AbCO) (TLURL(NN,1),1=11,12)
110 cont linue
120 cuivt Inve
GU 10150
Lio $140 \quad I=1$, NWAF
DU $140 \mathrm{~K}=1, \mathrm{~N}$
TLURU(I,K) $=0$.
$\mathrm{L}=1$
If (NwAFUK.LT.O) $\mathrm{L}=2$
DU 170 NN=1, NWAF
DO $170 \mathrm{k}=\mathrm{L}, \mathrm{L}$
$11=-9$
$\mathrm{I} \angle=0$
DU $160 \mathrm{NL}=1$, NREC
REAU $(5,10)$ ABCU
WKITE (6,20) ABCD
$11=11+10$
$12=12+10$

```
            UELOUE (70,30,ÁQCU) (mAFORO(NN,K,I),I=11,12)
    UE
    CONI INUE
            IF (NWAFUR.LT.OJ GU TO 190
            UU 180 NN=1,Nwar
            UU 1 }60\textrm{K}=1.
    180
    180
    C
    C
    C
```



```
        NN=2
        NCOMP=1$NAME (1)=10HWING $NAME (2)=10H
        WRITE (10) NN,NLUMP,NAME,NN,NN
        NUB.J=NUBJ+1
        00 280 I=1,2
        WRITE (10) NWAF,NWAFOR,NN,NN,NN
        KKK=(I-1)*(NWAFOR+1)
        KK=(-1)**(1+1)
    SETUP SPAIVimSE lINES
        OU 250 K=1,NWAFUR
        NN=KKK+KK*K
        0U 240 N=1,NWAF
        ALRT(N,L)=WAFORU(N,3,NN)
        ALRT (N,2)=wAFORG(N,2)
        ALKT (N,3)=WAFOKU(N,I,NN)
        CONT INUE
        WRITE (IO) ((ALRT(N,NS),N=1,NWAF),NS=1,3)
250 CONTINUE
```

```
C
C
                SETUP STREAMWISE liNES
    DO <10 NN=1,NWAF
    OU <60 K=1, NWAFUK
    N=KKK+KK*K
    ALRT(K,1)=WAFORU(NN,3,N)
    ALRI(K,2)=WAFURU(NN,2)
    ALRT(K,3)=WAFORU(NN,I,N)
260
270
280
C
C
C
290
    JJ=IABS(J2)
    IF (JJ.NE.L) GU TO 590
    J2TEST=3
    IF (J2.EQ.-1.ANU.JO.EQ.-1) J2IEST=1
    IF (JL.EQ.-1.ANU.JG.EQ.O) JZTEST=2
    IF (JG.EW.1) JZTEST=1
    J2=1
    vO 410 NFU=1,NFUS
    NKAU=INRAUX(NFU)
    NFUSOR=NFORX(NFU)
    N=NFUSUR
    NREC=(N+Y)/10
    I1=-9
    12=0
    OU 300 NL=1,NREC
    READ (5,LO) ABCU
    WRITE (6,20) ABCD
    IL=11+10
    12=12+10
    UECOUE (70,30,ABCD) (XFUS(I,NFU),I=I1,I2)
    cuntlivue
    IF (J2TEST.NE.2) GO TO 320
    11=-9
    12=0
    DO 310 NL=1,NREC
    READ (5,10) ABCO
    WRITE (0,20) AOCO
    I1=11+10
    I2=12+10
    DECOUE (70,30,ASCD) (ZFUS(I,NFU),I=11,I2)
310 CONTLINUE
    GO TO 340
    DU 330 I= 1,N
    LFUS(I,NFU)=0.
    IF (J2TEST.NE.3) GU TO 380
    NCARO}=(NRAD+9)/1
    DO 370 LN=1,N
    DO 360 K=1,2
    KK=K+(NFU-1)*2
    II=10
    IL=-9
    12=0
```

```
    DO 350 NN=1,NCARD
    IF (NN.EQ.NCARO) II=MOU(NRAD,IO)
    IF (IL:EQ.O) II= 10
    I 1=1 1+10
    I2=12+11
    REAU (5,10) ABCO
    WRITE (6,20) ABCD
    DECOUE (70,30,A3CU) (SFUS(I,LN,KK),I=II,I2)
350 CONT INUE
360 CONTINUE
370 CONTINUE
    GU TO 410
300 Il=-9
    I 2=0
    DU 390 NL=1,NREC
    KEAD (5,10) AdCD
    WKITE (6,20) ABCO
    1L=11+10
    I 2= I 2+10
    UECODE (7J,30,ABCD) (FUSARO(I,NFU),I=[1,I2)
    CONTINUE
    00 400 I=I,N
    FUSRAD(I,NFU)=S&RT(FUSARD(I,NFU)/PI)
C
410
C
C
C
    IF (JL.NE.O)GO TO 430
    XMIN=XFUS(1,1)
    XMAX=XFUS (1;1)
    IF (J2TEST.EQ.3) GO TO 420
    YMIN=FUSRAD(1,1)
    YMAX=FUSRAU(1,1)
    ZMIN=-FUSRAD(1,1)+\angleFUS(1,1)
    LMAX=FUSRAO(1,1)+LFUS(1,1)
    GO TO 430
    YMAX=SFUS(1,1,1)
    YMIN=SFUS(1,1,1)
    LMIN=SFUS (1,1,2)
    \angleMAX=SFUS (1,1,2)
    UU 470 N=1,NFUS
    NKAD=NKAOX(N)
    NHUSOK=NFORX(N)
    XMIN=AMINI(XMIN, XFUS(1,N))
    XMAX=AMAXI(XMAX, XFUS(NFUSOR,NI)
    OO 4OO NN=1,NFUSOR
    IF (J2TEST.EQ.3) GU TO 440
    YMAX=AMAXI(YMAX,FUSRAD(NN,N))
    YMIN=AMINI(YMIN,FUSRAD(NN,N))
    LMAX=AMAXI(LMAX,FUSKAD(NN,N) + LFUS(NN,N))
    LMLIN=AMINI(LMIN,-FUSRAD(NN,N)+LFUS(NN,N))
    GU TU 400
440 KK=1+(iv-1)*2
    DO 4らO NR=1,NRAD
    YMLN=AMINI(YMLN,SFUS(NR,NN,KK))
    YMAX=AMAXI(YMAX,SFUS(INR,NN,KK))
    LMIN=AMINI(LMIN,SFUS (NR,NN,KK+1))
    LMAX=AMAXI(ZMAX,SFUS(NK,NN,KK+1))
```

```
4 6 0
```

wrlte line tape

```
wrlte line tape
    JJN=25N1=1 $NAME (1)=10HFUSELAGE $NAME (2)=1.0H
    NOBJ=INOBJ+NFUS
    DO 580 NFU=1,NFUS
    NRAD=NRADX(NFU)
    NFUSOR=NFORX(NFU)
    WRITE (IU) NI,JJN,NAME,N1,NL
    WRITE (LO) NFUSUR,NRAU,NL,NL,NL
    NAN=NRAL
    IF (J2TEST.EW.3) GO TO 490
    FANG=(NRAO-1)*2
    DELE =6.2631853/FANG
    UO 480 N=1,NAN
    E=N-1
    ANSIN(N)=SIN(E*UELE+4.712389)
    AINCOS(N)=COS(E*UELE+4.712389)
    CONT INUE
    KK=1+(NFU-1)*2
SETUP STREAIWISE LINES
    DO 530 N=1,NAN
    OU 520 NIN= L,NFUSUR
    ALRT (NN,1)= XFUS(NN,NFU)
    IF (J2TEST.EQ.3) GO TO 500
    ALRI (NN,2)=FUSKAD(NN,NFU)*ANCOS(N)
    ALRT(NN, 3)=FUSRAO(NN,NFU)*ANSIN(N)+\angleFUS(NN,NFU)
    Gu TO }51
    ALRT (NN,2)=SFUS(N,NN,KK)
    ALKT(NN,3)=SFUS(N,NN,KK+1)
    CONTINUE
    cont INUE
    wRITE (10) ((ALRT(N,N3),N=1,NFUSUR),N3=1,3)
    CONTINUE
        SETUP LINES AKOUNU BOCY
    DU 570 N=L,NFUSUR
    UO 560 NN=1,NAN
    ALRT(NN,1)=XFUS(N,NFU)
    [F (J2IEST.EQ.3) GU TU 540
    ALRT (NN,2)=FUSRAU(N,NFU)*ANCOS(NN)
    ALRT (NN, 3)=FUSKAU(N;NFU)*ANSIN(NN) + ZFUS(N,NFU)
    GO 10 550
540 ALRT(NN,2)=SFUS(NN,N,KK)
    ALKT(NN,3)=SFUS(NN,N,KK+1)
    CONTINUE
    Cuntlivue
    WRITE (LU) ((ALRT(N,N3),N=1,NAN),N3=1,3)
    CONTINUE
    CONTINUE
Nacelles
C
```

```
5*0
    Cuntinue
    IF (J3.NE.L) GO TU 730
    N=NPOUOR
    NREC=(N+Y)/LU
    UU 6<O NN=1,NP
    KEAO (5,10) ABCD
    WKITE (6,20) ABCU
    UECUOE (21,30,ABCD) (PUOORG(NN,I),I=1,3)
    I L=-9
    1<=0
    DU OOO NL=1,NREC
    READ (5,10) ABCO
    WRITE (0,\angleO) ABCO
    11=11+10
    I 2=12+10
    DECUDE (70,30,ABCD) (XPOD(NN,1), I=IL,I2)
600 CUNT INUE
    I 1 = - y
    12=0
    UO 610 Nl=1,NREC
    READ (5,10) ASCO
    WRITE (0.20) ABCD
    IL=1 L+10
    12=12+10
    DECUOE (70,30,ABCO) (PUUOCRO(NN,I),I=IL,I2)
    CONTINUE
O20 CUNTINUE
C
C
C
    00630 N=1,NP
    DU 630 NN=1,NPUOOR
OSO XPUDL(N,NN)=XPOU(N,NN)+POUOKG(N,I)
    IF (JI.NE.O.OR.J2.NE.O) GC TO o40
    XMIN=XPOUC1(1,1)
    XMAX = XPOOL (1,NPUDUR)
    YMIN=PUUURG(1,2)+PODORD(1,1)
    YMAX=POUORG(1,2) +PGOORD(1,1)
    LMIN=PUDORG(1,3)-PUDORD(1,1)
    ZMAX=PUUURG(1,3) +POOURO(1,1)
640 DO 060 N=1,NP
    XMIN=AMINI(XMIN,XPUOI(N,1))
    XMAX=AMAXI(XMAX, XPOUI (N,NPODOR))
    OO 650 NN=1,NPUUOR
    YMIN=AMINI(YMIN,PUOORU(N,NN)+POOORG(N,2))
    YMAX=AMAXL(YMAX, PUOURD(N,NN)+PODORG(N,2):
    ZMIN=AMLNI (ZMIN, POUURG(N,3)-PQOURD(N,NN))
    ZMAX=AMAX1(LMAX,PODORG(N,3)+POUORO(N,NN))
    CONTINUE
    DATA NAN2/4/,PIPL/4.712389/
    NANG1 = NAN2+1
    NANG2=2*NAN2+1
    FANG = NANZ# L
    DELE=O.2831853/F ANG
    DO 670 N=1,NANG2
    E=N-1
    EE=E*UELE
    ANSIN(N)=SIN(EE+PIPL)
    ANCOS(N)=COS(EE+PIPL)
```

```
l
C
C
    JJN=3DNAME (1)=10HPOUS $NAME(2)=10H
    NOBJ=NÜBS }J+N
    DU }720\mathrm{ NPL=1,NP
    I=2
    IF (PUUURG(NPI,2).EQ.O.) I=1
    WKITE (IO) I,JJN,NAME,I,I
    DU 720 i=1,2
    IF (I.EG.2.ANOU.PODUKG(NP1,2).EQ.O.I GU TO }72
    WKITE (LU) NPUUOR,NANGL,L,I,I
            setup streamWise lines
        DO 6YO K=1,NANG1
        NN=(1-1) %NAN2+K
        UU OOO N=1,NPOUUR
        ALRT(N,L)=XPOO(NP1,N)+PUOORG(NP1,1)
        ALKT(N,2)=POUURO(NPL,N)*ANCOS(NN) +PODORG(NP1,2)
        ALKT(N,3)=POOUKO(NP1,N)*ANSIN(NN) +PODORG(NP1,3)
        cONTINUE
        WRITE (10) ((ALRT(N,N3),N=1,NPODOR),N3=1,3)
        CONT INUE
            SETUP LINES ARUUNU PQDS
        OU 710 N=1,NPOOUR
        OU 700 K=1,NAINGL
        NN=(I-1) #NAN2+K
        ALKT(K,1)=XPOO(NP1,N) +PGOGRG(NP1,1)
        ALRT(K,2)=PUDURO(NP1,N) *ANCUS(NN)+PODURG(NP1,2)
        ALRT(K,3)=PODURL(NP1,N) *ANSIN(NN) +POUORG(NP1,3)
        CONTLINUE
        WKITE (10) ((ALKT(K,N3),K=1,NANG1),N3=1,3)
710 CuNTINUE
720 CUNTINUE
        FINS
    CONTINUE
        IF (J4.NE.1) GO TO 890
        N=NFINOR
        DO 740 NN=1,NF
        KEAD (5,10) ABCU
        WRITE (0,20) ABCO
        OECOOE (j6,30,ABCO) ({FINORG(NN,I,J),J=1,4), I= 1,2)
        REAU (5,10) ABCO
        WRITE (6,20) ABCO
        UECODE (10,30,AOCO) (XFIN(NN,I),I=1,N)
        READ (5,10) ABCD
        WRITE (6,20) ABCD
        DECODE (70,30,ABCD) (FINORU(NN,1,J),J=1,NJ
        CONTINUE
            CHANGE TO ACTUAL UNIIS, CUMPUTE MINImUMS AND MAXIMUMS
```

```
    DU 760 LQ=1,NF
    OO 700 I=1,2
    J=3-I
    E=.0L*FIIVORG(LU,J,4)
    E2=FINORG(LQ,J,2.)
    DO 750 K=1,NFINUR
    EE=FINORU(LQ,I,K)*E
    FINORO(LQ,J,K)=E2+EE
    FINX2(LQ,J,K)=E2-EE
    FINX3(LG,J,K)=FINORG(LQ,J,1)+E#XFIN(LQ,K)
750
    JJIN=4$NAME (1)=1 OHFINS &NAME(2)=10H
    NUEJ=NOBJ+NF
    NK2=2
    OO 880 NFL=1,NF
    I=2
    IF (FINORG(NF1,1,2).EQ.O.) l=1
    WRITE (1U) I,JJN,NAME,I,I
    DU ©70 NN2=1.2
    IF (NN2.EG.2.ANU.FINDRG(NF1,1,2).EQ.O.) GO TO }87
    WKITE (LJ) NFINOR,NK2,I,I,I
    I I= L
    I 2=2
    IF (NN2.EQ.1) GU TO 790
    IL=2$I2=1
cONTINUE
                    SETUP HURILONTAL LINES
UO 810 N=1,NFINUR
ALRT(N,1)=FINX3(NF1,IL,N)
ALRT (N,3)=F[NORG(NF1;11,3)
IF (NN2.EQ.2) GU TO 800
ALRT(N,2)=FINORO(NFL,L1,N)
GO TO 810
ALRI(N,2)=F[NX2(NF1,11,N)
810 CUNTINUE
```

```
    WRITE (LO) (ALRT(N,N3),N=1,NFINOR),N3=1,B)
    DU 830 N=1,NFINUR
    ALKT(N,1)=FINX3(NF 1,I2,N)
    ALRT(N,3)=FINGRG(NF1;I2,3)
    IF (NN2.EQ.2) GU TO }82
    ALKT (N,2)=FINORU(NF1,12,N)
    GO TO }83
    ALKT(N,2)=F[NX2(NF1,12,N)
    CONT INUE
    WRITE (10) ((ALRT(N,N3),N=1,NFINOR),N3=1,3)
C
C
C
OU 860 NN=1,NFINUR
ALRT(L,L)=FINX3(NFI,IL,NN)
ALRT(2,1)=F[NX3(NF1,I2,NN)
ALKT(1,3)=FINORG(NF1,11,3)
ALRT (2,3)=FINOKG(NF1,12,3)
IF INN2.EQ.2) GU TO 840
ALRT(1,2)=FINORO(NFL,I 1,NN)
ALRT(2,2)=F1NORO(NFL,I2,NN)
GU TO 850
840 ALRT(1,2)=F1NX2(NFL,IL,NN)
ALRT (2,2)=FINX2(NF1,I2,NN)
850
860
870
880
C
C
C
GANURI(NN,1,J)=CANORL(NN,I,J)
GO TO Y20
UNT INUE
IF (JS.NE.1) GO TO 1080
N=IABS(NCANOR)
DO 920 NN=1,NCAN
REAU (5,10) ADCO
WRITE (Ó,20) ABCD
DECUUE (3O,3O,AdCO) ((CANORG(NN,I,J),j=1,4),1=1,2)
KEAU (5,10) AOCD
WKITE (6,20) AOCDD
DLCUUE (70,30,ABCD) (XCAN(NN,I),I=1,N)
READ (5,10) ABCD
WRITE (6,20) ABCU
OECODE (70,30,AOCO) (CANORU(NN,1,J),J=1,N)
IF (NCANUR.LI.O) GU TU 910
0O 900 J=1,N
READ (5,10) ABCD
WKITE (6,20) ABCO
UECUUE (70,30,ADCD) (CANURI(NN,1,J),J=1,N1
CONTINUE
NCANOR=I ABS\NCANOR)
NC=NC ANOR
```

Change to actual uivits, cumpute minimums and maximums

```
    DO 950 NN=1,NCAiN
    00 y40 K=1,2
    I = 3-K
    E=.01*CANURG(NN,1,4)
    E3=C ANORG(NN,I,S)
    DU 930 J=1,NCANUR
    CANURD(NN,I,J)=E#CANORU(NN,I,J)+E3
    CANUK1(NN,I;J)=-E*CANOR 1(NN, 1,J)+E3
930 CANOKX(NN,I;J)=CANOKG(NN,I,I)+E#XCAN(NN,J):
940 CUNTINUE
950 CUNTINUE
    IF (JI.NE.O.OR.J2.NE.O.UK.J3.NE.O.OR.J4.NE.O) GO TO 960
    XMIN=CANORX(1,1,1)
    XMAX=CANOORX(1,1,NC ANUR)
    YMIN=CANORG(1,2,2)
    YMAX=CANORG(1,2,2)
    ZMIN=C ANOR 1(1,1,1)
    LMAX=CANUKD(1,1,1)
960 DU 990 NCA=1,NCAN
    YMIN=AMLNI(YMLN,CANOKG(INCA,1,2))
    YMAX= AMAX1(YMAX, CANURG(NCA,2,2))
    DU Y80 NZ=1,2
    XMIN=AMINL(XMLN,CANORX(NCA,N2,1))
    XMAX=AMAXI(XMAX,CANGKX(NCA,N2,NCANOK))
    OU 970 NIN=1,NCAINOK
    LMIN=AMINI(ZMIN,CANORI(NCA,N2,NN))
    ZMAX=AMAXI ( LMAX, CANORO(NCA,N2,NNJ)
    CONTINUE
980
990
C
C
C
    JJN=5$NAME(1)=1UHCANAROS $NAME(2)=10H
    NOBJ=NOBJ+NCAIN
    NK 2=2
    DO 1070 NCA=1,NCAN
    WRITE (LÜ) NK2,JJN,NAME,NK2,NK2
    00 1060 I=1,2
    WKITE (10) NK2,NC,NK2,NK2,NK2
    KKK=(l-1)*(NC+1)
    KK=(-1)##(I+1)
C
C
C
    0O 1020 K=1,NC
    NN=KKK+KK*K
    OO 1010 N2=1,2
    ALRT(N2,1)=CANORX(NCA,N2,NN)
    ALRI(N2,2)=CANGRG(NCA,N2,2)
    IF (I.EU..2) GU TO 1000
    ALKT (N2,3)=CANORD(NCA,N2,NN)
    GU TO 1010
000 ALRT (N2,3) =C ANOR1(NCA,N2,NN)
1010 CONT INUE
    WRITE (10) ((ALRT(N2,N3),N2=1,2),N3=1,3)
1020 contINUE
```

```
c
C
    SETUP Twu STREAMWISE LINEES
C
    DO 1050 N2=1,2
    DO 1040 N=1,NC
    J=KKK+KK*N
    ALRT(N,1)=CANORX(NCA,NL,J)
    ALRT(N,2)=CANORG(NCA;N2,2)
    IF (I.EQ.Z) GU rO 1030
    ALRT(N,3)=CANURU(NCA,N2,J)
    GO TO 1040
1030 ALRT (N, 3)=CANURI (NCA,NL,J)
1040 CUNTINUE
    WRITE (LO) ((ALRT(N,N3),N=1,NC),N3=1,3).
1050 CUNT INUE
1060 CONT INUE
1070 CONT INUE
l080 CUNTLNUE
    RETURIN
C
C ENO UF START
C
ENO
```


Program SURF

Program SURF (overlay (2,0)) is the control program for constructing surface patch equations. The flow chart and the FORTRAN statements for this overlay are as follows:


```
    OVERLAY(CBC,2,0)
    PKOGRAM JURF
        calls a subroutine to ccmpuTe patches
        ANO CONTRULS WRITING OF PATCH TAPE
        COMMON/PATPLT/
        LXMIN, XMAX, YMIN, YMAX, ZMIN, ZMAX,NOBJ
        DIMENSIUN ABC(O)
        KEWIND 7
        REWINO 10
        REAU (10) AEC
        CALL RECUUT (7,<,0,ABC,1,0,1)
        CALL RECUUT (7,I,O,XMIN,XMAX,YMIN,YMAX,ZMLN, LMAX,NOBJ)
        DU 20 l=I,NOBJ
        REAO (10) NSURF,J2,J3,J4,j5,J6
        CALL RECUUT (7,1,0,NSURF,J2,J3,J4,J5,J6)
        DU 10 N=1,NSURF
        READ (1O) NCOL,NROW,N3,N4,N5
        CALL PACH (NCOL,NROW,N3,N4,N5)
        CONT LINUE
        CONT INUE
        END FILE 7
        RETURN
        ENO
```


Subroutine PACH

Subroutine PACH computes surface patch equations from the given grid information describing a surface. The patch equations are stored for further use. The flow chart and the FORTRAN statements for this subroutine are as follows:

SUBRUUTINE PACH (NLD,NLS,L1,L2,L3)
CONSTRUCTS SURFACE PATCHES WITH THE COMPUNENTS
EXPRESSED AS CUOZIC FUNCTIONS OF TWO PARAMETEKS (U ANO W)
ANU WRIIES U.N TAPE

DIMENSIUN PATCH $(4,4,3), \operatorname{COEF} 1(31,4,3), \operatorname{COEF} 2(31,4,3)$
DIMENSION SLOPE (31,31,3), XMAT(4,4), ALINE(31,3),ELEN(31),PAT(4,4)
DATA (XMAT (I),I = 1, 10)/2., -3.,0.,1.,-2.,3.,0.,0.,
11.,-2.,1., U.,1., -1.,0.,0.1

UATA MAXN/31/.EPS/.UOOO1/
$N L=N L D-1$
N2=NLS-1
CALL RECOUT (7,1,0,N1,N2,L1,L2,L3)
Compute parametric slopes in w uikection
$0070 \mathrm{~N}=1$, NLS
READ (10) ((ALINE(NN,NS),NN=1,NLD), N3=1,3):
Check if cusic fairing possible
IF (NLU.LT.3) GU JO 20
CHECK FOR A POINT
$N L=N L O-1$
OO $10 \mathrm{NN}=1$, NL
$E 1=A B S(A L I N E(N N, 1)-A L I N E(N N+1,1))$
$E 2=A B S(A L I N E(N N, 2)-A L I N E(N N+1,21)$
$E 3=A B S(A L I N E(N N, 3)-A L I N E(N i v+1,3))$
IF (EL+E2+E3.LE.EPS) GU TO 20
CONTINUE
GO TO 40
COMPUTE LINEAR SLOPES
DO $30 \quad N N=1$, NLU
DU 30 N $3=1,3$
SLOPE(NN,N,N3)=ALINE(2,N3)-ALINE(1,N3)
CONT INUE
GO TO 70
gompute cuaic spline slopes
CALL SPFIT (MAXIN,NLD,ALINE,ELEN,COEFL,IL,O,12,EK,CP,13,14)
$N L=N L D-1$
DO $50 \quad N N=1, N L$
DO 50 N3=1.3
SLOPE (NN,N,N3)=COEFL(NN,3,N3)
CONTINUE
$0060 \quad N 3=1,3$
SLOPE (NLO,N,N3)=3.*COEF1(NLO-1,1,N3)+2.*COEF1(NLD-1,2,N3)+COEF1(NL
10-1,3,N3)
CONTINUE
CONT INUE

00100 NN $=1$, NLS
$00100 \mathrm{~N} 3=1,3$
COEF ($(N N, 3, N 3)=A L I \operatorname{NE}(2, N 3)-A L I N E(1, N 3)$
CUEFI(NN,4,N3) = ALINE (NN,N3)
CONT INUE
GO TO 130
cont livue
compute cubic spline slopes
CALL SPFIT (MAXN,NLS,ALINE,ELEN, CUEFI,K1,O,K2,EP,CP,K3,K4)
DU 120 N $3=1,3$
CUEF $1(\mathrm{NLS}, 3, \mathrm{~N} 3)=3 . * \operatorname{COEF} 1(\mathrm{NLS}-1,1, N 3)+2 . * \operatorname{COEF} 1(N L S-1,2, N 3)+\operatorname{COEF} 1(N L$ 1S-1,3,N31
COEF $1(\mathrm{NLS}, 4, \mathrm{~N} 3)=\operatorname{COEF} 1(\mathrm{NLS}-1,1, N 3)+\operatorname{COEF} 1(\mathrm{NLS}-1,2, N 3)+\operatorname{COEF} 1(\mathrm{NLS}-1,3$,
(N3) + COEF 1 (NLS-1,4,N3)
CUNTINUE
130 CUNTLNUE
[u 2yO $N=2$, NLD
REAO (10) ((ALLNE (NN,N3), NN=L,NLS),N3=1,3):
IF (NLS.LS.3) GU TO 150
$N L=N L S-1$
DU $140 \mathrm{NiN}=1$,NL
$E L=A \cup S(A L I N E(N N, 1)-A L I N E(N N+1,1))$
$E 2=A B S(A L I N E(N N, 2)-A L I N E(N N+1,2))$
$E 3=A B S(A L I N E(N N, 3)-A L I N E(N N+1,3))$
IF $(E 1+E 2+E 3 . L E . E P S)$ GO 10150
140 CONTINUE
GO TO 170
$150 \quad 00160$ NN $=1$, NLS
UO 160 N $3=1,3$
COEF $2(N N, 3, N 3)=A L 1 N E(2, N 3)-A L \operatorname{INE}(1, N 3)$
COEF $2(\mathrm{Niv}, 4, \mathrm{~N} 3)=A L I N E(N N, N 3)$
100 CUNTINUE
GU TO 190

CALL SPFIT (MAXN,NLS, ALINE,ELEN, COEF2,K1,0,K2,EP,CP,K3,K4) DO $180 \mathrm{~N} 3=1,3$
COEF $2($ NLS $, 3, N 3)=3 . * \operatorname{CGEF} 2(N L S-1,1, N 3)+2$ * $\operatorname{COEF} 2(N L S-1,2, N 3)+\operatorname{COEF} 2(N L$ 1S-1, 3, N3)
COEF $2($ NLS $, 4, N 3)=\operatorname{CUEF} 2(N L S-1,1, N 3)+\operatorname{CGEF} 2(N L S-1,2, N 3)+\operatorname{COEF} 2(N L S-1,3$, (N3) + COEF2(NLS-1,4,N3)
continue
STORE PATCHES
DO 270 L=2,NLS
DO $210 \quad \mathrm{~N} 3=1,3$
DU $200 \quad M=1,2$
$M M=M O D(M, 2)$
$L L=L-M M$
PATCH(M, 1,N3)=COEF $1(L L, 4, N 3)$
PATCH(M,2,N3) $=\operatorname{COEF} 2(L L, 4, N 3)$
PATCH $(M, 3, N 3)=S L U P E(N-1, L L, N 3)$
PATCH(M,4,N3)=SLOPE(N,LL,N3)
PATCH $(M+2,1, N 3)=C O E F 1(L L, 3, N 31$
PATCH(M+2,2,N3)=COEF $2(L L, 3, N 3)$
PATCH $(M+2,3, N 3)=0$.
$\operatorname{PATCH}(M+2,4, N 3)=0$.
CONTINUE
CONT INUE
COMPUTE PATCH IN FCRN CF S=MBMITRANSPOSEI AND WRITE ON TAPE
U0 260 N3 $=1,3$
DO $230 \quad 14=1,4$
DO $230 \quad \mathrm{~J} 4=1.4$
SUM=0.
DO $220 \mathrm{~K} 4=1,4$
SUM = SUM + XMAT (14, K4) *PATCH(K4, J4,N3)
PAT(14, J4) =SUM
$00 \quad 250 \quad 14=1,4$
DU $250 \quad 14=1,4$
SUM $=0$.
$00240 K 4=1,4$
SUM=SUM+PAT(I4,K4)*XMAI (J4,K4)
PATCH(I4, J4,N3)=SUM
cuntivue
CALL RECUUT $\mathbf{1 7 , 2 , 0 , P A J C H , 1 , 4 8 , 1)}$
cGNT INUE
MUVE COEFFICIENTS
00280 N $3=1,3$
DO $280 \quad N 4=1,4$
DO 280 NN: $=1$, NLS
CUEF 1 (NN,N4,N3) = COEF $2($ IVN,N4,N3)
CONT LINUE
cont livue
RETURN
END

Subroutine SPFIT

Subroutine SPFIT uses a parametric cubic spline curve fit technique with optional enrichment of the given input curve. The method is explained in appendix A. The description, flow chart, and the FORTRAN statements for this subroutine are as follows:

Language: FORTRAN
Purpose: SPFIT is a parametric cubic spline curve fit subroutine. Parametric coefficients are computed to approximate a cubic spline curve through a three-dimensional set of input points describing a curve, and, optionally an enriched curve is computed.

Use: CALL SPFIT (MAXN, N, PNT, ELEN, COEF, NFIT, MAXSP, II, EPS, CPT, K1, K2)
MAXN The maximum number of input points allowed as stated in the dimension statement of the calling program.

N
PNT

ELEN

COEF

NFIT

MAXSP

II The total number of points in the enriched curve calculated by the subroutine.

EPS

CPT

The number of input points; $4 \leqq \mathrm{~N} \leqq$ MAXN.
A two-dimensional array of the consecutive points describing the three-dimensional (X,Y,Z) input curve.

A one-dimensional array used by the subroutine for the chord lengths between each consecutive pair of input points.

A three-dimensional array used by the subroutine for the parametric cubic spline coefficients.

A number of interpolated points to be computed between each pair of given points as specified by the user.

The maximum number of points allowed in the enriched curve as stated in the dimension statement of the calling program. If MAXSP is 0 , only the cubic spline coefficients are computed and the calculation of the enriched curve is omitted.

A small number supplied by the user which is used to check the second derivative at each point of the faired curve. The point will be omitted if the absolute value of the second derivative is less than EPS. An EPS of 0.0 will cause all the interpolated points to be retained.

A two-dimensional array used by the program for storage of the enriched curve.

An integer supplied by the user. If $\mathrm{K} 1=1$, retain all the input points. If $\mathrm{K} 1=2$, include input points in second derivative test.

K2 An integer supplied by SPFIT as an error code. If $\mathrm{K} 2=1$, normal return. If $K 2=2$, error return when the number of interpolated points exceeds the allowable storage (MAXSP).

Restrictions: SPFIT has been written with a variable dimension statement, and the following must be dimensioned in the calling program: PNT(MAXN,3), ELEN(MAXN), COEF(MAXN, 4,3), CPT(MAXSP,3). If the coefficient-only option is used (MAXSP=0), dummy entries for NFIT, II, EPS, CPT, K1, and K2 must be included in the calling sequence. The input curve must not include any consecutive duplicate points.

SUBRUUUTINE SPFIT (MAXN,N,PINI,ELEN,CUEF,NFIT, MAXSP,II,EPS,CPT,KL,KZ 1)

```
    COMPUTES PARAMETRIC CUBIC SPLINE CUEFFICIENTS TO
    APPROXIMATE A SMUOTH CURVE THROUGH A 30 SET UF INPUT
    POINIS ANO OPTIUNALLY COMPUTES AN ENRI.CHED CURVE
    MAXIN IS THE MAXIMUM NUMBER UF INPUT POINTS ALLOWED
    N IS THE ACTUAL NO. GF INPUT POINTS
    NFIT IS THE NUMBEK OF UESIKED SPLINED POINTS BETWEEN GIVEN
        PUINTS
    MAXSP IS THE MAXIMUA NUMBER OF SPLINED PGINTS ALLOWED,
        MAXSP=(MAXN-1)*(MAX,NFIT+1)+1 FOR EPS OF O.
        MAXSP=0 UMITS COMPUTATION OF ENRICHED CURVE
    II IS THE NO. OF POINTS IN THE ENRICHEO CURVE
Kl IS AN INTEGEK SUPPLIED OY THE USER
        KL=1,KETAIN ALL INPUT POINTS
        Kl=2, INCLUOE INPUT PUINTS IN SECONO DERIVATIVE IEST
    K2 IS AN INTEGER SUPPLIED BY SPFIT AS AN ERROR CODE
        K 2=1, NURMAL RETURN
        K2=Z, INCUMPLETE FAIRED CURVE WHEN MAXSP IS EXCLEUED
    PROGRAMER - CHARLUTTE CRAIDON 2-1-71
    DIMENSION PNT(MAXN,3),ELEN(MAXN),COEF(MAXN,4,3),CPT(MAXSP,3)
    UIST(X1,Y1,Z1,XZ,Y<,22)=SQRT((X2-X1)**2+(Y,2-Y1)**2+(22-21)**2)
    COMPUTE CHORD LENGTHS
```

 \(N 1=N-1\)
 \(0010 \quad N N=2, N\)
 ELEN (INN-1) =UIST(PNT(NN-1,1), PNT (NN-1,21, PNT(NN-1,3),PNT(NN,1),PNT(
 LNN, 2), PNT(NN,3))
 GENT I IVUE
 SETUP COEFFICIENT MATRIX WITH UNCLAMPED END POINTS
 (2NU DEK=O. AT PI AND PN)
 \(\operatorname{COEF}(1,1,1)=0\).
 \(\operatorname{COEF}(1,1,2)=2\).
 \(\operatorname{COEF}(1,1,3)=1\).
 \(\operatorname{COEF}(N, 1,1)=1\) 。
 \(\operatorname{COEF}(N, 1,2)=2\).
 \(\operatorname{COEF}(N, 1,3)=0\).
 DO \(20 \quad N N=2, N L\)
 \(\operatorname{COEF}(N N, L, 1)=E L E N(N N)\)
 \(\operatorname{COEF}(N N, 1,2)=2 . *(E L E N(N N-1)+E L E N(N N))\)
 \(\operatorname{COEF}(N N, 1,3)=E L E N(N N-1)\)
 CUNT INUE
 solve fur slopes
 DO \(60 \quad 1=1,3 \quad\) "
 \(\operatorname{COEF}(1,4,1)=(3.1 \operatorname{ELEN}(1)) \neq(\operatorname{PNT}(2,1)-\operatorname{PNT}(1,1)\),
 \(\operatorname{CUEF}(N, 4,1)=13.1 \operatorname{ELEN}(N-1)) *(\operatorname{PNT}(N, I)-P N T(N-1,1))\)
 DO \(30 \mathrm{NN}=2, \mathrm{NL}\)
 \(\operatorname{CUEF}(N N, 4,1)=(3 . /(E L E N(N N-1) * E L E N(N N))) *(E L E N(N N-1) * * 2 *(\operatorname{PNT}(N N+1, I\)
 1)-PNT(NN, I) \()+E L E N(N N) * * 2 *(P N T(N N, I)-P N T(N N-1, I \|)\)
 CONI INUE
    ```
C
C
SOLVE JRIUIAGONAL MATRIX
C
C
C
C
```

IFIT=NFIT+L

```
IFIT=NFIT+L
XFIT=IFIT
XFIT=IFIT
UELT=1./XFIT
UELT=1./XFIT
OO 110 NN=1,NI
OO 110 NN=1,NI
DU LOO NF=1,IFIT
DU LOO NF=1,IFIT
E=iNF-L
E=iNF-L
T=UELT*E
T=UELT*E
IF (NN.EQ.1.ANU.NF.EQ.1) GU TO }8
IF (NN.EQ.1.ANU.NF.EQ.1) GU TO }8
IF (NF.EQ.L.AND.KL.EQ.I\ GO TO 80
IF (NF.EQ.L.AND.KL.EQ.I\ GO TO 80
T6=6.*T
T6=6.*T
EX=ABS{To*COEF(NN,1,1)+2.*COEF(NN,2,1))
EX=ABS{To*COEF(NN,1,1)+2.*COEF(NN,2,1))
EY=ABS(To*CUEF(NN,1,2)+2.*COEF(NN,2,2))
EY=ABS(To*CUEF(NN,1,2)+2.*COEF(NN,2,2))
EL=AUS(T6%CUEF(NN,1,3)+2.*CUEF(NN,2,3))
EL=AUS(T6%CUEF(NN,1,3)+2.*CUEF(NN,2,3))
EE=(EX+EY+EL)/(ELEN(NIN)*ELEN(NN))
EE=(EX+EY+EL)/(ELEN(NIN)*ELEN(NN))
    IF (EE.LT.EPS) GO TO 100
```

 IF (EE.LT.EPS) GO TO 100
    ```
\(80 \quad 11=11+1\)
IF (IL.GT.MAXSP) GU TO 130
12=T\#T
13=T*T2
DO \(90 \quad I=1,3\)
\(\operatorname{CPT}(I I, I)=T 3 * \operatorname{CUEF}(N N, 1,1)+T 2 * \operatorname{COEF}(N N, 2,1)+T * \operatorname{COEF}(N N, 3,1)+\operatorname{COEF}(N N, 4\) 1, I)
100 CONT INUE
110 CONTINUE
\(1 I=1 I t 1\)
IF (II.GT.MAXSP) GU TO 130
\(00120 \quad \mathrm{I}=1,3\)
\(120 \quad \operatorname{CPT}(11,1)=P N T(N, L)\)
\(K 2=1\)
RETURN
\(130 \mathrm{~K} 2=2\)
RETURN
END

\section*{Program ORTCON}

Program ORTCON (overlay ( 3,0 )) is the control routine for the orthographic projections of the input body. This program reads the plot information card and prints it, computes scale factors, computes vertical offsets for three-view plots, and notates on the plot. The flow chart and the FORTRAN statements for this overlay are as follows:

```

 OVERLAY(CBC,3,0)
    ```
        PKUGRAM UKTCUN
        CONTKUL RUUTINE FOR CRTHOGKAPHIC PLOTS
        uF a surface or of a collecticn lf surtaces
        COMMCN /THREED/ABCOEIZ), hORZ, VERT,TESTI,PHI,THETA,PSI,
        LPLUTSL, TYPE, NUU, NOW, ISIUE, KGUE
    DIMENSION JKG(3), ABC( \(\overline{\text { O }}\) )
    UATA TYPEU/3HURT/,TYPEV/3トVU3/
C
C
C
C
    FGKMAT (LHL26X.27HTRREE UIMENSIONAL PLOT OATA//J
    CONTINUE
    READ (5,30) ABCDE
    FURMAT (BALO)
    IF (ENUFILE 3) 35.40
    CALL NFRAME \$ CALL CALPLT(O.,0.,999) \$ STOP
    WRITE (6,50) ABCDE
    FURMAT (1X, 8ALO/)
    DECUUE (72.60, AUCDE) HORL,VERT,TESTL,PHI,THETA,PSI, PLOTSL,TYPE,NUU
    1, NUW, ISIUE, KUUE
    FURMAT (LAL,A3,3F5.0,25X,F5.0,A3,313,7X,I1)
    IF (ISIUE.EQ.O) ISIDE=1
    read patch tape
    REWIND 7
    CALL RECIN (7,2,IC,ABC,1,8,1)
    IF (ENDF[LE 7) 70.90
70 WRITE \((6,80)\)
80 FURMAT (LHI/3OH END DF FILE ENCOUNTEREO ON PATCH TAPE)
    STUP
    CONI INUE
    CALL RECIN (7,L,IC,XMIN, XMAX, YMIN, YMAX, LMAN, ZMAX, NOBJ)
    IF (ISIOE.EQ.2) YMIN=-YMAX
    FINU SCALE FACTUR FRCM MAXIMUM DIMENSIUN
```

XUIS=XMAX-XMIN
YOIS=YMAX-YMIN
ZOIS= \angleMAX- LMIN
UMAX=AMAXIIXDIS, YDIS,ZOISI
SCALE=DMAX/PLOTSL
IF (TYPE.NE.TYPEV) GO TO 140
3VU WHERE VIEWS ARE STACKEO VERTICALLY

```

ORG(1)=PHI
ORG(2)=THETA
ORG(3)=PSI
PHI=THETA=PSI=0.
```

 YBIG=ORG(1)
 YURG=FLOAT (IFIX(YMAX/SCALE)) +URG(1)
 IF (YBIG.GT.ORG(2)) GG TG 100
 YBIG=ORG(2)
 YURG=FLUAT(IFIX(ZMAX/SCALE))+ORG(2)
 IF (YBIG.GT.URG(3)) GO TO 110
 YBIG=ORG(3)
 YORG=FLOAT(IFIX(LMAX/SCALE))+ORG(3)
 CALL CALPLT (O.,YURG;-3)
 NOTATE UN 3VIEN PLUTS
 NCHAR= [FIX(Ó.*PLUTSZI
 IF (NGHAR.GT.3O) GU TO 120
 x=0.
 GO TO 130
 CONT INUE
 NDIF=(NCHAR-80)/2
 X=FLOAT(NDIFI/O.
 NCHAR=80
 CALL NUTATE (X,0.,.2,ABC,O.,NCHAR)
 YSAV=YMIN
 XMIN=YMIN= LMIN=0.
 HORL=1HX$VERT=1HY
 YURG=URG(1)-YOKG-1
 CALL CALPLT (O.,YURG,-3)
 CALL OTHPLT IXMIN,XMAX,YMIN,YMAX,ZMIN,ZMAX,NOBJ,XMID,YMID,ZMID,SCA
 |LE)
 VERT = IHZ
 YORG=OKG(2)-URG(1)
 CALL CALPLI (O.,YURG,-3)
 CALL UTHPLY IXMLN,XHAX,YMIN,YMAX,ZMIN,ZMAX,INOBJ,XMIU,YMIU,ZMID,SCA
 1LE)
 HOKL = LHY
 YORG=ORG(3)-UKG(2)
 YMIN=(FLUAT(IFIX(YSAV/SCALE)-1))#SCALE
 CALL CALPLT (O., YOKG,-3)
 CALL OTHPLT IXMIN,XMAX,YMIN,YMAX,ZMIN,ZMAX,NOBJ,XMID,YMIU,LMID,SCA
 LLE)
 X=FLCAT(IFIX(PLUTSZ+6.))
 Y=1.-ORG(3)
 GU TU 160
 cuntINUE
 CENTER PLUT
 XMLU=.5*(XMAX+XMLN)
 YMLD=.5*(YMAX+YMIN)
 LMIU=.S#(ZMAX+ZMIN)
 XFIX=.5*(UMAX-XUIS)
 XMLN=XMIN-XFIX
 XMAX = XMAX +XFIX
 YFIX=.5*(DMAX-YOIS)
 YMIN= YMIN-YFIX
 YMAX = YMAX + YFIX
 LFIX=.5*(DMAX-\angleOIS)
 ZMIN=ZMIN-\angleFIX
 ZMAX = LMAX+\angleFIIX
    ```
c
C
C

\(c\)
C
\(\mathrm{X}=0\).
NCHAR \(=\) IFIX(11.*PLOTSZ) +3
If (NCHAK.LE. 80 ) GO TO 150
NOIF \(=(\) NCHAR -80\() / 2\)
\(\mathrm{X}=\mathrm{FLOAT}\) (NDIF)/II.
NCHAR \(=80\)
CALL NOTATE (x,.a,.I,ABC,C.,NCHAR)
CALL NOTATE (X,.5,.1,ABCDE,O.,NCHAR)
ORTHOGRAPHIC
CALL UTHPLY (XMIN,XMAX,YMIN,YMAX,ZMIN, ZMAX,NOBJ,XMID,YMID,ZMID,SCA 1LE)
\(\mathrm{x}=\mathrm{FLUAT}(1 \mathrm{FIX}(\) PLOTS \(\angle+2)\). \(\mathrm{y}=0\).
end of complete plot
c
\(c\)
100
cuntinue
CALL CALPLT(X,Y,-3) \$CALL NFRAME IF (KODE.EU.O) GO TO 20
RETURIV
ENU OF GRTCON
c
c
eind

\section*{Subroutine OTHPLT}

Subroutine OTHPLT determines the specified axis system and paper plane, sets up the rotation matrix, and establishes the necessary offsets for proper plot placement. The flow chart and the FORTRAN statements for this subroutine are as follows:

```

 SUBRUUTINE OTHPLT IXMIN,XMAX,YMIN,YMAX,LIIIN,ZMAX,NOBJ,XMID,YMID,ZM
 IIU,SCALE)
ITEST1=1
ITEST2=1
IF \XINTST.NE.TESTL\ ITESTI=0
IF IPSI.EQ.O..ANÖ.THETA.EQ.O..ANU.PHI.EQ.O.\ ISTEST2=0
PHI=CUNV*PHI
IHETA=CONV \#THETA
PSI=CUNV\#PSI
C
C

```

ITESTI=1
\[
\text { ITEST } 2=1
\]
IF IPSI.EQ.O..ANU.THETA.EQ.O..ANU.PHI.EQ.O.I I.TEST2=0
\[
\text { PHI }=C U N V * P H I
\]
IHETA=CUNV \$THETA
\[
\text { PSI }=\text { CUNV } \# \text { PSI }
\]

SETUP AXIS
```

 URTHUGRAPHIG PROJECTIONS
 COMMON/THREEO/ABCOE(8), HGRL,VERT,TEST L,PHI,IHETA,PSI,
 IPLUTSL,TYPE, NOU,NOW, ISIOL, KODE
 UIMENSION A(2,3),NAME(2),ABC(8)
 DATA XSEE/\angleHX /,YSEE/2HY /,ZSEE/2HZ /,
 LXINTST/3HOUT/, CUNV/.017453293/,NUM2/2/,NAN2/24/:
    ```

```

C
SINPSI=SIN(PSI)
SINTHE=SIN(THETA)
SINPHI=SIN(PHI)
COSPSI=COS(PSI)
COSTHE=CUS(THETA)
COSPHI=COS(PHI)
IF (XSEE.NE.HURL) GU TO 20
USE x FOR HURIZONTAL VARIABLE
IF (ITESTZ.EQ.O) GO TO IO
A(1,1)=CUSTHE*COSPSI
A(1,2)=-SINPSI*COSPHI+SINTHE*COSPSI*SINPHI
A(1,3)=SINPSI\#SINPHI +SINTHE*COSPSI*COSPHI
HMLN=XMLN
HMAX = XMAX
HMIO=XMID
IHORL=1
GU TO 60
IF (YSEE.NE.HORZ) GO TO 40
C
C
C
IF (ITESTZ.EQ.O) GO TO 30
A(1,L)=COSTHE*SLNPSI
A(1,2)=COSPSI*CUSPHI +SINTHE*SINPSI*SINPHI
A(1,3)=-COSPSI*SINPHI+SINIHE*SINPSI*COSPHIL
HMIN=YMIN
HMAX = YMAX
HMID=YMID
I HOR L=2
GO TU 60
USE L FOR HURIZUNTAL VARIABLE
CONTINUE
IF (IIEST2.EQ.OI GU TO 5O
A(1,1)=-SINTHE
A(1,2)=CUSTHE*SINPHI
A(1,3)=COSTHE*COSPHI
HMIN=LMIN
HMAX= LMAX
HMIU=ZMID
IHOKR = 3
IF (XSEE.NE.VERT) GO TO 80
C
C
C
IF (XSEE.NE.VERT) GO TO 80
IF (ITESTZ.EQ.O) GO TO 70
A(2,1)=CUSTHE*COSPSI
A(2,2)=-SINPSI*COSPHI*SINTHE*COSPSI*SINPHI
A(2,3)=SINPSI*SINPHI +SINTHE*COSPSI*COSPHI
VMIN=XMIN
VMAX = XMAX
VMIU=XMID
I VERT = 1
GU TO 120
If (YSEE.NE.VERT) GO TO lOO

```
```

C
C
USE Y FOR VERTICAL VARIABLE
IF (ITESTL.EQ.O) GO TO 90
A(2,1)=CUSTHE*SINPSI
A(2,2)=CUSPSI*CUSPHI +SINTHE*SINPSI*SINPHI
A (2,3)=-COSPSI\#SINPHI+SINIHE*SINPSI*CUSPHI
VM\perpN=YMIN
VMAX = YMAX
VMID=YMID
1 VEKT=2
GO TO 120
USE Z FUR VERTICAL VARIABLE
cont INUE
IF (ITESTZ.EQ.O) GO TO 1LO
A(2,1)=-SINTHE
A(2,2)=COSTHE*SINPHI
A(2,3)=COSTHE*CUSPHI
VMIN=LMIN
VMAX= LIIAX
VMIU=L:MIU
IVERT=3
Cuivt inue
CENTER WITHIN PAGE SILE IF SILE GREATER THAN 28 INCHES
IF (PLUTSZ.GT.2O..ANU.TYPE.NE.SHVU3) VMIN=-13.*SCALE+FLOAT(IFIXIVM
1IU/S(ALE))*SCALE
Rutate miupuint to place rotated view correctly
IF (ITEST2.EQ.0) GO TO 130
AMIDL=A(1,1)*XMID+A(1,2)*YMIO+A(1,3)*ZMID
AMIU2=A(2,1)*XMID+A(2,2)*YMIU+A(2,3)*LMID
HMIN=HMIN-HMID+AMIOI
VMIN=VIIIN-VMIU+AMID2
CONTINUE
OEGIN PLOTTING
OO 160 ISI=1,ISIDE
REWIND }
CALL KECIN (7, <,IC,ABC, 1,8,1)
CALL RECIN (7,1,IC,HL,H2,H3,H4,H5,H6,I7).
00 15U J=1,NOUS
CALL RECIN (7,1,IC,NSURF,J3,NAME(1),NAME(2),J4,J5)
OC 140 N=L,NSURF
CALL RECIN (7,1,IC,NOL,NS1,N3,J4,J5)
CALL PLOTIT \NUL,NSI,ISI,ITEST,ITESTI,IIESI2,IHORZ,IVERT,HMIN,VMIN
1,SCALE,A)
CONTINUE
cuivt INUE
cont Inve
KETURN
C
C
ENO UF OTHPLT
Eivo

```

Subroutine PLOTIT
Subroutine PLOTIT reads patch equations from tape and rotates them, computes enriched surfaces, and does a visibility test if desired. The flow chart and the FORTRAN statements for this subroutine are as follows:

 LN,VMIN,SCALE,AJ
                REAUS PATCHES FKOM TAPE,
                manipulates in specifieu manner anu pluts
        DIMLNSLOIV PATCH(4, 4, 3 ), PAT \((4,4,2), A(2,3), \operatorname{PLPAT}(4,2)\),
        IPLINE (54,2)
        UIMENSION VEC(4,2), VPAT(4)
        CUMMON/THREED/A GCUE (8), HGRL, VERT, TEST 1, PHI, THETA,PSI,
        IPLUTSZ, TYPE, NOU, NUW, ISIDE, KUUE
        NIVU=NUU +2
        \(N N W=N U W+2\)
        \(\mathrm{FU}=\mathrm{iv}\) UU +1
        F \(\mathrm{N}=\mathrm{NUW}+1\)
        \(U U=1 . / F U\)
        \(U W=1 . / F W\)
        NPAT=NOLㅊNSL
        DU \(230 \mathrm{~N}=1\), NPAT
        CALL RECIN (7,2,IC,PATCH,1,48,1)
        IF (IBI.EU.1) GU TU 20
            CHANGE Y SIGN
        DU \(10 \quad 14=1,4\)
        DO \(10 \mathrm{J4}=1,4\)
        PATCH(I4, J4,2)=-PATCH(14, J4;2)
        cunt Inve
        glint livue
        Rotate patches
        IF (ITEST2.EQ.1) GO TO 40
        DO \(30 \quad 14=1,4\)
        DO \(30 \quad \mathrm{~J} 4=1,4\)
        PAT(14, J4, 1) = PATCH(14, J4, IHÖR2)
        PAT \((14, \mathrm{~J} 4,2)=\) PATCH(I4, J4, IVERT)
        cont inve
        GU TO 80
        cont livue
        \(0070 \quad\) [4=1,4
        DU \(70 \quad \mathrm{~J} 4=1,4\)
        00 ó \(\mathrm{K} 2=1,2\)
        PAT( \(\left.1^{\prime}+, J 4, K 2\right)=0\).
        UU 50 N \(3=1,3\)
        PAT(I4, J4, Kく) =PAT(I4, J4,K2)+A(K2,N3)*PATCH(I4, J4,N3)
    cont inve
    continue
    cunt inve
    CUNT INUE
        PLOT IN W UIRECTIUN
        \(00150 \mathrm{NU}=1\), NNU
    \(E U=N U-1\)
    \(\mathrm{U}=\mathrm{EU} * \mathrm{DU}\)
```

 DO 90 J4=1.4
 00 30 K2=1,2
 PLPAT(J4,K2)=((U*PAT(L, \4,K2)+PAT(2,J4,K2&)*U+PAT(3,J4,K2))*U+PAT(
 14,j4,K21
VEC(J4, K2)=(3.*U*PAT(1,J4,K2)+2.*PAT(2,J4,K2))*U+PAT (3,J4,K2)
CONT INUE
NIT=0
UO 140 Nni=1,NNW
EW=N:1
w=Ew*DW
IF (ITESTL.EW.O) GO TO l2C
C
CONT INUE
CUNT INUE
IF (NIT.LE.1) GU TO 150
PLINE(NIT+I,I)=HMIN\$PLINE(NIT+1,2)=VMIN
PLINE(NIT + L,I)=PLINE(NIT + <, 2)=SCALE
CALL LINE (PLINE(1,1),PLINE(1,2),NIT,1,0,0,0)
cont INUE
PLOT IN U DIRECTIUN
00 2<0 NW=1,NNm
Ew=Nm-1
W=EW*DW
DO 160 J4=1,4
0J 160 K2=1,2
PLPAT(J4,K2)={(w*PAT(J4,1,K2)+PAT(J4,2,K2))*W+PAT(J4,3,K2))*W+PATI
1J4,4,K2)
VEC(J4,K2)=(3.*W*PAT (J4,1,K2) +2.*PAT(J4,2,K2))*W+PAT(J4,3,K2)
l60 CGNTINUE
NIT=0
DU 210 NU=1,NNU
EU=NU-1
U=EU*DU
IF (ITESTL.EQ.OI GO TO 190

```
c
c c
\(00170 \mathrm{~J}=1,2\)
        \(\operatorname{VPAT}(J)=(3 . * \operatorname{PLPAT}(1, J) * U+2 *\) *PLPAT \((2, J)) * U+\operatorname{PLPAT}(3, J)\)
        \(\operatorname{VPAT}(J+2)=((U * \operatorname{VEC}(1, J)+\operatorname{VEC}(2, J)) * U+\operatorname{VEC}(3, J)) \neq U+\operatorname{VEC}(4, J)\)
        Cuntinue
        VNORM=VPAT(1)*VPAT(4)-VPAT(2) \&VPAT(3)
        IF (ISI.EQ.I) VINCRM=-VNCRM
        IF (VNORIM.GE.O.) GO TO 190
        IF (NIT.GT.I) GU TO 180
        NIT=0
        Gu TU 210
    80. PLINE (NIT+1,1)=HMIN\$PLINE (NIT+1,2)=VMIN
        PLINE (NIT \(+2,1)=P L I N E(N I T+2,2)=S C A L E\)
        CALL LINE (PLINE (1,1),PLINE(L,2),NIT, \(1,0,0,0\) )
        NIT=0
        GOTO 210
        NIT=NLT+1
        DO \(200 \mathrm{~K} 2=1,2\)
        PLINE(NIT,K2)=((U*PLPAT(1,K2)+PLPAT(2,K2))*U+PLPAT(3,K2))*U+PLPAT(
        14,K2)
        CUNT INUE
        continue
        IF (NIT.LE.I) GU TO 220
        PLINE (NIT \(+1,1)=\) HMINSPLINE \((N I T+1,2)=V M I N\)
        PLINE (NIT \(+2,1)=P L I N E(N I T+2,2)=S C A L E\)
        CALL LINE (PLINE(1,1), PLLNE(1,2),NIT, \(1,0,0,0\) )
        cont inve
        cunt livue
        RETURN
        END

\section*{Program XPLT}

Program XPLT (overlay ( 4,0 )) is the control routine for cross-section plots through the input body. The program reads the plot information card and prints it and notates on the plot. The flow chart and the FORTRAN statements for this overlay are as follows:

```

 UVERLAYICBC,4,0)
 PROGRAM KPLT
 C
C
C
C
C
C
C
10 FORMAT (IHL27X, <5HCROSS SECTIONAL PLUT OATA//)
20
CONTINUE
KEAD (5,30) ABCUE
FORMAT (OALO)
If (ENOFILE 5) 35,40
GALL NFRAME \$ CALL CALPLT(0.,0.,999) \$ STUP
40 CONTINUE
WRITE (0,50)
FORMAT (/26X,30H*****क\# PLOT CARO(S) क\#\#\#\#\#**//)
WRITE (O,OC) AbCDE
FURMAT (IXBAIO)
UECOUE (80,70,AOCOE) XL,YL,ZL1,X2,Y2,Z2,X3,Y3,23,PLOTSZ,HPAGE,VPAGE
1,INP,NUU,INOW,ICUT,ISIDE, IPRIN,KUDE
FOKMAT (1OF6.0,2F3.0,A3,2I3,12,3I1)
IF (IGUT.EQ.O) GU TO 90
READ (5,30) ABCD
WRITE (6,60) AECCO
DECUDE (21,OO,ABCO) DX,DY,DL,IH
FURMAT (3F6.0,13)
CONTINUE
IF (INP.EQ.3HANG) GU TO 110
WRITE (0,1CO) X1,Y1,L1,X2,Y2,2L,X3,Y3,23,PLUTSL,HPAGE,VPAGE
FORMAT I//13X,1SHCUTTING PLANE/6X,1HXLIX,1HY11X,1HZ/3F12.5/3F12.5/
13F12.j//oX,5HSCALE7X,5HHPAGE7X,5HVPAGE/FL2.5,2F12.21
GU TO 130
110 WRITE (6,120) X1,Y1,21,X2,Y2, L2,PLOTS2,HPAGE,VPAGE
FURMAT (//13X,L3HCUTTING PLANE/6X,2HXO10X, 2HYO10X,2HZO/3F12.5/6X,1
LHXL1X, ЭHTHETATX,4HMACH/3F12.5//6X,5HSCALETX,5HHPAGE7X,5HVPAGE/F12.
25,2F12.2)
CONTINUE
WRITE (6,140) NUU,NOW,ICUT,ISIUE,IPRIN
140 FURMAT (6X,28HNOU NOW LCLT ISIDE IPRIN/I9,I5,I6,2I7)
IF (ISIDE.EQ.O) ISIDE=1
IF (IPRIN.EQ.0) [PRIN=1
HSAV=HPAGE\$IF(IH.EG.O)HPAGE=O.
NCUT=ICUT + I
IF (ICUT.NE.OI GO IO 150
DX=0. \$DY =0. \$DZ =0.
GU IU 200
*RITE (6,160) UX,DY,OZ
FORMAT (6X,2HDX10X,2HOY1OX,2HOZ/3F12.5)
IF (IH.NE.O) GO TO 180
WRITE (6,170)
170 FURMAT 127H OVERLAID PLOIS WITH IH = 0I
GO TO 200

```
\(x=0\) 。
IF (HPAGE.EQ.O.) GO TO 330
NCHAR \(=\) IFIX(11.*HPAGE) 2
IF (NCHAR.GT. 80) NCHAR \(=80\)
CALL NUTATE ( \(X, .8, .1, A B C, 0 .\), NCHAR)
IF (ICUT.NE.O) CALL NOTATE \((X, 06, \ldots 1, A B C D, 0 \ldots\) NCHAR)
CALL NOTATE \((X, \ldots 4, \ldots 1, A B C D E, 0 .\), NCHAR)
WRITE (O,1YO) IH
FUKMAT (24H SPACEO PLOTS WITH IH \(=\), I3)
LUUP FOK INGREMENTED CUTS
DO \(350 \mathrm{~N}=1\), iNCUT
IF (N.EU.1) GU TO 290
IF (INP.EU.SHPNT) GU TO 250
\(\times 2=X 2+U X \$ Y Z=Y \angle+U Y \$ \angle Z=\angle 2+0 Z\)
DECULE (10,210,ABCDE(2) JTEMPL
FURMAT (AB)
DECOUE (10,220,ABCDE(4) )IEMP2
FJRMAT (6XA4)
ENCUUE \((40, \angle 30, A B C D E(2))\) IEEMPL, \(\times 2, Y 2, \angle 2\), TEMP 2
FORMAT (AU,3FO.2,A4)
WRITE 16,240\() \times 2, Y 2,22\)

LCH/3F12.51

GO 10290
\(X L=X L+D X \$ Y L=Y L+D Y \$ \angle 1=\angle 1+D Z\)
\(X Z=X 2+D X \$ Y Z=Y 2+U Y \$ \angle Z=\angle Z+D Z\)
\(X 3=X 3+U X B Y 3=Y 3+U Y \$ \angle 3=\angle 3+D L\)
DECUDE ( 10,260, ABCOE \((6)\) ITEMPI
FURMAT (4XAG)
ENCOUE ( \(00,270, A B C O E(1) \quad 1 \times 1, Y 1,21, X 2, Y 2, \angle 2, X 3, Y 3,23\), TEMP 1
FORMAT (9F6.2.AG)
WRITE \((6,280) \times 1, Y 1,21, \times 2, Y 2,22, X 3, Y 3,23\)
FURMAT \(/ / / 26 H\) INCREMENTEE CUTTING PLANE/6X, 1HX11X, \(1 \mathrm{HY} 11 \mathrm{X}, 1 \mathrm{HZ} / 3 \mathrm{Fl} 2\).
15/3F12.5/3F12.51
CONT INUE
PPLL(1)=XL\$FPL1(2)=Y1\$PPL1(3)=Z1
PPL2(1) \(=X 2 \$\) PPL2(2) \(=Y 2 \$ P P L 2(3)=22\)
PPL \(3(1)=X 3 \$ P P L 3(2)=Y 3 \$ P P L 3(3)=L 3\)
IF (N.EQ.NCUT) HPAGE=HSAV
read patch tape

REWINO 7
CALL RECIN (1,2,IC,ABC,1, O, 11
IF (ENUFILE 7) 300,320
WRITE \((6,310)\)
FUKMAT (IHL/38H ENO OF FILE ENCOLNTERED ON PATCH TAPE) STOP
CONT INUE
nutate

CONT INUE
\(Y=F L O A T(I F I X(.5 \neq Y P A G E))+1\) 。
CALL CALPLT \((X, Y,-3)\)
IF (HPAGE.NE.O.) CALL NOTATE (0.,0.,2.,3,0., -1)
```

CALL XCUT
X=0.
Y=-Y
CALL CALPLT (0.,0.,3)
CALL CALPLT (X,Y,-3)
IF (HPAGE.EQ.O.) GU TO 340
X=HPAUE+2.
Y=0.
CALL CALPLT (X,Y,-3)
CALL NFRAME
CONT INUE
CuNt Inve
IF (KODE.EW.O) GO TO 20
RETURIN
C
C ENO UF XPLT
C
ENO

```

\section*{Subroutine XCUT}

Subroutine XCUT sets up the transformation matrix and the origin of the plot coordinate system for the cross-section plots. The flow chart and the FORTRAN statements for this subroutine are as follows:

subruutine xcut
```

SCALE=1./PLOTSZ
XJ=PPL1(1)\$YB=PPLL(2)\$2B=PPL1(3)
IF (INP.EQ.3HANU) GU TO 20
M=IPCOF(ACUEF,B,C,L,PPL1,PPL2,PPL3)
IF (M.EQ.L) GU TO 30

```
```

 WRITE (6.10)
 10 FURMAT (//LgH NU PLANE OESCRIBED//)
 RETURN
 20 XSTAT=PPLZ(1)
 THETR=PPL2(2)*.01745329252
 XMACH=PPL2(3)
 Y=-Y
 THETR=PPL2(2)*.01745329252
 XMACH=PPL2(3)
 BETA=SQKT (XMACH**2-1.)
 ACOEF=1.
 B=-8ETA*COS(THETR)
 C=-BETA*SIN(THETR)
 O=XSTAT
 PNTL(L)=XSTAT
 PivT1(2)=0.
 PNTL(3)=0.
 PNT2(2)=PNT3(3)=0.
 PNT2(3)=PNT3(2)=1.
 PNT<(1)=PNTL(1)-C
 PNT3(L)=PNTI(1)-B
 T1X=PNT3(1)-PNT1(1)$TIY=PNT3(2)-PNT1(2)$TLL=PNT3(3)-PNT1(3)
 T2X=PNT4(1)-PNT211)$T2Y=PNT412)-PNT2(2)$T2Z=PNT4(3)-PNT2(3)
 FNX=T 2Y*T1L-T1Y*T2L
 FNY=T1X*T2L-T LX*T1L
 FNL=T2X*T1Y-T1X*T TY
 UN=SURT(FNX*FNX+FNY*FNY +FNL*FNL)
 UNX=FNX/UN
 UNY=FNY/UN
 UNZ = FNLIUN
 UTL=SQRT1T1X*TIX+TIY*TLY+T1Z*ILZ)
 UTLX=TLX/UTL
 UTIY=TIY/UTL
 UTLL=TLZ/UT1
 UT2X=UNY*UT1Z-UNLZ*UTIY
 UT2Y=UNZ UUT1X-UNX*UT1L
 UT2Z=UNX*UTIY-UNY*UTLX
 setup TransFORmation matrix
 A(1,1)=UNX$A(L,2)=UNY$A(1,3)=UNZ
 A(2,1)=UT1X$A(2,2)=UTIY$A(2,3)=UT1Z
 A(3,1)=UT 2X$A(3,2)=UT 2Y$A(3,3)=UT22
 SET ORIGIN OF NEW GOURO. SYSTEM
 XPRM(1)=A(1,1)#XB+A(1,2)*YB+A(1,3)*ZB
 XPRM(2)=A(2,1)*XE+A(2,2)*YB+A(2,3)*2B
 XPKM(3)=A(3,1)*XB+A(3,2)*YB+A(3,3)*ZB
 HMIN=0.
 VMIN=0.
 WRITE (6,40) ACOEF,B,C,D
    ```

    FURMAT 133 H E GUATIUN OF THE PLANE \(A X+B Y+C Z=0 / 3 H\) A \(=E 15,8,4 X, 2 \mathrm{HB}=, \mathrm{EL}\)
        15. \(8,4 \mathrm{X}, \angle \mathrm{HC}=, \mathrm{E} 15.8,4 \mathrm{X}, 2 \mathrm{HO}=, \mathrm{EL5.81}\)
deGin computing aind plotting lines of intersection
UO dO ISI=L, ISIOE
REWIND 7

CALL RECIN (7, 1, IC, H1, HL, F3, H4, HS, H6, NOBJ)
DO \(70 \mathrm{~J}=1\), NOBJ
CALL RECIN (7,L,IC,NSURF,JJ,NAME(1),NAME(2),JJ,JJ)
WRITE (0.50) NAME
FURMAT (IXZALO)
\(0060 \mathrm{~N}=1\), NSURF
CALL RECIIV (7, 1, IC,NOL,NSI, J3, J4, J5)
CALL PLANEX (NUL,NSI, ISI, ACGEF, B, C, D, HMIN,VMIN,A,SCALE, XPRM, NAME)
cunt inve.
CONT INUE
CUNTINUE
RETURN

END UF XCUT
END

\section*{Subroutine PLANEX}

Subroutine PLANEX reads patch equations from tape and finds the patch equation of the line of intersection of a plane and the patch. A line of intersection through the patch is computed if such a line exists. The flow chart and the FORTRAN statements for this subroutine are as follows:


SUBKUUTINE PLANEX (NDL,NSL,ISI, ACOEF,B,C, \(A\), HMIN, VMIN, A, SCALE, XPRM, 1NAME)
```

 READS PATCHES FROM TAPE,
 SOLVES FOR INTERSECTICNS BY SPECIFIED PLANE
 AND PLUTS
    ```
        DIMENSION PATCH(4,4,3),A(3,3),ALINE \((52,3)\),
        IGMAT \((4,4), \operatorname{GVEC}(4), \operatorname{VEC}(4,3)\)
    UIMENSION XPRM(3), NAMEI 2 )
        COMMON/XSECT/ABCDE(8),PPL1(3),PPL2(3),PPL3(3),
        LPLGTSL, HPAGE, VPAGE, INP, NOU,NOW, ISIDE, IPRIN,
        2KOOE,XSTAT,THETK,XMACH
    \(\mathrm{NNU}=\mathrm{NOU}+2\)
    NNin= NOW +2
    FU=NUU+1
    \(F W=N O W+1\)
    \(U U=1 . / F U\)
    \(U W=1 . / F W\)
    NPAT \(=\) NDL \(\#\) NSL
    DU 370 NIVPAT \(=1\),NPAT
    CALL RECIN (7,2,1C,PATCH,1,48,1)
    IF (ISI.EQ.I) GU TO 20
        CHANGE \(Y\) SIGN
        DU \(10 \quad 14=1,4\)
        \(00 \quad 10 \quad J 4=1,4\)
        PATCH(14, 54,2\()=-\operatorname{PATCH}(14,54,21\)
        Cunt Inve
        cont inve
            SULVE FGR G MATKIX
        UU \(30 \quad N 4=1,4\)
        UO \(30 \quad I 4=1,4\)
        GMAT (N4, 14 ) \(=0\).
        GMAT (N4,14) =ACOEF*PATCH(N4, 14,1\()+B * P A T C H(N 4,14,2)+C \neq P A T C H(N 4,14,3)\)
        Cunt inue
            SOLVE FUR w with U=0.
        \(u=0\).
        vO \(40 \quad \mathrm{I}=1,4\)
    GVEC(L)=GMAT(4,I)
    GVEC \((4)=\operatorname{GVEC}(4)-D\)
    GUESS=0.
    IKUDE=KUOSSUL (GUESS, W,GVEC)
    GO TO (50, 150, 150), IKOUE
    NPT=1
    CALL VSOLV (X,Y,Z,U,W,PATCH)
    ALINE (NPT,1) \(=X \$ A L I N E(N P T, 2)=Y \$ A L I N E(N P T, 3)=Z\)
    DU \(140 \quad N=2\), NNU
    \(E=i v-1\)
    \(U=E * D U\)
```

C
C Sulve fur cubic in w
C
GO CONTINUE

```

```

 GVEC(4)=GVEC(4)-D
 GUESS=W
 IKOUE=KUBSOL(GUESS,W,GVEC)
 GU TU (130,70,7U), IKUUE
 c
C
C
70 m=1.
UU 90 I=1,4
GVEC(1)=0.
DO \&O J=1,4
GVEC(I)=GVEC(I)+GMAT(I;J)
90 CONTINUE
GVEC(4)=GVEC(4)-U
GUESS=1.
IKOUE=KUBSOL(GUESS,U,GVEC)
GU TU (120,100,100), IKODE
C
C
c
100 w=0.
OU 110 I=1,4
110 GVEC(I)=GMAT(I,4)
GVEC(4)=GVEC(4)-0
GUESS=1.
IKUOE=KUBSUL(GUESS,U,GVEC)
GU TO (120,300,360), IKUUE
120 CALL VSOLV (X,Y,Z,U,W,PATCH)
NPT=NPTT+L
ALINE(NPT,I)=X$ALINE(NPT, LJ=Y$ALINE(NPT,3)=Z
GO TO 300
1.30 CALL VSOLV (X,Y,L,U,W,PATCH)
NPT=NPT+L
ALINE(NPT,1)=X$ALINE(NPT,2)=Y$ALINE(NPT,3)=2
CONT INUE
GU TU 300
C
C SULVE FOR U WITH W=0.
c
150 w=0.
0U 160 I= 1,4
160 GVEC(I)=GMAT(1,4)
GVEC (4)=OVEC (4)-D
GUESS=0.
IKODE=KUOLSUL (GUESS,U,GVEC)
GO TU (170,250,250), IKUDE
NPT=1
CALL VSOLV (X,Y,Z,U,W,PATCH)
ALINE(NPT,1)=X$ALINE(NPT,2)=Y$ALINE(NPT,3):=2
OO 240 N=2,NNW
E=N-1
W=E*OW

```
    \(u=1\).
    \(00210 \quad I=1,4\)
    GVEC(1)=0.
    \(00200 \mathrm{~J}=1,4\)
    \(\operatorname{GVEC}(I)=\) GVEC(I) \(\operatorname{GMAT}(1,1)\)
    cunt a inue
    \(\operatorname{GVEC}(4)=\) GVEC(4)-D
    GUESS \(=1\).
    IKOUEEKUBSUL (GUESS, W, GVEC)
    GO TO \((220,360,360)\). IKODE
220

DO \(180 \quad \mathrm{~J} 4=1,4\)
GVEC(J4) \(=\left(\begin{array}{l}\text { (W*GMAT }(J 4,1)+\text { GMAT }(J 4,2)) * W\end{array}+\operatorname{GMAS}(j 4,3)\right) * W+G M A T(J 4,4)\)
cuintinue
GVEC (4) =GVEC (4)-U
GUESS \(=0\)
IKOUE = KUBSOL(GUESS,U,GVEC)
GO TO ( \(\angle 30,190,190\) ), IKODE
TRY W FOR \(U=1\). ON GUTER BOUNDARY
\(u=1\).
00 \(210 \quad I=1,4\)
GVEC(I)=0.
DO \(200 \mathrm{~J}=1,4\)
GVEC(I)=GVEC(I)+GMAT(J,I)
GVEC(4)=ÖVEC(4)-D
GUESS=1.
GO TO \((220,360,360)\). IKODE
CALL VSOLV (X,Y,L,U,W,PATCH)
\(N P T=N P T+1\)
ALINE (INPT,1) \(=X \$ A L I N E(N P T, 2)=Y \$ A L I N E(N P T, 3)=2\)
GO TO 360
CALL VSGLV ( \(X, Y, L, U, W, P A T C H\) )
NP \(\mathrm{T}=\mathrm{NPT} T+1\)
ALINE (NPT,1) \(=X \$ A L I N E(N P T, 2)=Y \$ A L I N E(N P T, 3)=Z\)
cuntinue
GO TO 360

\section*{sulve fúk \(u\) with \(w=1\).}
\(w=1\).
DU \(\angle 70 \quad 1=1,4\)
\(\operatorname{GVEC}(1)=0\).
00 \(260 \mathrm{~J}=\mathrm{i}, 4\)
GVEC(I) \(=\operatorname{GVEC}(1)+\operatorname{GMAT}(1, J)\)
CONTINUE
\(\operatorname{GVEC}(4)=\operatorname{GVEC}(4)-\mathrm{D}\)
GUESS = 0 .
IKODE=KUBSUL (GUESS, U,GVEC)
GO TO \((280,370,370)\), IKODE
NP T \(=1\)
CALL VSOLV ( \(X, Y, L, U, W\), PAICH)
ALINE (NPT, 1) \(=X\) SALINE (NPT, 2 ) \(=Y\) \$ALINE (NPT, 3) \(=2\)
Du \(350 \mathrm{~N}=2\), NNW
\(E=N-1\)
\(W=1 .-E * D W\)

\section*{\(c\)}
c
sulve fur cubic in u
DO 290 J4=1,4
GVEG \((J 4)=((W\) WGMAT(J4, \()+\) GMAT \((J 4,2)) * W\) +GMAT \((J 4,3)) * W+G M A T(J 4,4)\)
```

2 9 0
CONT INUE
GVEC(4)=GVEC(4)-0
GUESS=U
IKOUC=KUQSOL (GUESS,U,GVEC)
GU TO (340,300,3\cupO), IKOUE
\zeta
C
C
300 U=1.
DO 320 I=1,4
GVEC(L)=0.
DO 310 J=1,4
GVEC(I)=GVEC(I)+GMAT(J,I.)
320 CONT INUE
GVEC(4)=GVEC(4)-U
GUES S=1.
IKUUE=KUBSOL (GUESS,W,GVEC)
GU TU (330,300,300), IKUUE
330 GALL VSOLV (X,Y,Z,U,W,PATCH)
NPT=NPT+1
ALINE(NPT,1)=X$ALINE(NPT,2)=Y$ALINE(NPT,3)=Z
GO TO 300
CALL VSOLV (X,Y,L,U,W,PATCH)
NPT=NPT+1
ALINE(NPT,1)=X$ALINE(NNPT, L)=Y$ALINE(NPT,3)=L
350
C
C
C
3o0 CONTINUE
IF (NPT.LE.I) GU TO 370
CALL PLTROT INPT,A,ALINE,HMIN,VMIN,SCALE,IPRIN,XPRM,NAMEJ
370 CONTINUE
RETUKN
C
C ENO OF PlaNEX
C
END

```

\section*{Subroutine VSOLV}

Subroutine VSOLV evaluates a patch equation for \(x-, y-\), and \(z\)-coordinates with \(u\) and \(w\) given. The flow chart and the FORTRAN statements for this subroutine are as follows:


SUDKUUTINE VSULV ( \(x, y, L, u, h, p A T C H\) )
c
c SOLVES fOR V(U,w) from patch equation DIMENSIUN VEC \((4,3), \operatorname{PATCH}(4,4,3), V(3)\)
        \(00 \quad 10 \quad 14=1,4\)
        DU \(10 \quad \mathrm{~K} 3=1,3\)
        \(\operatorname{VEC}(J 4, K 3)=((U * P A T C H(1, J 4, K 3)+P A T C H(2, J 4, K 3)) * U+P A T C H(3, J 4, K 3)) * U+\)
        LPATCH(4, J4, र3)

10 cuintinue Du \(20 \mathrm{Kj}=1,3\) \(V(\kappa 3)=(1\) W*VEC(1, K3) \(+V E C(2, K 3)) * W+V E C(3, K 31) * W+V E C(4, K 3)\)
cunt inue
\(x=v(1) \$ r=v(z) \$ L=v(3)\)
RETURN
end

Function KUBSOL selects the required real root from the roots of a cubic equation. The flow chart and the FORTRAN statements for this function are as follows:


FUNCTIUN KUOSULIJL, T, CUEFFSI
```

FGiNDS IHE RUCTS uF a CUbIC ANO SELECTS THE REQUIRED REAL
RUUT BETWEEIV O. ANO 1. CLOSEST TO A GIVEN ESTIMATE
The routine SETS
KUBJOL=1 SUCCESS
KUBSUL=2 NO ACCEPTAGLE RUCT
KUBSUL=3 ERROR
Il is estimate fuk selectiũn uf kequired root if all ake real
ANU BETWEEN O. ANO 1.
I IS REQUIRED RUUT wIIT KUBSOL=1
CUEFFS(I) AKE THE CUEFFICIENTS AT*\#3+BT**2+CT+D=0.

```
        OIMENSLON CUEFFS(4)
        CUMPLEX RUUTS(3), FTEM(8)
        UATA EPS/L.E-6/,EPL/L.E-5/
            check fuk given variable on segment end points
        \(T=0\) 。
        IF (ABS(COEFFS(4)).LE.EPS) GU TO 90
        \(T=1\) 。
        \(\operatorname{CCC}=\operatorname{CUEFFS}(1)+\operatorname{CUEFFS}(2)+\operatorname{CGEFFS}(3)+\operatorname{COEFFS}(4)\)
        IF (AOS(CCC).LE.EPS) GU TO 90
```

C
c
c
IF (ABS(COEFFS(I)).GT.EPI) GU TO 40
IF (ABS(CUEFFS(2.)).GT.EP1) GO TO 30
IF (AOSS(GUEFFS(j)).GT.EPI) GO TO 20
KUBSUL=3
RETURN
T=-CUEFFS(4)/COEFFS(3)
ROUTS(1)=RUUTS(2)=ROOTS(3)=T
IF (T.LT.O..OK.I.GT.L.) GC TU 100
GU TO %0
TEMP=CUEFFS(3)**2-4.*COEFFS(2)*COEFFS(4)
IF (TEMP.LT.O.) GO TO 10
TMP=SNKT(TEMP)
ROOTS(1)=RUUTS(2)=(-COEFFS(3)+TMP)/(2.*COEFFS(2))
RUUTS(3)=(-COEFFS(3)-TMP)/(2.*COEFFS(2))
GO TO 50
CONIINUE
CALL CUBIC (CUEFFS,RGOTS)
SELEGT DESIRED RUOT
TT=KEAL(RUOTS(1))
T=TT
IF (AIMAÖ(ROUTS(1)I.EQ.O..AND.TT.GE.O..AND.IT.LE.1.) GU TO 60
clomI INUE
TT=REALIRGOTS(21)
T=TT
IF (AIMAG(RUOTS(2)).EQ.O..ANO.TT.GE.O..ANO.TT.LE.L.) GO TO }8
TT=REAL(KOOTS(3))
T=TT
IF (AIMAG(KOUTS(3)).EQ.O..ANU.TT.GE.O..AND.TT.LE.I.) GO TO 90
gu TO lUO
If (AIMAG(RUOTS(2)).NE.0.) gO TO 90
TT=REAL(RGUTS(2))
IF (TT.LT.O..OR.TT.GT.1.) GU TO 80
PKINT 7O, T,TT,TL,CULFFS,RUUTS
FURMAT ///4UH TWO ACGEPTABLE ROUTS FOUNO, ROOTS ARE, 2EL7.8/34HE
ISTIMATE FOK SELECTION OF ROUIS ,EI7.8/15H COEFFICIENTS =,4EI7.8/8
<H ROGTS =,OEl7..8//)
IF (ABS(TL-TT).LT.ABS(TL-T)) T=TT
IF. (AIMAG(ROOTS(3)).NE.0.) GG TO 90
TT=REAL(ROOTSIS:)
IF (TJ.LT.O..OR.TT.GT.I.) GU TO 90
PRINT 7O, T,TT,TL,CUEFFS,RCOTS
IF (ABS(TL-TT).LT.ABS(TL-T)) T=TT
contlinue
KUBSUL=1
RETURN
CGNTINUE
KUBSUL=2
kETURN
END

```

\section*{Subroutine CUBIC}

Subroutine CUBIC uses the direct solution for the roots of the cubic equation: \(\mathrm{AX}^{3}+\mathrm{BX}^{2}+\mathrm{CX}+\mathrm{D}=0\). The flow chart and the FORTRAN statements for this subroutine are as follows:

subroutine cubic (A,X)

COMPLEX X
UIMENSIUIV X(3)
DIMENSIUN A(4),XK(3), XI(3),AQ(3)
solve the cubic equation \(f(x)=0\)
\(F(x)=A(1) * x * * 3+A(2) * x * * 2+A(3) * x+A(4)\)
GUADRATUQN \(F(x)=0\)
\(F(x)=A(1) * X * * 2+A 甘(2) * X+A Q(3)\)
\(F(x)=x * * 2+b 2 * x+B 3\)
IPATH=2
\(E X=1.13\).
IF (A(4)) 20,10,20
XR(1)=0.
GO Tu 150
\(A Z=A(1) * A(1)\)
\(Q=(27 . * A 2 * A(4)-9 . * A(1) * A(2) * A(3)+2 . * A(2) * * 3) /(54 . * A 2 * A(1))\)
IF (Q) 40,30.50
\(L=0\).
GO TU 140
\(40 \quad 4=-2\)
IPATH=1
30 \(\quad P=(3 . * A(1) * A(3)-A(2) * A(2)) /(5 . * A 2)\)
\(A R G=P * P * P+Q * Q\)
```

 IF (ARG) 60,70,80
 60 L=-2.*SQRT(-P)*CUS(ATAN(SGRT(-ARG)/Q)/3.)
GU TO 120
70 2=-2.*@**EX
GO TO 120
80 SARG=SGRT(ARG)
IF (P) 90,100,110
Z=-(Q+SARG)*\&EX-(Q-SARG)*\#EX
GU TO 120
100 Z=-(2.*Q)**EX
GU TO 120
110 Z=(SARG-Q) *कEX-(SARG+Q)*\#EX
120 GU TO (130,140). IPATH
130 2=-2
140 XR(1)=(3.*A(1)* L-A(<))/(3.*A(1))
150 AQ(1)=A(1)
AQ(2)=A(2)+XR(1) \#A(1)
AQ(3)=A(3)+XR(1)*AQ(2)
C
B2=AQ(2)/AQ(1)
By=AQ(3)/AQ(1)
XL=-82/2.
DISC=X1*X1-B3
IF (UISC.LT.U.O) 160,170
160 X2=SORT(-DISC)
XR(2)=X1
XK(3)=X1
xI(2)=x<
Gu T0 200
170 IF (ULSC.EQ.O.O) 180.190
180 <2=0.
XR(2)=X1+X2
XR(3)=X1-X2
XI(2)=0.
GU IU 200
x2=SURT(UISC)
xk(2)=x1+x2
XR(3)=x1-x2
XI(2)=0.
x(1)}=0
XI(3)=-XI(2)
x(1)=CMPLX(xk(1),XI(1))
X(2) =CMPLX(XR(2),XI(2))
X(3)=CMPLX(XR(3),X[(3))
RETURN
ENO

```

\section*{Subroutine PLTROT}

Subroutine PLTROT rotates and translates points defining a cross section, generates plot instructions, and prints the points. The flow chart and the FORTRAN statements for this subroutine are as follows:

Subroutine PLTRO


SUBKOUTINE PLTRUI (NPT, A,ALINE, HMIN,VMIN,SCALE, IPRIIN, XP, NAME)
```

 kutates a set of 3u points into a spegified plane
    ```
        and generates a calcgmp plot tape
        UIMENSION A(3,3), ALINE \((52,3)\), RLINE 54,3\()\)
        OIMENS LON XP (3), NAME (2)
        DATA EPS/.00000001/
    ¿
    \(10 \quad N=N+1\)
        \(T 1=A B S(A L I N E(N-1,1)-A L I N E(N, 1))\)
        T2 \(2=A B S(A L I N E(N-1,2)-A L I N E(N, 2))\)
        I 3 = ABS (ALINE \((N-1 ; 3)-A L I N E(N ; 3))\)
        IF (.NOT.(TL.LE.EPS.ANO.TZ.LE.EPS.ANO.T3.LE.EPS)) GO TO 30
        DO \(20 \quad N K=N, N P T\)
        DO 20 N \(3=1,3\)
20 ALINE (NK-1,N3) =ALINE (NK,N3)
        NPT \(=N P T-L\)
        \(\mathrm{N}=\mathrm{N}-1\)

IF (N.INE.NPT) GO TO 10
IF (NPI.LE.II KE TURN
GO TO (70,40,70,40), IPRIN
cont inve
UU \(50 \quad N=1, N P T\)
DU \(50 \quad N 3=1,3\)
RLINE (N,N3) =ALINE(N,N3)/SCALE
WRITE ( 6,060 ( (ALINE (I, J), J \(=1,3\) ), (RLINE(I,J), J=1,3),I=1,NPT)
0 FOKMAI \(/ / / 44 x, 37\) HCOGRUINATES OF POINTS OF INJERSECTION/27X, BHURIGI LNALS2X,6HSCALED//7X, 1HX19X,1HY19X,1H\&19X,1HX19X,1HY19X,1HL/16E20.8 2) 1
cont livue
OO \(100 \mathrm{~N}=1, \mathrm{NPT}\)
RLINE (N, I) \(=0\).
RLINE(N,2)=0.
RLINE \((N, 3)=0\).
DO \(90 \quad[=1,3\)
\(0030 \mathrm{~J}=1,3\)
\(\operatorname{RLLNE}(N, I)=\operatorname{RLINE}(N, I)+A(I, J) * A L I N E(N, J)\)
\(90 \operatorname{KLINE(N,I)=RLINE(N,I)-XP(1)}\)
100 CUNIINUE
RLINE (NPT \(+1,2)=\) HMIN
RLINE (NPT \(+1,3)=V M L N\)
RLINE(NPT \(+2,2\) = SCALE
KLINE (NPT + 2,3)=SCALE
CALL LINE (RLINE (1,2), RLINE(1,3),NPT,1,0,0,0)
GU 10 (150,15U,110,110), IPRIN
110 CONTINUE
DU \(130 \mathrm{~N}=1\), iNPT
DO 120 N3=1,3
120 ALINE(N,N3)=RLINE(N,N3)/SCALE
130 CONTINUE
WRITE \((6,140)(1 \operatorname{KLINE}(I, J), J=1,3),(\operatorname{ALINE}(1, J), J=1,3), I=1, N P T)\)
140 FURMAT ///33x,59HCUUROINATES OF POINTS OF INTERSECTION ROTATEO INT 10 Y 2 PLANE/27X, OHORIGINAL52X, GHSCALEU//7X,1HX19X,1HY19X,1HL19X,1HX 219X,1HY19X,LHZ/(OE20.8))
150 CONTINUE
RETURN
C
C
END OF PLTRUT
C
END

\section*{Function IPCOF}

Function IPCOF finds the coefficients of a plane from three given points. The flow chart and the FORTRAN statements for this function are as follows:


FUNCTICN IPCOF (A, B,C,D,P1,P2,P3)
DIMENSION P1(3),P2(3),P3(3), AMAT(3,3), BMAT(3), IPIVOT(3)

\footnotetext{
ENO
}

\section*{Langley Library Subroutine SIMEQ}

\section*{Language: FORTRAN}

Purpose: SIMEQ solves the matrix equation \(A X=B\) where \(A\) is a square coefficient matrix and \(B\) is a matrix of constant vectors. The solution to a set of simultaneous equations and the determinant may be obtained. If the user wants the determinant only, use DETEV for savings in time and storage.

Use: CALL SIMEQ (A, N, B, M, DETERM, IPIVOT, NMAX, ISCALE)
A A two-dimensional array of the coefficients.
\(\mathrm{N} \quad\) The order of \(\mathrm{A} ; \quad 1 \leqq \mathrm{~N} \leqq\) NMAX.
B A two-dimensional array of the constant vectors B. On return to calling program, \(X\) is stored in B.

M The number of column vectors in \(B\).
DETERM Gives the value of the determinant by the following formula:
\(\operatorname{DET}(\mathrm{A})=\left(10^{100}\right)^{\text {ISCALE }}(\mathrm{DETERM})\)
IPIVOT A one-dimensional array of temporary storage used by the routine.
NMAX The maximum order of \(A\) as stated in dimension statement of calling program.
ISCALE A scale factor computed by subroutine to keep results of computation within the floatingpoint word size of the computer.

Restrictions: Arrays A, B, and IPIVOT are dimensioned with variable dimensions in the subroutine. The maximum size of these arrays must be specified in a DIMENSION statement of the calling program as: A (NMAX, NMAX), B (NMAX, M), IPIVOT (NMAX). The original matrices, A and B, are destroyed. They must be saved by the user if there is further need for them. The determinant is set to zero for a singular matrix.

Method: Jordan's method is used through a succession of elementary transformations: \(l_{\mathrm{n}}, l_{\mathrm{n}}-1, \ldots, l_{1}\) If these transformations are applied to a matrix \(B\) of constant vectors, the result is \(X\) where \(A X=B\). Each transformation is selected so that the largest element is used in the pivotal position.

Accuracy: Total pivotal strategy is used to minimize the rounding errors; however, the accuracy of the final results depends upon how well-conditioned the original matrix is.

Reference: (a) Fox, L.: An Introduction to Numerical Linear Algebra. Oxford Univ. Press, c. 1965.

Storage: 4328 locations.

Subroutine date: August 1, 1968.

The FORTRAN statements for this subroutine are as follows:
```

SUBROUTINE SIME\& (A,N,B,M,DETERM,IPIVOT,NMAX,ISCALE)
C SOLUTION OF SIMULTANEOUS LINEAK EQUATIONS
i *** OUCUMENT UATE OU-01-68 SUBRUUTINE REVISEU 08-OL-68
DIMENSION IPIVEI (N), A(NMAX,NI,B(NMAX,M)
EGUIVALENCE (IRON,JROW),(ICOLUM,JCOLUM),(AMAX,T,SWAP)
C INITIALILATIUN
C
1 0
O
C
C SEARCH FOR PIVOT ELEMENT
AMAX=0.0
UO 70 J=1,N
IF (IPIVOT(J)-1) 30,70,30
OU 6O K=1,N
IF (IPIVUT(K)-1) 40,60,390
IF (ABS(AMAX)-ABS(A(J,K))) 50,60,60
IRUW=\
ICOLUM=K
AMAX=A(J,K)
CGNTINUE
conT INUE
IF (AMAX) 90,80,90
DETERM=0.0
[SCALE=O
GU TO 390
IPIVUT(IGOLUM)=IPIVOT(ICCLUMI+I
INTERCHANGE RUWS TO PUT PIVOT ELEMENT ON DIAGUNAL
IF (IRUW-ICOLUM) 100,140,100
DETERM=-UETERM
OU 110 L=1,N
SWAP=A(IRUW,L)
A(IROW,L)=A(ICULUM,L)
110 A(IGOLUM,L)=SWAP
IF (M) 140,140,120
120 DU 130 L=I,M
SWAP=B(IROW,L)
B(IROW,L)=B(ICOLUM,L)
130 B(ICOLUM,L)=SWAP
140 PIVUTT=A(IGOLUM,I CULUM)
IF (PIVOT) 150,80,150
C
C scalt the ueterminaNt
C
150 PIVUTI=PIVOT
IF (ABS(DETERM)-RI) 1dO,160,160

```
C
C
```

lo0 UETERM=UETEKM/KL
ISCALE=ISCALE+I
IF (ABS(UETERM)-R1) 210,170,170
UETERIG=OETERM/KL
ISCALE=ISCALE+I
GO TO 210
If (ABS(UETERM)-R2) 190,190,210
UETERM=DETERM*R1
ISCALE=ISCALE-I
IF (AOS(OETERM)-R2) 200,200,210
DETERIA=UETERM\#KL
\&SCALE=ISCALE-1
210 If (ABSIPIVUII)-RI) 240,220,220
220 PIVOTI=PIVUTI/RI
ISCALE=ISCALE+I
IF (ABS(PIVUTI)-R1) 270,230,230
PIVUTI=PIVOTI/RI
ISCALE=ISCALE+I
GO TO 270
IF (ABSIPIVUTI)-R21 250,250,270
<50
<00
PIVOTI=PIVOTL*KL
ISCALE=ISCALE-1
IF (AuS(PIVOTI)-R2) 260,260,270
P IVOT L=P IVOTI*RI
1SCALE=ISCALE-1
270 UETERM=UETERM*PIVUTI
C
C ulVIUE PIVOT RUN bY PIVOT ELEMENT
C
<80
<90
IF (1P[vOT(L)-1) 280,240,390
IF IIPIVOTILI-1J 28O,2%O,39O
A(ICLULUM,L)=A(ICCLUM,L)/PIVOT
GUNTINUE
IF (M) 320,320,300
300 DO 310 L=1,M
310 B(ICULUM,L)=B(ICCLUM,L)/PIVGT
C
C REUUCE NUN-PIVUT ROWS
j20 0U 380 LL=L,N
IF (Ll-ICOLUM) 330,38U,330
T=A(Ll,ICULUM)
DU 350 L=1,N
IF (IPIVUT(L)-1) 340,350,3yU
A(LL,L)=A(LL,L)-A(ICOLUM,L)*T
CONTINUE
IF (M) 380,380,300
00 DO 370 L=1,M
370 B(LL,L)=B(LL,L)-B(ICOLUM,L)*T
380 CONTINUE
390 RETURN
END

```

\section*{PROGRAM USE}

\section*{PROGRAM IDENTIFICATION}

This program is for fitting smooth surfaces to the component parts of an aircraft configuration using a three-dimensional modeling technique called Coon's patches (ref. 1). It is identified as program D3400.

\section*{PROGRAM SETUP FOR A COMPILE AND EXECUTE}

This section describes the input data requirements, limitations, and the punched card formats. The program will end normally if there are no input cards at the beginning of a READ sequence.

The input data cards are assembled with the program decks in the order illustrated in sketch (d).


Sketch (d)

\section*{DESCRIPTION OF INPUT DATA CARDS}

\section*{Configuration}

The form for the airplane configuration input has become known throughout the aircraft industry as the Harris Wave Drag geometry input and is identical to that described in reference 3 .

Since the airplane has to be symmetrical about the XZ-plane, only half of the airplane need be described to the computer. The convention used in presenting the input data is that the half of the airplane on the positive \(Y\)-side of the XZ -plane is presented. The program then uses this information to construct the complete airplane if required. The number of input cards depends on the number of components used to describe the configuration and the amount of detail used to describe each component. It is not possible to change only part of a configuration in a succeeding case. The complete configuration must be input each time. The method of input is by FORTRAN "READ" statements.

Card 1 - Identification. - Card 1 contains any desired identifying information in columns 1 to 80.

Card 2 - Control integers.- Card 2 contains 24 integers, each punched rightjustified in a 3 -column field. Columns 73 to 80 may be used in any desired manner. An identification of the card columns, the name used by the source program, and a description of each integer are given in the following table:
\begin{tabular}{|c|c|c|}
\hline Columns & \begin{tabular}{l}
FORTRAN \\
name
\end{tabular} & Description \\
\hline 01 to 03 & J0 & \begin{tabular}{l}
If \(\mathrm{J} 0=0\), no reference area \\
If \(\mathrm{J} 0=1\), reference area to be read
\end{tabular} \\
\hline 04 to 06 & J1 & \begin{tabular}{l}
If \(\mathrm{J} 1=0\), no wing data \\
If \(\mathrm{J} 1=1\), cambered wing data to be read \\
If \(\mathrm{J} 1=-1\), uncambered wing data to be read
\end{tabular} \\
\hline 07 to 09 & J2 & \begin{tabular}{l}
If \(\mathrm{J} 2=0\), no fuselage data \\
If \(\mathrm{J} 2=1\), data for arbitrarily shaped fuselage to be read \\
If \(\mathrm{J} 2=-1\), data for circular fuselage to be read (with \(\mathrm{J} 6=0\), fuselage will be cambered; with \(\mathrm{J} 6=-1\), fuselage will be symmetrical with XY-plane; with \(\mathrm{J} 6=1\), entire configuration will be symmetrical with XY-plane)
\end{tabular} \\
\hline
\end{tabular}



1 to 7
8 to 14
15 to 21
22 to 28
73 to 80

Description
x-ordinate of airfoil leading edge
y -ordinate of airfoil leading edge
z-ordinate of airfoil leading edge
Airfoil streamwise chord length
Card identification, WAFORGj where j denotes the particular airfoil; for example, WAFORG1 denotes first (most inboard) airfoil

If a cambered wing has been specified, the next set of wing data cards is the mean camber line (TZORD) cards. The first card contains up to \(10 \Delta z\) values, referenced to the z -ordinate of the airfoil leading edge, at each of the specified percents of chord for the first airfoil. If more than 10 values are to be specified for each airfoil (there will be NWAFOR values), the remaining values are continued on successive cards. The remaining airfoils are described in the same manner, data for each airfoil starting on a new card, and the cards arranged in the order which begins with the most inboard airfoil and proceeds to the outboard. Each card may be identified in columns 73 to 80 as TZORDj, where \(j\) denotes the particular airfoil.

Next are the wing airfoil ordinate (WAFORD) cards. The first card contains up to 10 half-thickness ordinates of the first airfoil expressed as percent chord. If more than 10 ordinates are to be specified for each airfoil (there will be NWAFOR values), the remaining ordinates are continued on successive cards. The remaining airfoils are each described in the same manner, and the cards are arranged in the order which begins with the most inboard airfoil and proceeds to the outboard. Each card may be identified in columns 73 to 80 as WAFORDj, where \(j\) denotes the particular airfoil.

Fuselage data cards: The first card (or cards) specifies the x-values of the fuselage stations of the first segment. There will be NFORX(1) values and the cards may be identified in columns 73 to 80 by the symbol XFUSj where \(j\) denotes the number of the last fuselage station given on that card.

If the fuselage is circular and cambered, the next set of cards specifies the \(z\)-locations of the center of the circular sections. There will be NFORX(1) values and the cards may be identified in columns 73 to 80 by the symbol ZFUSj where \(j\) denotes the number of the last fuselage station given on that card.

If the fuselage is circular, the next card (or cards) gives the fuselage crosssectional areas, and may be identified in columns 73 to 80 by the symbol FUSARDj where \(j\) denotes the number of the last fuselage station given on that card. If the fuselage is of
arbitrary shape, the \(y\)-ordinates for a half-section are given (NRADX(1) values) and identified in columns 73 to 80 as Yi where \(i\) is the station number. Following these are the corresponding z -ordinates (NRADX(1) values) for the half-section identified in columns 73 to 80 as Zi where i is the station number. Each station will have a set of \(Y\) and \(Z\) cards, and the convention of ordering the ordinates from bottom to top is observed.

For each fuselage segment a new set of cards as described must be provided. The segment descriptions should be given in order of increasing values of \(x\).

Pod data cards: The first pod or nacelle data card specifies the location of the origin of the first pod. The information is arranged on the card as follows:
\begin{tabular}{ll}
\(\frac{1}{\text { Columns }}\) & \multicolumn{1}{c}{ Description } \\
1 to 7 & x-ordinate of origin of first pod \\
8 to 14 & y-ordinate of origin of first pod \\
15 to 21 & z-ordinate of origin of first pod \\
73 to 80 & Card identification, PODORGj where \(j\) denotes pod number
\end{tabular}

The next pod input data card (or cards) contains the \(x\)-ordinates, referenced to the pod origin, at which the pod radii (there will be NPODOR of them) are to be specified. The first \(x\)-value must be zero, and the last \(x\)-value is the length of the pod. These cards may be identified in columns 73 to 80 by the symbol XPODj where \(j\) denotes the pod number. For example, XPOD1 represents the first pod.

The next pod input data cards give the pod radii corresponding to the pod stations that have been specified. These cards may be identified in columns 73 to 80 as PODRj where j denotes the pod number.

For each additional pod, new PODORG, XPOD, and PODR cards must be provided. Only single pods are described but the program assumes that if the y-ordinate is not zero an exact duplicate is located symmetrically with respect to the XZ -plane; a y-ordinate of zero implies a single pod.

Fin data cards: Exactly three data input cards are used to describe a fin. The information presented on the first fin data input card is as follows:
\begin{tabular}{cl}
\(\frac{\text { Columns }}{1 \text { to } 7}\) & \\
8 to 14 & x-ordinate of lower airfoil leading edge \\
15 to 21 & y-ordinate of lower airfoil leading edge \\
& z-ordinate of lower airfoil leading edge
\end{tabular}

22 to 28
29 to 35
36 to 42
43 to 49
50 to 56
73 to 80

Chord length of lower airfoil
x -ordinate of upper airfoil leading edge
y -ordinate of upper airfoil leading edge
\(z\)-ordinate of upper airfoil leading edge
Chord length of upper airfoil
Card identification, FINORGj where j denotes fin number

The second fin data input card contains up to 10 locations in percent chord (exactly NFINOR of them) at which the fin airfoil ordinates are to be specified. The card may be identified in columns 73 to 80 as XFINj where \(j\) denotes the fin number.

The third fin data input card contains the fin airfoil half-thickness ordinates expressed in percent chord. Since the fin airfoil must be symmetrical, only the ordinates on the positive \(y\)-side of the fin chord plane are specified. The card identification, FINORDj, may be given in columns 73 to 80 , where j denotes the fin number.

For each fin, new FINORG, XFIN, and FINORD cards must be provided.
Only single fins are described but the program assumes that if the \(y\)-ordinate is not zero an exact duplicate is located symmetrically with respect to the XZ-plane; a \(y\)-ordinate of zero implies a single fin.

Canard data cards: If the canard (or horizontal tail) airfoil is symmetrical, exactly three cards are used to describe a canard, and the input is given in the same manner as for the fin. If, however, the canard airfoil is not symmetrical (indicated by a negative value of NCANOR), a fourth canard data input card will be required to give the lower ordinates. The information presented on the first canard data input card is as follows:
\begin{tabular}{|c|c|}
\hline Columns & Description \\
\hline 1 to 7 & x -ordinate of inboard airfoil leading edge \\
\hline 8 to 14 & y -ordinate of inboard airfoil leading edge \\
\hline 15 to 21 & z-ordinate of inboard airfoil leading edge \\
\hline 22 to 28 & Chord length of inboard airfoil \\
\hline 29 to 35 & x -ordinate of outboard airfoil leading edge \\
\hline 36 to 42 & y -ordinate of outboard airfoil leading edge \\
\hline 43 to 49 & z-ordinate of outboard airfoil leading edge \\
\hline
\end{tabular}

50 to 56
73 to 80

Chord length of outboard airfoil
Card identification, CANORGj where \(j\) denotes the canard number

The second canard data input card contains up to 10 locations in percent chord (exactly NCANOR of them) at which the canard airfoil ordinates are to be specified. The card may be identified in columns 73 to 80 as XCANj where \(j\) denotes the canard number.

The third canard data input card contains the upper half-thickness ordinates, expressed in percent chord, of the canard airfoil. This card may be identified in columns 73 to 80 as CANORDj where \(j\) denotes the canard number. If the canard airfoil is not symmetrical, the lower ordinates are presented on a second CANORD card. The program expects both upper and lower ordinates to be punched as positive values in percent chord.

For another canard, new CANORG, XCAN, and CANORD cards must be provided.

\section*{Alternate Surface-Description Input}

The surface-description method used in this report is not restricted to any particular shape. An airplane configuration was chosen for the current application because of its complexity and an anticipated need. The program input is best thought of as a set of points describing a surface or surfaces.

To use the program for a different input form, the user may substitute another overlay \((1,0)\) for preprocessing input data in the proper form to be used by the program. If desired to print this input data, provisions to do so should be provided for in overlay \((1,0)\).

Overlay ( 1,0 ) must:

\section*{1. Store in labeled COMMON}

COMMON/PATPLT/XMIN, XMAX, YMIN, YMAX, ZMIN, ZMAX, NOBJ
The minimums and maximums define a box in which the shape to be plotted orthographically will fit. These values are not used for the cross-section plots, but space must be allowed so that NOBJ will occupy the correct position.

NOBJ is the number of objects (or components) each made up of a number of surfaces, all of which could form a body.
2. Write binary tape 10 in the following format. FORTRAN names from the given program are used for illustration.
\(\mathrm{ABC}(8)\)
NSURF Number of surfaces in object

M1
M2(2)
M3
M4
(For NSURF \(_{1}\) )
NCOL Number of columns of grid points, \(\leqq 31\)
NROW
N3
N4
N5
((ALINE(N,N3), \(\mathrm{N}=1, \mathrm{NCOL})\), N3=1,3)
((ALINE( \(\mathrm{N}, \mathrm{N} 3), \mathrm{N}=1\), NROW), \(\quad\) NCOL lines of NROW points \((\mathrm{x}, \mathrm{y}, \mathrm{z})\) \(\mathrm{N} 3=1,3\) )
(Repeat records 3, 4, and 5 for the number of surfaces given in record 2)
(Repeat record 2 for each NOBJ as given in labeled COMMON PATPLT and repeat records 3,4 , and 5 as required.)
(Although the dummy variables are not used at the present time, they must be written on tape.)

Great care must be taken to describe the grid of input points in exactly the manner specified so that in a collection of surfaces the outward normal vectors will be consistent. For the current application, the rectangular grid of values (not necessarily rectangular in shape) does not require any specific corner as the starting place. However, points must
be given as lines in a rowwise direction then as lines in a columnwise direction as illustrated in sketch (e)


Sketch (e)
3. If it is desired to increase the number of points in the rows and/or columns and it is not feasible to break a surface down into more than one surface, increase all dimensions of 31 to the maximum of NCOL or NROW in:
(a) Overlay \((1,0)\), program START
(b) Overlay ( 2,0 ), subroutine PACH. Also in subroutine PACH, change the dimensions of the SLOPE array to SLOFE ( \(\mathrm{NCOL}_{\text {max }}, \mathrm{NROW}_{\text {max }},{ }^{3}\) ) and change MAXN in the data statement to the largest of \(\mathrm{NCOL}_{\text {max }}\) or \(\mathrm{NROW}_{\text {max }}\).

\section*{Option Card}

The option card indicates to the program the next kind of input to be read.

Column

4

FORTRAN name

ITYPE

Description
If ITYPE \(=1\), Read orthographic-projection plot card

If ITYPE \(=2\), Read cross-section plot card
If \(\mathrm{I}=\mathrm{PE}=3\), Read another set of geometry cards

\section*{Plot Cards}

A single card contains all the necessary information for one plot. The available options and the necessary input for each are described in the following sections.

Orthographic projections (ITYPE =1).- For one orthographic projection, the card should be set up as follows:
\begin{tabular}{|c|c|c|}
\hline Columns & FORTRAN
name & Description \\
\hline 1 & HORZ & "X', "Y', or "Z" for horizontal axis \\
\hline 3 & VERT & "X", "Y", or "Z' for vertical axis \\
\hline 5 to 7 & TEST1 & Word "OUT" for deletion of hidden lines; otherwise, leave blank \\
\hline 8 to 12 & PHI & Roll angle, degrees \\
\hline 13 to 17 & THETA & Pitch angle, degrees \\
\hline 18 to 22 & PSI & Yaw angle, degrees \\
\hline 48 to 52 & PLOTSZ & Plot frame size (scale factor is computed by using PLOTSZ and maximum dimension of configuration, i.e., the maximum dimension, usually the body length, will be scaled to exactly PLOTSZ) \\
\hline 53 to 55 & TYPE & Word ' ORT "' \\
\hline 56 to 58 & NOU & Number of lines, originating on the \(w=0.0\) boundary, computed within each patch for enriching the surface grid in the w-direction, NOU \(\leqq 50\) \\
\hline 59 to 61 & NOW & Number of lines, originating on the \(u=0.0\) boundary, computed within each patch for enriching the surface grid in the u-direction, NOW \(\leqq 50\) \\
\hline 64 & ISIDE & \begin{tabular}{l}
If ISIDE \(=0\) or 1 , plot described body \\
If \(\operatorname{ISIDE}=2\), plot described body and mirror image
\end{tabular} \\
\hline 72 & KODE & \begin{tabular}{l}
If \(\mathrm{KODE}=0\), continue to read plot cards \\
If KODE \(\neq 0\), return and read option card after this plot
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{ccc} 
Columns & \begin{tabular}{c} 
FORTRAN \\
name
\end{tabular} & \begin{tabular}{c} 
Description \\
TEST1 7
\end{tabular}
\end{tabular} \begin{tabular}{c} 
Word "OUT" for deletion of hidden lines; other - \\
wise leave blank
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline Columns & FORTRAN
name & Description \\
\hline 19 to 24 & PPL2(1) & \(\mathrm{x}_{2}\) \\
\hline 25 to 30 & PPL2(2) & \(\mathrm{y}_{2}\) \\
\hline 31 to 36 & PPL2(3) & \(\mathrm{z}_{2}\) \\
\hline 37 to 42 & PPL3(1) & \(\mathrm{x}_{3}\) \\
\hline 43 to 48 & PPL3(2) & \(\mathrm{y}_{3}\) \\
\hline 49 to 54 & PPL3(3) & \(\mathrm{z}_{3}\) \\
\hline 55 to 60 & PLOTSZ & Scale factor, inches/unit \\
\hline 61 to 63 & HPAGE & Horizontal paper origin, inches (a value of 0.0 will overlay the plots) \\
\hline 64 to 66 & VPAGE & Vertical paper origin will be half of VPAGE, inches \\
\hline 67 to 69 & INP & Word "PNT" \\
\hline 70 to 72 & NOU & Number of u-values between 0.0 and 1.0 , together with the \(u=0.0\) and \(u=1.0\) values, where interpolated values of \(w\) are to be computed, NOU \(\leqq 50\) \\
\hline 73 to 75 & NOW & Number of w-values between 0.0 and 1.0 , together with the \(w=0.0\) and \(w=1.0\) values, where interpolated values of \(u\) are to be computed, NOW \(\leqq 50\) \\
\hline 76 to 77 & *ICUT & Number of additional cross-section plots desired \\
\hline \multicolumn{3}{|c|}{*For ICUT \(\neq 0\), a second input card is required:} \\
\hline Columns & FORTRAN name & Description \\
\hline 1 to 6 & DX & \(\Delta \mathrm{X}\) for \(\mathrm{x}_{1}, \mathrm{x}_{2}\), and \(\mathrm{x}_{3}\) \\
\hline 7 to 12 & DY & \(\Delta Y\) for \(y_{1}, y_{2}\), and \(y_{3}\) \\
\hline 13 to 18 & DZ & \(\Delta \mathrm{Z}\) for \(\mathrm{z}_{1}, \mathrm{z}_{2}\), and \(\mathrm{z}_{3}\) \\
\hline \multirow[t]{2}{*}{21} & IH & If \(\mathrm{IH}=0\), plots will be overlaid with HPAGE applied only after last plot \\
\hline & & If \(\mathrm{IH} \neq 0\), normal HPAGE spacing between each plot \\
\hline
\end{tabular}


Cross-section plots where the method of input for defining the plane is by specifying a Mach number to define a Mach angle, an angle to define the orientation of the Mach angle, and the plane intercept on the X-axis (ITYPE = 2). - For cross-section plots where the method of input for defining the plane is by specifying a Mach number to define a Mach angle, an angle to define the orientation of the Mach angle, and the plane intercept on the X-axis (ITYPE \(=2\) ), the input card should be set up as follows:
\begin{tabular}{|c|c|c|}
\hline Columns & FORTRAN name & Description \\
\hline 1 to 6 & PPL1(1) & \(\mathrm{X}_{0}\) \\
\hline 7 to 12 & PPL1(2) & \(\mathrm{Y}_{0}\) \\
\hline 13 to 18 & PPL1(3) & \(\mathrm{Z}_{0}\) \\
\hline 19 to 24 & PPL2(1) & X-intercept \\
\hline 25 to 30 & PPL2(2) & Roll angle of plane, degrees \\
\hline 31 to 36 & PPL2(3) & Mach number, >1.0 \\
\hline 55 to 60 & PLOTSZ & Scale factor, inches/unit \\
\hline 61 to 63 & HPAGE & Horizontal paper origin, inches (a value of 0.0 will overlay the plots) \\
\hline 64 to 66 & VPAGE & Vertical paper origin will be half of VPAGE, inches \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Columns & FORTRAN name & Description \\
\hline 67 to 69 & INP & Word "ANG" \\
\hline 70 to 72 & NOU & Number of \(u\)-values between 0.0 and 1.0 , together with the \(u=0.0\) and \(u=1.0\) values, where interpolated values of \(w\) are to be computed, NOU \(\leqq 50\) \\
\hline 73 to 75 & NOW & Number of \(w\)-values between 0.0 and 1.0 , together with the \(w=0.0\) and \(w=1.0\) values, where interpolated values of \(u\) are to be computed, NOW \(\leqq 50\) \\
\hline 76 to 77 & * \({ }^{\text {ICUT }}\) & Number of additional cross-section plots desired \\
\hline 78 & ISIDE & \begin{tabular}{l}
If ISIDE \(=0\) or 1 , examine given body \\
If \(\operatorname{ISIDE}=2\), examine given body and its mirror image
\end{tabular} \\
\hline 79 & IPRIN & \begin{tabular}{l}
If IPRIN \(=0\) or 1 , do not print intersection points \\
If IPRIN \(=2\), print original and original rotated points of intersection \\
If IPRIN \(=3\), print scaled and scaled rotated points of intersection \\
If IPRIN \(=4\), print points of intersection: original and original rotated, scaled and scaled rotated
\end{tabular} \\
\hline 80 & KODE & \begin{tabular}{l}
If \(\mathrm{KODE}=0\), continue to read plot cards \\
If KODE \(\neq 0\), return and read option card after this plot
\end{tabular} \\
\hline
\end{tabular}
*For ICUT \(\neq 0\), a second input card is required:
\(\left.\begin{array}{llll}\text { Columns } & & \begin{array}{l}\text { FORTRAN } \\ \text { name }\end{array} & \\ \hline 1 \text { to } 6 & \text { DX } & & \Delta \text { for X-intercept } \\ 7 \text { to } 12 & \text { DY } & & \Delta \text { for roll angle } \\ 13 \text { to } 18 & \text { DZ } & & \Delta \text { for Mach number } \\ 21 & \text { IH } & & \text { If } \mathrm{IH}=0, \text { plots will be overlaid with HPAGE } \\ \text { applied only after last plot }\end{array}\right]\).

\section*{DESCRIPTION OF PROGRAM OUTPUT}

The program output includes the input data printout, the printout of points of intersection for cross-section plots, and a plot vector file to be postprocessed for off-line machine plots.

\section*{Input Data Printout}

The card images of all the input data - configuration description and plot cards are printed. Cards for a sample case input deck are listed in table I.

\section*{Cross-Section Plot Printout}

The points of intersection of the cutting plane and the given body may be printed as specified on the cross-section plot card. The actual points in the original coordinate system, the actual points in the scaled coordinate system, the rotated and projected points in the original coordinate system, and the rotated and projected points in the scaled coordinate system may be chosen for printing or printing of the intersection points may be omitted entirely. Since the plane of intersection is always transformed into the YZ -plane, the rotated x -coordinates should be all zeros. The equation of the plane is also printed.

\section*{Plot Vector File}

A plot vector file is generated during execution of both plot options - threedimensional orthographic or cross sectional. The plot vector file can be postprocessed on the same computer run or at a later time for the desired plotting device.

\section*{MACHINE SETUP}

This program was written in FORTRAN Version IV for Control Data series 6000 computer systems with the Scope 3 operating system and library tape as modified for the Langley computer facility. Tape unit 5 is used for input, unit 6 for output, and units 7 and 10 for intermediate storage. Approximately 60000 octal locations of core storage are required and the processing of information for one plot is less than 1 minute of computer time.

\section*{OPERATIONAL DETAILS}

The graphic output system at Langley Research Center is in two parts: (1) a device independent graphic language which produces a plot vector file containing only plotting
commands, and (2) a set of postprocessors which format the output of the graphic language to a particular graphic device or devices.

Subroutines PSEUDO, NFRAME, NOTATE, and LINE are the basic subroutines used from the graphic software package. Subroutine PSEUDO causes the necessary parameters and linkage to be set up to output a device independent plot vector file for postprocessing for a particular plotting device. Subroutine NFRAME provides a means of executing a frame advance movement. Alphanumeric information for annotation and labeling is drawn by subroutine NOTATE. Subroutine LINE draws a continuous line through a set of successive data points where the minimum values and scale factors are stored at the end of the data arrays.

\section*{CONCLUDING REMARKS}

A computer program has been written to define mathematically an arbitrary curved surface in surface-patch-equation form. Although the program is oriented toward aircraft configurations, it can be used to model mathematically any three-dimensional object by using an alternate data input format. Parametric cubic spline curves are fitted to the input data points to define the boundary-curve slopes. These slopes and the corner points are the necessary components of the surface patch equations. Program options include the application of three-dimensional rotation equations directly to the patch equations for plotting the surface at any desired viewing angle and the solution of a number of patches and a plane for generating cross-section or contour plots of an object or surface. Output from this program has been used to drive Calcomp, Gerber, and Varian plotters. The program has also been used for on-line display on a cathode-ray-tube device.

Langley Research Center,
National Aeronautics and Space Administration, Hampton, Va., February 28, 1975.

\section*{APPENDIX A}

\section*{PARAMETRIC CUBIC SPLINE SPACE CURVES}

The derivatives in \(u\) and \(w\) at the corners of the surface patches are required for the surface equation. The grid points which determine the boundary curves are fitted in the \(w\)-direction and then in the \(u\)-direction for computation of the derivatives. A parametric cubic spline curve fit technique by Timothy E. Johnson of Massachusetts Institute of Technology is used.

Parametric cubics are the lowest order polynomial with the property of being able to twist through space. The spline curve exhibits the usual meaning of smoothness by minimizing curvature. Parametric curves are not sensitive to infinite slopes.

For purposes of completeness a brief description of the method follows as well as an explanation of the calling sequence for Subroutine SPFIT which utilizes this method.

A series of adjacent polynomial segments between each pair of given points is used to represent the curve.

The component cubic parametric equations are
\[
\begin{aligned}
& X(t)=A_{x} t^{3}+B_{x} t^{2}+C_{x} t+D_{x} \\
& Y(t)=A_{y} t^{3}+B_{y} t^{2}+C_{y} t+D_{y} \\
& Z(t)=A_{z} t^{3}+B_{z} t^{2}+C_{z} t+D_{z}
\end{aligned}
\]
where all operations are performed once on each component equation.
The component equations will be represented by
\[
\begin{equation*}
P(t)=A t^{3}+B t^{2}+C t+D \tag{1}
\end{equation*}
\]

The tangent parametric slopes at each point define the coefficients of the cubic segments and must be determined so that the tangent slopes give a smooth curve.

The given points \(P_{1}, P_{2}, \ldots, P_{n}\) have the corresponding tangent slopes \(\mathrm{P}_{1}^{\prime}, \mathrm{P}_{2}^{\prime}, \ldots, \mathrm{P}_{\mathrm{n}}^{\prime}\) and the independent variable t varies so that \(0 \leqq \mathrm{t} \leqq \mathrm{L}\) where L is the chord length between the given points. (See sketch (f).)

\section*{APPENDIX A}


Sketch (f)
The boundary conditions for one cubic segment \(P(t)\) can be written as
\[
\begin{aligned}
& P(0)=P_{1} \\
& P\left(L_{1}\right)=P_{2} \\
& \frac{d P(t)}{d t_{t=0}}=P_{1}^{\prime} \\
& \frac{d P(t)}{d t_{t}=L_{1}}=P_{2}^{\prime}
\end{aligned}
\]

The coefficients of equation (1) can be written in terms of the end points and parametric slopes for a given segment
\[
\begin{aligned}
& P(0)=D_{1}=P_{1} \\
& \frac{d P(t)}{d t_{t=0}}=C_{1}=P_{1}^{\prime}
\end{aligned}
\]
and
\[
\begin{aligned}
& P\left(L_{1}\right)=\mathrm{AL}_{1}^{3}+\mathrm{BL}_{1}^{2}+\mathrm{P}_{1}^{\prime} \mathrm{L}_{1}+\mathrm{P}_{1}=\mathrm{P}_{2} \\
& \frac{\mathrm{dP}(\mathrm{t})}{\mathrm{dt}_{\mathrm{t}=\mathrm{L}_{1}}}=3 \mathrm{AL}_{1}^{2}+2 \mathrm{BL}_{1}+\mathrm{P}_{1}^{\prime}=\mathrm{P}_{2}^{\prime}
\end{aligned}
\]

Solving the last two equations yields

\section*{APPENDIX A}
\[
\begin{aligned}
& A_{1}=\frac{2\left(P_{1}-P_{2}\right)}{L_{1} 3}+\frac{P_{1}^{\prime}}{L_{1} 2}+\frac{P_{2}^{\prime}}{L_{1}^{2}} \\
& B_{1}=\frac{3\left(P_{2}-P_{1}\right)}{L_{1}{ }^{2}}-\frac{2 P_{1}^{\prime}}{L_{1}}-\frac{P_{2}^{\prime}}{L_{1}}
\end{aligned}
\]

The coefficients for each adjoining segment are found in the same manner.
The adjacent cubic segments can be related by setting the second derivatives equal at the common points.

For equal second derivatives at \(\mathrm{P}_{2}\)
\[
\begin{align*}
& \frac{d^{2} P(t)}{d t_{t=L_{1}}^{2}}=\frac{d^{2} P(t)}{d t_{t=0}^{2}} \\
& 6 A_{1} L_{1}+2 B_{1}=2 B_{2} \tag{2}
\end{align*}
\]

Substituting the expressions for \(A\) and \(B\) into equation (2) and collecting terms give in terms of the unknown slopes:
\[
\mathrm{L}_{2} \mathrm{P}_{1}^{\prime}+2\left(\mathrm{~L}_{2}+\mathrm{L}_{1}\right) \mathrm{P}_{2}^{\prime}+\mathrm{L}_{1} \mathrm{P}_{3}^{\prime}=\frac{3}{\mathrm{~L}_{1} \mathrm{~L}_{2}}\left[\mathrm{~L}_{1}^{2}\left(\mathrm{P}_{3}-\mathrm{P}_{2}\right)+\mathrm{L}_{2}^{2}\left(\mathrm{P}_{2}-\mathrm{P}_{1}\right)\right]
\]

This equation may be written over all segments in matrix notation:


\section*{APPENDIX A}

Since there are two more unknowns than there are equations, the second derivatives at \(P_{1}\) and \(P_{N}\) are made equal to zero. The Thomas Algorithm, which is equivalent to Gaussian Elimination without pivoting, is used for solving the tridiagonal matrix. The cubic coefficients are normalized so that the parametric space for each curve segment varies from 0 to 1 :
\[
\begin{aligned}
& \mathrm{A}^{\prime}=A L^{3} \\
& \mathrm{~B}^{\prime}=\mathrm{BL}^{2} \\
& \mathrm{C}^{\prime}=\mathrm{CL}
\end{aligned}
\]

\section*{APPENDIX B}

\section*{BICUBIC SURFACE PATCHES}

This appendix is a brief description of the surface patch method used in program D3400.

The \(\mathrm{x}-, \mathrm{y}-\), and z -coordinates of surface points are functions of two variables \(u\) and \(w\) :
\[
\begin{aligned}
& X=f(u, w) \\
& Y=g(u, w) \\
& Z=h(u, w) \\
& V=(X Y Z)
\end{aligned}
\]

The vector \(V(u, w)\) is a function of the two variables, \(u\) and \(w\), which take on only the values between 0.0 and 1.0.

The method builds a surface by joining surface "patches." A surface patch can be thought of as a portion of a surface bounded by four space curves: \((0, w),(1, w),(u, 0)\), and ( \(u, 1\) ).

The surface patch equation used is
\[
\mathrm{V}(\mathrm{u}, \mathrm{w})=\mathrm{UM} \overline{\mathrm{~B}}^{\mathrm{t}} \mathrm{w}^{\mathrm{t}}
\]
where
\[
\begin{aligned}
& \mathrm{U}=\left[\begin{array}{llll}
\mathrm{u}^{3} & \mathrm{u}^{2} & \mathrm{u} & 1
\end{array}\right] \\
& \mathrm{W}=\left[\begin{array}{llll}
\mathrm{w}^{3} & \mathrm{w}^{2} & \mathrm{w} & 1
\end{array}\right] \\
& \overline{\mathrm{B}}=\left[\begin{array}{llll}
\mathrm{V}(0,0) & \mathrm{V}(0,1) & \mathrm{V}_{\mathrm{w}}(0,0) & \mathrm{V}_{\mathrm{w}}(0,1) \\
\mathrm{V}(1,0) & \mathrm{V}(1,1) & \mathrm{V}_{\mathrm{w}}(1,0) & \mathrm{V}_{\mathrm{w}}(1,1) \\
\mathrm{V}_{\mathrm{u}}(0,0) & \mathrm{V}_{\mathrm{u}}(0,1) & \mathrm{V}_{\mathrm{uw}}(0,0) & \mathrm{V}_{\mathrm{uw}}(0,1) \\
\mathrm{V}_{\mathrm{u}}(1,0) & \mathrm{V}_{\mathrm{u}}(1,1) & \mathrm{V}_{\mathrm{uw}}(1,0) & \mathrm{V}_{\mathrm{uw}}(1,1)
\end{array}\right]
\end{aligned}
\]

\section*{APPENDIX B}

This \(4 \times 4\) matrix is called a boundary matrix as it contains only geometric properties from the boundary curves: corner coordinates, corner slopes, and corner twists. (The corner twists are all made equal to zero in the present application.) These quantities are constants and grouped systematically in the matrix.

The blending function matrix \(M\) provides a blending effect from one surface patch into an adjoining patch
\[
M=\left[\begin{array}{rrrr}
2 & -2 & 1 & 1 \\
-3 & 3 & -2 & -1 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]
\]

Since the matrix product MBM \(^{\mathrm{t}}\) is constant, the pre- and post-multiplications are performed and the equation stored as \(S=M B M^{t}\) for further computer processing. It is a simple matter, then, for writing an expression for \(u\) with \(w\) held fixed or \(u\) held fixed and \(w\) varying.

For a detailed development of the surface patch equation, see reference 1. Reference 2 presents the bicubic form of the surface patch equation as used in this report.

\section*{APPENDIX C}

\section*{DESCRIPTION OF FILE AND METHOD OF STORAGE}

\section*{FOR SURFACE PATCH EQUATIONS}

Program D3400 computes and stores by columns of the surface grid the patch matrix equations using the previously stored lines of grid points. A disk file is used for temporary storage of the elements of all the patch matrix equations.

The elements and certain other information are written in binary on disk unit 7 in the following format. FORTRAN names from the given program are used for illustration.
\begin{tabular}{|c|c|c|}
\hline Record & Name & Purpose \\
\hline 1 & ABC (8) & Identification \\
\hline \multirow[t]{7}{*}{2} & XMIN & Minimum X of the entire body \\
\hline & XMAX & Maximum X of the entire body \\
\hline & YMIN & Minimum \(Y\) of the entire body \\
\hline & YMAX & Maximum \(Y\) of the entire body \\
\hline & ZMIN & Minimum Z of the entire body \\
\hline & ZMAX & Maximum Z of the entire body \\
\hline & NOBJ & Total number of objects (or components) to form the complete body \\
\hline \multirow[t]{6}{*}{\([3\)} & (for \(\mathrm{NOBJ}_{1}\) ) & \\
\hline & NSURF & Number of surfaces in object \\
\hline & M1 & Not used \\
\hline & M2(2) & Name of object (for printing only) \\
\hline & M3 & Not used \\
\hline & M4 & Not used \\
\hline \multirow[t]{6}{*}{4} & (for \(\mathrm{NSURF}_{1}\) ) & \\
\hline & N1 & Number of rowwise patches (NCOL-1) \\
\hline & N2 & Number of columnwise patches (NROW-1) \\
\hline & N3 & Not used \\
\hline & N4 & Not used \\
\hline & N5 & Not used \\
\hline 5 & PATCH ( \(4,4,3\) ) & 48 elements of a patch equation are written by columns as one record \\
\hline
\end{tabular}
(Record 5 is repeated for \(\mathrm{N} 1 \times \mathrm{N} 2\) patches taken by columns over the surface grid)
(Records 4, 5, and so forth are repeated for each NSURF from record 3)
(Repeat record 3 for each NOBJ as given in record 2 and repeat records 4, 5 , and so forth as required)

\section*{APPENDIX D}

\section*{ORTHOGRAPHIC PROJECTIONS USING}

SURFACE PATCH EQUATIONS

The orthographic projections illustrated in this report are created by rotating each patch element to the desired viewing angle, transforming the rotated patch into a coordinate system in the plane of the paper, and computing actual coordinates from the patch equation. The body coordinate system is coincident with the fixed system in the plane of the paper when all the rotation angles are zero; for example, the configuration X -axis and Y -axis would coincide with the paper for plots in the \(\mathrm{X}^{\prime} \mathrm{Y}^{\prime}\) paper plane.

The rotations of the body and its coordinate system to give a desired viewing angle are specified by angles of yaw, pitch, and roll ( \(\psi, \theta\), and \(\phi\) ), shown in sketch (g).


Sketch (g)
The equations used to transform the patch equations defining the body with a set of rotation equations ( \(\psi, \theta\), and \(\phi\) ) into the desired paper plane are
\[
\begin{aligned}
\mathrm{S}_{\mathrm{x}}^{\prime}= & \mathrm{S}_{\mathrm{x}}(\cos \theta \cos \psi)+\mathrm{S}_{\mathrm{y}}(-\sin \psi \cos \phi+\sin \theta \cos \psi \sin \phi) \\
& +\mathrm{S}_{\mathrm{z}}(\sin \psi \sin \phi+\sin \theta \cos \psi \cos \phi) \\
\mathrm{S}_{\mathrm{y}}^{\prime}= & \mathrm{S}_{\mathrm{x}}(\cos \theta \sin \psi)+\mathrm{S}_{\mathrm{y}}(\cos \psi \cos \phi+\sin \theta \sin \psi \sin \phi) \\
& +\mathrm{S}_{\mathrm{z}}(-\cos \psi \sin \phi+\sin \theta \sin \psi \cos \phi)
\end{aligned}
\]

\section*{APPENDIX D}
\[
S_{z}^{\prime}=S_{x}(-\sin \theta)+S_{y}(\cos \theta \sin \phi)+S_{z}(\cos \theta \cos \phi)
\]

Each element of the patch equation is rotated to the desired viewing angle and then transformed into a coordinate system in the plane of the paper. Only two of the preceding equations, determined by the desired paper plane, are used and result in a two-component patch equation.

The body surface plots may be enriched to any desired degree. By assigning \(u\) a value between 0.0 and 1.0 , we have two cubic equations in \(w\) which may be easily solved by varying \(w\) from 0.0 to 1.0 for the rotated and projected coordinate values of a line across the patch. In a similar manner, \(w\) may be assigned a value from 0.0 to 1.0 resulting in cubic equations in \(u\). By varying \(u\) from 0.0 to 1.0 , coordinate values are generated across the patch in the u-direction.

An optional hidden-line test is incorporated into the program which may be used to provide the capability of deleting most elements on the surface of the configuration which would not be seen by a viewer. No provision is made for deleting portions of an element or components hidden by other components.

The surface vector normal to the paper plane is computed at each interpolated point. (See ref. 1.) If the surface vector is positive, the computed point faces the viewer and is visible; if the surface vector is negative the computed point is not visible and is not plotted. With
\[
\begin{aligned}
& \mathrm{U}=\left[\begin{array}{lll}
\mathrm{X}_{\mathrm{u}} & \mathrm{Y}_{\mathrm{u}} & \mathrm{Z}_{\mathrm{u}}
\end{array}\right]=\left[\begin{array}{lll}
\frac{\partial \mathrm{X}}{\partial \mathrm{u}} & \frac{\partial \mathrm{Y}}{\partial \mathrm{u}} & \frac{\partial \mathrm{Z}}{\partial \mathrm{u}}
\end{array}\right] \\
& \mathrm{W}=\left[\begin{array}{lll}
\mathrm{X}_{\mathrm{w}} & \mathrm{Y}_{\mathrm{w}} & \mathrm{Z}_{\mathrm{w}}
\end{array}\right]=\left[\begin{array}{lll}
\frac{\partial \mathrm{X}}{\partial \mathrm{w}} & \frac{\partial \mathrm{Y}}{\partial \mathrm{w}} & \frac{\partial \mathrm{Z}}{\partial \mathrm{w}}
\end{array}\right]
\end{aligned}
\]

For one surface, the surface normal vector is
\[
\mathrm{N}=\mathrm{U} \times \mathrm{W}=\left[\begin{array}{lll}
\mathrm{J}_{\mathrm{x}} & \mathrm{~J}_{\mathrm{y}} & \mathrm{~J}_{\mathrm{z}}
\end{array}\right]
\]
where
\[
J_{\mathrm{x}}=\left|\begin{array}{cc}
\mathrm{Y}_{\mathrm{u}} & \mathrm{Z}_{\mathrm{u}} \\
\mathrm{Y}_{\mathrm{w}} & \mathrm{Z}_{\mathrm{w}}
\end{array}\right|
\]
\[
\begin{aligned}
& J_{y}=\left|\begin{array}{cc}
z_{u} & x_{u} \\
z_{w} & x_{w}
\end{array}\right| \\
& J_{z}=\left|\begin{array}{ll}
\mathrm{X}_{\mathrm{u}} & \mathrm{Y}_{\mathrm{u}} \\
\mathrm{X}_{\mathrm{w}} & \mathrm{Y}_{\mathrm{w}}
\end{array}\right|
\end{aligned}
\]

The visibility of the point under consideration is determined by evaluating only the Jacobian outwardly normal to the paper plane at the point.

\section*{APPENDIX E}

\section*{CROSS-SECTION OR CONTOUR PLOTS USING}

SURFACE PATCH EQUATIONS

By using both the surface patch equation in the form
\[
\mathrm{V}(\mathrm{u}, \mathrm{w})=\mathrm{USW} \mathrm{~W}^{\mathrm{T}}
\]
where the components of the \(4 \times 4\) matrix \(S\) are \(\left[\begin{array}{llll}S_{x} & S_{y} & S_{z}\end{array}\right]\) (see appendix B) and the equation of a plane
\[
a x+b y+c z-d=0.0
\]
and equation of the intersection of the plane and the patch surface may be written. Substitute \(\mathrm{x}=\mathrm{US}_{\mathrm{x}} \mathrm{W}^{\mathrm{T}}, \mathrm{y}=\mathrm{US} \mathrm{y}_{\mathrm{y}} \mathrm{W}^{T}\), and \(\mathrm{z}=\mathrm{US}_{\mathrm{z}} \mathrm{W}^{T}\) in the preceding equation so that
\[
\mathrm{U}\left[\mathrm{aS}_{\mathrm{x}}+\mathrm{bS} \mathrm{~S}_{\mathrm{y}}+\mathrm{cS} \mathrm{~S}_{\mathrm{z}}\right] \mathrm{w}^{\mathrm{T}}-\mathrm{d}=0.0
\]

The matrix \([G]=\left[\mathrm{aS}_{\mathrm{x}}+\mathrm{bS} \mathrm{S}_{\mathrm{y}}+\mathrm{cS}_{\mathrm{z}}\right]\) is composed of constant elements and may be evaluated for an equation in the two variables \(u\) and \(w\)
\[
\mathrm{UGW}^{\mathrm{T}}=\mathrm{d}
\]

By assigning values to \(w\), a series of cubic equations in \(u\) are solved for points on the intersection curve of the surface with the plane or values may be assigned to \(u\) for cubic equations in \(w\) to solve for the intersection curve. (See ref. 1.) Only one solution for a curve of intersection is allowed.

The points of the curve of intersection are then rotated and translated so that the plane of intersection coincides with the YZ-plane of the paper. The method for rotation and translation follows.

Sketch (h) illustrates the transformation system established by the 3 input points used to define the cutting plane.

\section*{APPENDIX E}


Sketch (h)
The translated and rotated coordinate system used for plotting is shown in sketch (i).


Sketch ( j ) illustrates the choosing of three points on a cutting plane when the method of defining the plane is by the input of an X -intercept, a roll angle \(\bar{\theta}\), and a Mach number. XGF One-quarter of Mach cone . EFGHIJ Lies in plane parallel to YZ-plane

\section*{APPENDIX E}

JXH Mach plane, tangent to cone along IX

IE Projection onto plane JHE of normal to Mach plane at I

To locate three points on the plane:
\begin{tabular}{ccccc} 
Point & \(\underline{X}\) & \(\underline{Y}\) & \(\underline{Z}\) \\
\cline { 1 - 1 } \(\mathrm{P}_{1}\) & X & 0.0 & 0.0 \\
\(\mathrm{P}_{2}\) & \(\mathrm{X}-\mathrm{C}\) & 0.0 & 1.0 \\
\(\mathrm{P}_{3}\) & \(\mathrm{X}-\mathrm{B}\) & 1.0 & 0.0
\end{tabular}
where the equation of the plane is expressed as \(A X+B Y+C Z=D\) with
\[
\beta=\sqrt{\overline{\mathrm{M}}^{2}-1}, \quad \mathrm{~A}=1.0, \quad \mathrm{~B}=-\beta \cos \bar{\theta}, \quad \mathrm{C}=-\beta \sin \bar{\theta}, \text { and } \quad \mathrm{D}=\mathbf{X}
\]


By using the three input coordinates that define the cutting plane, two diagonal vectors may be formed with the components:

APPENDIX E
\[
\begin{array}{lll}
\mathrm{T}_{1 \mathrm{X}}=\mathrm{x}_{3}-\mathrm{x}_{1} & \mathrm{~T}_{1 \mathrm{Y}}=\mathrm{y}_{3}-\mathrm{y}_{1} & \mathrm{~T}_{1 \mathrm{Z}}=\mathrm{z}_{3}-\mathrm{z}_{1} \\
\mathrm{~T}_{2 \mathrm{X}}=\mathrm{x}_{3}-\mathrm{x}_{2} & \mathrm{~T}_{2 \mathrm{Y}}=\mathrm{y}_{3}-\mathrm{y}_{2} & \mathrm{~T}_{2 \mathrm{Z}}=\mathrm{z}_{3}-\mathrm{z}_{2}
\end{array}
\]

The cross products of the diagonal vectors give
\[
\begin{aligned}
& \mathrm{N}_{\mathrm{X}}=\mathrm{T}_{2 Y} \mathrm{~T}_{1 \mathrm{Z}}-\mathrm{T}_{1 \mathrm{Y}} \mathrm{~T}_{2 \mathrm{Z}} \\
& \mathrm{~N}_{\mathrm{Y}}=\mathrm{T}_{1 X} \mathrm{~T}_{2 \mathrm{Z}}-\mathrm{T}_{2 X} \mathrm{~T}_{1 Z} \\
& \mathrm{~N}_{\mathrm{Z}}=\mathrm{T}_{2 X} \mathrm{~T}_{1 Y}-\mathrm{T}_{1 X} \mathrm{~T}_{2 Y}
\end{aligned}
\]
which when divided by \(N=\sqrt{N_{X}{ }^{2}+N_{Y}{ }^{2}+N_{Z}{ }^{2}}\) yield the unit normal vector \(n\) of the cutting plane
\[
\begin{aligned}
& n_{X}=\frac{N_{X}}{N} \\
& n_{Y}=\frac{N_{Y}}{N} \\
& n_{Z}=\frac{N_{Z}}{N}
\end{aligned}
\]

To determine the coordinate system for plotting, two unit vectors lying in the cutting plane are needed
\[
v_{1 X}=\frac{T_{1 X}}{T} \quad v_{1 Y}=\frac{T_{1 Y}}{T} \quad v_{1 Z}=\frac{T_{1 Z}}{T}
\]
where
\[
T=\sqrt{T_{1 X}{ }^{2}+T_{1 Y}{ }^{2}+T_{1 Z}^{2}}
\]
and

\section*{APPENDIX E}
\[
\begin{aligned}
& v_{2 X}=n_{Y} v_{1 Z}-n_{Z} v_{1 Y} \\
& v_{2 Y}=n_{Z} v_{1 X}-n_{X} v_{1 Z} \\
& v_{2 Z}=n_{X} v_{1 Y}-n_{Y} v_{1 X}
\end{aligned}
\]

The transformation matrix becomes
\[
[A]=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]
\]
where
\[
\begin{array}{lll}
\mathrm{a}_{11}=\mathrm{n}_{X} & \mathrm{a}_{12}=\mathrm{n}_{Y} & \mathrm{a}_{13}=\mathrm{n}_{\mathrm{Z}} \\
\mathrm{a}_{21}=\mathrm{v}_{1 \mathrm{X}} & \mathrm{a}_{22}=\mathrm{v}_{1 \mathrm{Y}} & \mathrm{a}_{23}=\mathrm{v}_{1 \mathrm{Z}} \\
\mathrm{a}_{31}=\mathrm{v}_{2 \mathrm{X}} & \mathrm{a}_{32}=\mathrm{v}_{2 \mathrm{Y}} & \mathrm{a}_{33}=\mathrm{v}_{2 \mathrm{Z}}
\end{array}
\]

The origin of the reference coordinate system is transferred to the first point given in defining the cutting plane
\[
\left[\begin{array}{l}
x_{0} \\
y_{0} \\
z_{0}
\end{array}\right]=[A]\left[\begin{array}{l}
x_{1} \\
y_{1} \\
z_{1}
\end{array}\right]
\]

The transformation from the reference to the paper coordinate system is accomplished by:

\section*{REFERENCES}
1. Coons, Steven A.: Surfaces for Computer-Aided Design of Space Forms. MAC-TR-41 (Contract No. AF-33(600)-42859), Massachusetts Inst. Technol., June 1967. (Available from DDC as AD 663 504.)
2. Eshleman, A. L.; and Meriwether, H. D.: Graphic Applications to Aerospace Structural Design Problems. Douglas Paper 4650, McDonnell Douglas Corp., Sept. 1967.
3. Craidon, Charlotte B.: Description of a Digital Computer Program for Airplane Configuration Plots. NASA TM X-2074, 1970.

TABLE I.- SAMPLE CASE INPUT CARDS




(a) Input data.

Figure 4.- Aircraft configuration cross section from patch definition.

Figure 5.- Aircraft configuration cross sections with constant reference.


\begin{abstract}
"The aeronautical and space activities of the United States shall be conducted so as to contribute . . . to the expansion of human knowledge of phenomena in the atmosphere and space. The Administration shall provide for the widest practicable and appropriate dissemination of information concerning its activities and the results thereof."
-National Aeronautics and Space Act of 1958
\end{abstract}

\section*{NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS}

TECHNICAL REPORTS: Scientific and technical information considered important, complete, and a lasting contribution to existing knowledge.

TECHNICAL NOTES: Information less broad in scope but nevertheless of importance as a contribution to existing knowledge.
TECHNICAL MEMORANDUMS:
Information receiving limited distribution because of preliminary data, security classification, or other reasons. Also includes conference proceedings with either limited or unlimited distribution.
CONTRACTOR REPORTS: Scientific and technical information generated under a NASA contract or grant and considered an important contribution to existing knowledge.

TECHNICAL TRANSLATIONS: Information published in a foreign language considered to merit NASA distribution in English.

SPECIAL PUBLICATIONS: Information derived from or of value to NASA activities. Publications include final reports of major projects, monographs, data compilations, handbooks, sourcebooks, and special bibliographies.

\section*{TECHNOLOGY UTILIZATION}

PUBLICATIONS: Information on technology used by NASA that may be of particular interest in commercial and other non-aerospace applications. Publications include Tech Briefs, Technology Utilization Reports and Technology Surveys.

Details on the availability of these publications may be obtained from:
SCIENTIFIC AND TECHNICAL INFORMATION OFFICE```


[^0]:    *For sale by the National Technical Information Service, Springfield, Virginia 22151

