

AN ANALYSIS AND CORRELATION
 of aircraft wave drag

by Roy V. Harris, Jr.
Langley Research Center
 Langley Station, Hampton, Va.

AN ANALYSIS AND CORRELATION OF AIRCRAFT WAVE DRAG

By Roy V. Harris, Jr.

Langley Research Center
Langley Station, Hampton, Va.

GROUP 4
Downgraded at 3 year intervals declassified after 12 years

CIASSIFIED DOCUMENT - title unclassified
This material contains information affecting the notionat defense of the United States within the meaning of the espionage lows, Title 18 , U.S.C. Secs. 793 and 794, the transmission or revelation of which in any manner to an unauthorized person is prohibited by law

AN ANALYSIS AND CORRELATION OF AIRCRAFT WAVE DRAG ${ }^{1} 2$

By Roy V. Harris, Jr.
Langley Research Center

SUMMARY

A computer program, developed by the Boeing Company for use on the IBM 7090 electronic data processing system, has been studied at the Langley Research Center. The results of this study indicate that, in addition to providing reasonably accurate supersonic wave-drag estimates, the computer program provides a useful tool which can be used in design studies and for configuration optimization. A detail description of the program is given in the appendix.

INTRODUCTION

Since the rule was formulated, and verified experimentally, that the transonic wave drag of an aircraft is essentially the same as the wave drag of an equivalent body of revolution having the same cross-sectional area distribution as the aircraft (ref. l), attempts have been made to estimate aircraft wave drag by examining the equivalent-body area distributions. It has been found that reasonably good wave-drag estimates can be made near a Mach number of 1 if the slender-body theory (ref. 2) is applied to the aircraft area distribution. This procedure can be extended to higher Mach numbers with good results by using the supersonic area rule (refs. 3 and 4) to determine the equivalent-body area distributions.

For most practical applications, however, the complexity of the supersonic area rule requires that this procedure be adapted to the high-speed electronic computer. As a result, several digital-computer programs which apply this theoretical approach to the solution of aircraft wave drag have been developed. One such program, which was developed by the Boeing Company, is presented with the permission of the Boeing Company in the appendix to this paper. It is the purpose of this paper to present, in addition to the wave-drag computer program, a review of the theoretical approach used in the program, and some experimental correlations which may serve as an indication of the accuracy of the wave-drag estimates obtained from the program.

[^0]

A	cross-sectional area
C_{D},WAVE	wave-drag coefficient
D	wave drag
2	overall length
M	Mach number
N_{X}	the number of equal intervals into which the portion of the X -axis, X_{A} to X_{B}, is to be divided
N_{θ}	the number of equal intervals into which the domain of $\theta\left(-90^{\circ}\right.$ to $+90^{\circ}$) is to be divided
n,i,j	integers
q	dynamic pressure
r	radius
V	velocity
v	volume
x,y,z	coordinates along X, Y, and Z axes
X, Y, Z	axis system of airplane
$\mathrm{X}_{\mathrm{A}}, \mathrm{X}_{\mathrm{B}}$	end points of the interval along the X-axis outside of which no Mach plane intercepts the aircraft
β	$\sqrt{M^{2}-1}$
θ	angle between the Y-axis and a projection onto the $Y-Z$ plane of a normal to the Mach plane. (θ positive in the positive Y-Z quadrant.)
μ	Mach angle
ρ	density

THEORETICAL APPROACH

Supersonic Area Rule

A review of the supersonic-area-rule wave-drag computing procedure is illustrated in figure 1 . Each equivalent body of revolution is determined by passing a series of parallel cutting planes through the configuration. The cutting planes are inclined with respect to the aircraft axis at the Mach angle μ. The area of the equivalent body at each station is the projection onto a plane normal to the aircraft axis of the area intercepted by the cutting plane. It is evident that the series of parallel cutting planes can be oriented at various angles θ, around the aircraft axis, and in order to determine the drag accurately, a family of equivalent bodies, each corresponding to a particular value of θ, must be considered. Thus, at each Mach number, a series of equivalent bodies of revolution are generated. The wave drag

$D(\theta)=-\frac{\rho V^{2}}{4 \pi} \int_{0}^{l} \int_{0}^{l} A^{\prime \prime}\left(x_{1}\right) A^{\prime \prime}\left(x_{2}\right) \operatorname{LOG}\left|x_{1}-x_{2}\right| d x_{1} d x_{2}$ $D=\frac{1}{2 \pi} \int_{0}^{2 \pi} D(\theta) d \theta$

Figure 1.- Illustration of wave-drag computing procedure. of each equivalent body is determined by the von Kármán slender-body formula (ref. 2) which gives the drag as a function of the free-stream conditions and the equivalent-body area distribution. The wave drag of the aircraft at the given Mach number is then taken to be the integrated average of the equivalentbody wave drags.

It should be noted, however, as discussed in reference 5, that the supersonic area rule is not an exact theory. In addition to the slender-body-theory assumptions, the supersonic area rule assumes that an aircraft, which usually departs considerably from a body of revolution, can be represented by a series of equivalent bodies of revolution. The theory, therefore, does not account for wave reflections which may occur due to the presence of the fuselage, wing, or tail surfaces. Also, the theory does not account for the induced drag at zero lift of configurations with highly twisted and cambered lifting surfaces. Nevertheless, for most configurations, the supersonic area rule does account for the major part of the wave drag and provides a useful procedure for the analysis of aircraft wave drag.

Machine Program

A major problem in adapting this procedure to machine computation is that of describing a rather complex aircraft to the computer in sufficient detail. The manner in which an aircraft is mathematically described to the computer for the program presented herein is illustrated in figure 2. The lower right portion of the figure shows a typical aircraft for which the

Figure 2.- Mathematical representation of illustrative airplane for machine-computing procedure. supersonic wave drag is to be computed. The upper left portion of the figure shows the aircraft as it is described to the computer.

The locations of all the aircraft components are referred to an X-Y-Z-axis system with its origin at the nose of the fuselage. The fuselage is assumed to be sufficiently close to a body of revolution that it can be described in terms of the radii of equivalent circles which have the same area as the fuselage at each station. The variation in fuselage radius along the axis between stations is assumed to be linear.

The wing is described as a sequence of streamwise airfoils distributed along the span. The contour of the wing is assumed to be linear between successive ordinates. The horizontal and vertical tails are described in a manner similar to that of the wing.

The engine nacelles are located by specifying the x, y, and z coordinates of the nacelle center line at the inlet face and are described in a manner similar to that of the fuselage by giving the radii at successive stations. The discontinuities caused by the inlet and exit faces are eliminated by assuming that infinitely long cylinders extend in both directions from the inlet and the exit. The effects of inlet spillage on the wave drag can be included by properly contouring the cylindrical extension near the inlet face.

Once the aircraft description has been stored in the memory unit of the computer, the equivalent-body area distributions are determined by solving for the normal projection of the areas intercepted by the cutting planes.

In addition to the aircraft wave drag, which is evaluated by applying the method of references 6 and 7 to the solution of the von Kármán integral (ref. 2), the program lists the wave drags of the aircraft equivalent bodies at each Mach number, as well as selected equivalent-body area distributions. This additional information is particularly useful in tailoring a configuration for minimum wave drag because, in order for a configuration to be optimized at some supersonic Mach number, it is necessary to examine the series of equivalent bodies

corresponding to the particular Mach number. It should also be noted that the area distributions required in the computation of sonic-boom overpressures ($\theta=-90^{\circ}$) are provided.

EXPERIMENTS

Optimum Bodies of Revolution

A series of bodies of revolution which have minimum wave drag for a given length, volume, and base area (ref. 8) and which have a base-to-maximum-area ratio of 0.532 have been tested over the Mach number range from 0.60 to 3.95 . The variations in wave-drag coefficient with Mach number were determined by integrating the measured surface-pressure coefficients for three optimum bodies which had fineness ratios of 7,10 , and 13 , respectively. The experimental results for Mach numbers from 0.60 to 1.20 were obtained in the Langley 8-foot transonic pressure tunnel, and those for Mach numbers of 1.61 and 2.01 were obtained in the Langley 4 - by 4 -foot supersonic pressure tunnel. The data for Mach numbers from 2.50 to 3.95 were obtained in the Langley Unitary Plan wind tunnel.

Semispan Wings

The series of semispan wings was tested in the Langley 4 - by 4 -foot supersonic pressure tunnel over the Mach number range from about 1.4 to 2.2 . Detailed descriptions of the wings and the test setup are given in references 9 and 10. Sketches of the wings are shown below.

Wing 1 had a trapezoidal planform and a linear spanwise thickness distribution. Wing 2 had a complex planform with a linear spanwise thickness distribution. Wing 3 had a complex planform as well as a complex spanwise thickness distribution. Wing 4 had an arrow planform with a linear thickness distribution. All of the wings in the series had circular-arc airfoil sections.

Transition of the boundary layer was fixed near the wing leading edges by narrow strips of distributed roughness particles, and the drags were measured at the zero-lift condition. The wave-drag coefficients were determined by subtracting the equivalent flat-plate turbulent skin-friction drag coefficients from the measured total-drag coefficients.

Airplane Configurations

Tests were made over the Mach number range from 1.4 to 3.2 for several of the proposed supersonic transport configurations and a typical supersonic fighter. Sketches of the configurations are shown in figure 3. Detail descriptions of the models and the tests are given in references 11 to 16 . Boundary-

SCAT 15-A

Figure 3.- Description of airplane configurations.
layer transition was fixed near the leading edges of all of the models by narrow strips of distributed roughness particles. The experimental wave-drag coefficients were determined for each configuration by subtracting the equivalent flat-plate turbulent skin-friction drag and an estimated camber drag from the measured total drag at zero lift.

In order to indicate the accuracy of the wave-drag estimates obtained from the program, the machine-computed wave-drag values are compared with experimental results for the optimum bodies of revolution, semispan wings, and airplane configurations in figures 4, 5, and 6, respectively.

Optimum Bodies of Revolution
Figure 4 shows a comparison of the machine-computed wave-drag coefficients with experimental results and the more precise characteristics theory. Also shown are the drag levels indicated by the slenderbody theory which is based on the body normal-area distributions. The characteristics theory, indicated by the solid line, shows excellent agreement with the experimental. results. The slender-body theory which uses the normal area distribution, shown as a short-dashed line, gives good agreement near a Mach number of 1. However, as the Mach number is increased, the slender-body theory overestimates the optimumbody wave drag. It should also be noted that the effects of Mach number are

Figure 4.- Comparison of computed wave drag with experimental results for optimum bodies of revolution. greater at the lower fineness ratios than at the higher fineness ratios.
This greater departure from slender-body theory should be expected as the bodies become less slender. The long-dashed line shows the results obtained from the machine program which uses the slender-body theory in combination with the supersonic area rule. As can be seen, when the slender-body theory is applied to the proper equivalent bodies, as in the machine program, the Mach number effects on the optimum-body wave drag are predicted with a fair degree of accuracy.

The most severe test of the theoretical approach used in this machine program lies in its application to the calculation of the drag of wings. Figure 5 shows a comparison of the machine-computed

Figure 5.- Comparison of machine-computed wave drag with experimental results for semispan wings.

Figure 6.- Comparison of machine-computed wave drag with experimental results for airplane configurations. (Arrows indicate the direction of increasing Mach number.) wave drags with experimental results for the series of semispan wings over the Mach number range from about 1.4 to 2.2. As can be seen from the figure, the program tends to underestimate the wave drag of the semispan wings. This result for wings alone is not surprising, since a wing departs considerably from the equivalent body of revolution assumed by the theory.

Airplane Configurations

A comparison of the machine-computed wavedrag coefficients with experimental results for the complete airplane configurations is shown in figure 6. The experimentally determined wavedrag coefficients are plotted against the machine-computed values. The solid line is the locus of perfect agreement between theory and experiment. The arrows shown on the figure indicate the wave-drag trends with increasing Mach number. This comparison indicates that the machine program, which uses slender-body theory in combination with the supersonic area rule, can produce good estimates of the wave drag of complex airplane configurations at supersonic speeds. The major departures from perfect agreement between theory and experiment shown in the figure are believed to be due to the difficulties in adequately


```
#. . . \ \
```

describing the extremely complex configurations to the computer, and to regions of separated flow which may have existed on some of the models at the offdesign Mach numbers.

CONCLUDING REMARKS

A computer program, developed by the Boeing Company, which applies the slender-body theory in combination with the supersonic area rule to the solution of aircraft wave drag has been studied at the Langley Research Center. The results of this study indicate that, in addition to providing reasonably accurate supersonic wave-drag estimates, the computer program provides a useful tool which can be used in design studies and for configuration optimization.

Langley Research Center,
National Aeronautics and Space Administration, Langley Station, Hampton, Va., December 13, 1963.

APPENDIX

COMPUTER PROGRAM FOR THE DETERMINATION OF

AIRCRAFT WAVE DRAG AT ZERO LIFT

The computer program developed by the Boeing Company applies the slenderbody theory in combination with the supersonic area rule to determine aircraft wave drag. For programing purposes, an aircraft is assumed to consist of a wing, a fuselage, up to eight pod pairs (or nacelles), either one or two fins (vertical tails), and a canard surface (or horizontal tail). Except for the single vertical fin which may be asymmetrically located, the aircraft is assumed to be symmetrical about the X-Z plane. The program was written in the FORIRAN language (ref. 17) for use on the IBM 7090 electronic data processing system. The purpose of this appendix is to present a detalled description of the program, describe the manner in which the input data must be prepared, and give a FORTRAN listing of the source program and the subroutines which are not included on the standard FORTRAN II library tape. The machine tabulated output for three sample cases is also presented in tables I, II, and III.

DESCRIPTION OF PROGRAM

The program first reads in a number of integers which specify the absence or presence of various components, the amount of detail to be used to describe each component, and the number of equal intervals into which the domain of each of the two independent variables, X and θ, is to be divided. Various program options are also indicated at this point. The program then reads a title. Finally, the program reads in the geometric parameters which define each component of the configuration as described in the text. A detailed description of the input and the input format required by the program are given in the section of this appendix entitled "Preparation of Input Data."

Wing Volume

The segment of a wing between two successive airfoils (fig. 7) is considered to be composed of a number of blocks, each extending from an X-value at which an upper and lower ordinate are specified (input data) to the next such X-value. The contour definition of each airfoil is assumed to be linear between successive ordinates. Further, corresponding points on successive airfoils are assumed to be joined by straight lines. The wing is therefore treated as a polyhedron. This polyhedral fit to the wing simplifies the calculation of the area intercepted by a cutting plane through the wing.

The shape of each block can thus be seen (fig. 7) to consist of a pair of parallel trapezoidal faces each in a wing airfoil plane (including the possibility of one edge of the trapezoid being degenerate) with a straight-line edge from each vertex on the inboard trapezoid joining the corresponding vertex on the outboard trapezoid. The volume of such a solid is found to be:
$v=\frac{\Delta y}{6}\left[\Delta x_{1}\left(2 \Delta z_{1}+\Delta z_{2}\right)+\Delta x_{2}\left(\Delta z_{1}+2 \Delta z_{2}\right)\right]$

Figure 7.- Mathematical representation of a wing segment between successive airfoils.

$$
\Delta z=\frac{1}{2}\left(z_{1}^{\prime}+z_{1}^{\prime \prime}\right)
$$

If there is a wing given in the input for the case being considered, the volume of the wing is computed by summing the volumes of the individual blocks. Later in the program the volume of the wing average equivalent body is computed. If a sufficient number of cutting planes have been used to define the wing equivalent bodies of revolution, then the two values of wing volume should be essentially the same. Thus, a check on the accuracy of the equivalent body area distributions is provided.

Transformation of Wing, Fin, and Canard Coordinates

The wing is described to the machine program by up to 10 airfoils, each being specified by the x, y, z coordinates of the leading edge, by the chord length, and by an array of up to 30 upper ordinates. The airfoil ordinates are expressed as a percentage of the chord length and are given at an array of percent-chord locations. The same array of percent-chord locations must serve for all wing airfoils in any one case. If the input which specifies the number of wing airfoil ordinates is negative, then the program will expect to read in lower ordinates also. Otherwise, the airfoil is assumed to be symmetrical and the program constructs the lower ordinates.

Each coordinate of a point on the wing surface is transformed by the machine program from percent-chord data into units of length and then referred to the origin of the reference axis, which is the nose of the fuselage. If there is no fuselage, the wing apex is taken to be the origin of the reference axis. The maximum upper ordinate and the maximum lower ordinate on each airfoil are noted for future reference.

The fins (vertical tails) and canard (or horizontal tail) are treated by the program similarly, except that they are defined in less detail and there is no possibility of describing a nonsymmetric fin airfoil. The fins and canard are defined by locating the root and tip airfoils in the same manner as the wing and by giving the airfoil ordinates. However, the fins and the canard must each consist of a constant airfoil section, with each of the sections being described by a maximum of 10 airfoil ordinates.

Optimum Area-Distribution Fit to Fuselage

The fuselage is defined by up to 30 cross-sectional areas, given at any longitudinal spacing. The method of references 6 and 7 is then used in the subroutine EMLORD to determine the optimum area distribution which contains the given body areas. This method of estimating the wave drag of a slender body whose cross-sectional areas are given at arbitrarily spaced stations involves the determination of an area distribution which matches the given one at the specified stations, which otherwise has minimum wave drag, and which appears as a continuous analytic expression. The optimum area distribution so found is evaluated at every integral percentage of the fuselage length. This "enriched" area distribution is used as the definition of the fuselage during the remainder of the computation. An array of 101 radii, each corresponding to a station on the enriched fuselage area distribution, is computed by assuming the crosssections to be everywhere circular. The variation in fuselage radius along the axis between the enriched stations is assumed to be linear.

Determination of the Intercepted Areas

The program selects a value of θ (-90° plus some multiple of n times $\Delta \theta$ where $\left.n=0,1,2,3, \ldots, \mathbb{N}_{\theta}\right)$ so that the domain of $\theta\left(-90^{\circ}\right.$ to $\left.+90^{\circ}\right)$ is divided into N_{θ} equal subintervals. Associated with each value of θ is an interval on the X-axis outside of which no Mach plane of this family will intersect any component of the aircraft. Let X_{A} and X_{B} denote the end points of this interval. If there is no fuselage, X_{A} and X_{B} are initially set equal to zero. If there is a fuselage X_{A} is initially set equal to the first fuselage x -station and X_{B} is initially set equal to the last fuselage station.

For each airfoil of the wing, the x-intercept of the Mach plane through the leading edge of that airfoil is compared with the previous X_{A}, and the algebraic lesser of the two is selected as the new value of X_{A}. Similarly, the Mach plane through the trailing edge of each airfoil is examined to determine if its x-intercept is greater than the previous X_{B}. The fins and the canard are each analyzed in the same manner to determine if they cause further shifting in X_{A} and X_{B}.

For all of the wing, tail, and canard surfaces, the assumption is made that the first and last ordinate of each airfoil is zero. A further assumption is

that a Mach plane through the nose of the airfoil will intersect that airfoil nowhere else.

To determine the most forward Mach plane which touches a pod is more difficult, because the forward end of the pod can be a circle in a plane parallel to the $y-z$ plane. The x-intercept, X, of the Mach plane which is tangent to the outer edge of that circle is given by

$$
X=x-(\beta \cos \theta)(y+r \cos \theta)-(\beta \sin \theta)(z+r \sin \theta)
$$

where x, y, and z are the coordinates of the pod center line at the leading edge and r is the radius. The same equation represents the aftermost Mach plane touching a pod when x, y, z, and r refer to the aft end of the pod. This equation is used to examine each pod to determine whether the pods cause further shifting in X_{A} and X_{B}.

The interval X_{A} to X_{B} associated with each value of θ is now divided into N_{X} equal subintervals, ΔX. The Mach planes are then defined by the successive values of X associated with each value of θ. Thus,

$$
X=x-(\beta \cos \theta) y-(\beta \sin \theta) z
$$

where

$$
X=X_{A}+n \Delta X \quad\left(n=0,1,2,3, \ldots, N_{x}\right)
$$

The program then proceeds to find the projection onto the $y-z$ plane of the area of each component of the aircraft intercepted by the Mach planes.

The wing has been shown in figure 7 to consist of a number of blocks. Given the coordinates of the vertices of each wing block and the equation for each Mach plane, the subroutine SWING computes the $y-z$ projection of the area of intersection of each Mach plane with each block.

First, a block which has the planform of the entire right wing, and which has a constant inboard thickness equal to the maximum thickness of the first airfoil and a constant outboard thickness equal to the maximum thickness of the last airfoil is examined. If the return from SWING is zero and the wing leading and trailing edges are not convex, then the wing is not intersected by the Mach plane being considered and the following procedure is bypassed. Otherwise, a block which has the planform of the segment between the first and second airfoils is examined. The procedure is repeated with the successive segments. For any segment which is intersected by the Mach plane being considered, the blocks comprising that segment are examined. The sum of the projected areas is accumulated until the last block in the right wing has been examined. After the last block

has been examined, the entire procedure is repeated for the left wing. The final total result is an array of wing equivalent body areas corresponding to the particular values of X and θ.

The pods (or nacelles) are defined by up to 30 radii, given at arbitrarily spaced stations along the pod axis. The variation in pod radius between stations is assumed to be linear. The pods are located by specifying the x, y, z coordinates of the pod center line at the leading edge. Any external appendage which occurs in pairs located symmetrically about the $x-y$ plane, and which can be described as a body of revolution is treated as a pod. Also, for the purpose of determining the intercepted areas, the fuselage is treated as a single pod located on the aircraft reference axis. The fuselage and the left and right members of each pair of pods are separately treated by the subroutine SPOD, which determines the projection onto the $y-z$ plane of the areas intercepted by the Mach planes. If either the first or last cross-sectional area of a pod or fuselage is not zero, the program assumes that the body continues with constant area in the appropriate direction to infinity.

The process used to determine the fin and canard equivalent body areas is the same as that used on the wing. The process is simplified, however, because the fins and canard are each defined by only two airfoils.

Computation of Wave Drag

After the total equivalent-body area distribution for each value of θ has been determined, the wave drag of each equivalent body is computed by the subroutine EMLORD which applies the method of references 6 and 7. The values of $D(\theta) / q$ thus obtained are then used in the numerical integration of

$$
\frac{D}{q}=\frac{1}{\pi} \int_{-\pi / 2}^{\pi / 2} \frac{D(\theta)}{q} d \theta
$$

to yield the aircraft wave drag.

Computation of the Wing Average Equivalent-Body Volume

If there is a wing in the case being considered, the volume of the wing average equivalent body is found by:

$$
v=\frac{1}{\pi} \int_{-\pi / 2}^{\pi / 2} \int_{X_{A}}^{X_{B}} A(x, \theta) d x d \theta
$$

This volume is determined for the purpose of comparison with the exact wing volume which was determined earlier in the program. If a sufficient number of

Mach planes (N_{X}) have been used to define the equivalent bodies, then the two values of wing volume should be essentially the same.

Computation of the Wing Average Equivalent-Body Area Distribution
The program can be used to compute the area distribution of the wing average equivalent body when the input data are arranged as indicated below. If the configuration of any case consists only of a wing and a fuselage, and the fuselage cross-sectional areas are set everywhere equal to zero, the program then branches into a routine which computes the wing average equivalent-body area distribution. The fuselage length and the wing location must be specified so that none of the Mach planes which pass through the first and last fuselage stations intercept the wing. This condition produces an identical range of X values $\left(X_{A}\right.$ to X_{B}) for each value of θ and therefore simplifies the computation. The wing average equivalent-body areas at each X station are then found by evaluating the integral

$$
A(X)=\frac{1}{2 \pi} \int_{0}^{2 \pi} A(X, \theta) d \theta
$$

at each value of X.

Tabulated Output

The full 80-column card image of each input data card is first printed to identify the results which will follow, and to provide an easy check on the input data. (See tables I, II, and III.) The enriched fuselage area distribution is then printed, together with the wave drag (expressed as D / q) of the fuselage alone. The wave-drag values (D / q) associated with each value of θ are then tabulated, along with the wave drag (D / q) of the entire aircraft. A check on the accuracy of the equivalent-body area distributions is next provided by printing a comparison of the exact wing volume with the volume of the wing average equivalent body. Finally, the program prints the equivalent-body area distributions for five values of θ from -90° to $+90^{\circ}$ for configurations which are not symmetrical with respect to the $x-y$ plane, and from -90° to 0° for configurations which are symmetrical.

If the input data have been arranged for computation of the wing average equivalent-body area distribution, this result is printed in addition to the equivalent-body area distributions corresponding to each value of θ.

PREPARATION OF INPUT DATA

Since the aircraft is assumed to be symmetrical about the $x-z$ plane, only half of the aircraft need be described to the computer. The convention used in

presenting all input data is that the half of the aircraft on the positive y side of the $x-z$ plane is presented. The computer then uses this information to construct the complete aircraft.

A single case consists of the wave-drag computation for a single configuration at a single Mach number. The input data for each case are presented on at least two punched cards. In addition to the first two input data cards, the number of remaining cards depends on the number of components used to describe the configuration, whether or not a component has been described in the preceding case, and the amount of detail used to describe each component.

First Two Data Input Cards
The first data input card for each case contains 18 integers, each punched to the right of a 4-column field. (See tables I(a), II(a), and III.) An identification of the card columns, the name used by the source program, and a description of each integer is as follows:

Columns	Name	Description
01-04	MACH	Mach number $\times 1000$ (If the input is 1000 , the program assumes that $M=1.000001$ to avoid the singularity which occurs at $\mathrm{M}=1.0) \quad \mathrm{M} \geqq 1$.
05-08	NX	The number of equal intervals into which the portion of the X-axis, X_{A} to X_{B}, is to be divided. $N X \leqq 50$ and must be an even number.
09-12	NTHETA	The number of equal intervals into which the domain of $\theta \quad\left(-90^{\circ}\right.$ to $\left.+90^{\circ}\right)$ is to be divided. NTHETA $\leqq 36$ and must be a multiple of four.
13-16	NWAF	The number of airfoils used to describe the wing. $2 \leqq N W A F \leqq 10$.
17-20	NWAFOR	The number of upper ordinates used to define each wing airfoil section. $3 \leqq N W A F O R \leqq 30$. If NWAFOR is given a negative sign, the program will expect to read the lower ordinates also. Otherwise, the airfoil is assumed to be symmetrical.
$21-24$	NFUSOR	The number of stations at which the fuselage crosssectional areas are to be specified. $4 \leqq \mathrm{NFUSOR} \leqq 30$.
$25-28$	NPOD	The number of pairs of pods (or nacelles) on the configuration. NPOD $\leqq 8$.

29-32	NPODOR	The number of stations at which the pod radii are to be specified. $4 \leqq$ NPODOR $\leqq 30$.
33-36	NFIN	The number of vertical tails. NFIN 2 .
37-40	NFINOR	The number of upper ordinates used to define each fin (vertical tail) airfoil section. $3 \leqq N F I N O R \leqq 10$. The fin airfoil is assumed to be symmetrical.
41-44	NCANOR	The number of upper ordinates used to define each canard (or horizontal tail) airfoil section. $3 \leqq N C A N O R \leqq 10$. If NCANOR is given a negative sign, the program will expect to read the lower ordinates also. Otherwise, the airfoil is assumed to be symmetrical.
45-48	J1	$J l=0$ if there is no wing. $J l=1$ if the wing description is to be provided for this case. Jl $=2$ if the wing description is identical with that of the previous wing description.
49-52	J2	$\mathrm{J} 2=0$ if there is no fuselage. $\mathrm{J} 2=1$ if the fuselage description is to be provided for this case. J2 $=2$ if the fuselage description is identical with that of the previous fuselage description.
53-56	J3	$\mathrm{J} 3=0$ if there are no pods. $\mathrm{J} 3=1$ if the pod description is to be provided for this case. J3 $=2$ if the pod description is identical with that of the previous pod description.
57-60	J4	$J 4=0$ if there are no fins. $J 4=1$ if the fin description is to be provided for this case. $J 4=2$ if the fin description is identical with that of the previous fin description.
61-64	J5	$\mathrm{J} 5=0$ if there is no canard. $\mathrm{J} 5=1$ if the canard description is to be provided for this case. $\mathrm{J} 5=2$ if the canard description is identical with that of the previous canard description.
65-68	J6	$J 6=1$ if the entire configuration is symmetrical with respect to the $x-y$ plane. $J 6=0$ if the entire configuration is not symmetrical with respect to the $x-y$ plane. $J 6=-1$ if the wing volume only is to be computed for this case.
69-72	J7	$J 7=9999$
73-80		Case number
		17

The second data input card for each case contains any desired title in columns 1 through 72. (See table I(a).)

Remaining Data Input Cards

The remaining data input cards for each case contain a detailed description of each component of the aircraft. Each card contains up to 10 numbers, each punched to the left of a 7 -column field with decimals and is identified in columns 73-80. The cards are arranged in the order: wing data cards, fuselage data cards, pod (or nacelle) data cards, fin (vertical tail) data cards, and canard (or horizontal tail) data cards (table I(a)).

Wing data cards.- The first wing data card (or cards) contains the percentchord locations at which the ordinates of all the wing airfoils are to be specified. There will be exactly NWAFOR percent-chord locations given. Each card is identified in column $73-80$ (table $1(a)$) by the symbol XAF j where j denotes the number of the last percent-chord location given on that card. For example, if $N W A F O R=16$, there are 16 ordinates to be specified for every airfoil, and two data cards will be required. The first XAF card is identified as XAF 10 and the second as XAF 16.

The next wing data cards (there will be NWAF of them) each contain four numbers which give the location and chord length of each of the wing airfoils that is to be specified. The cards representing the most inboard airfoil are given first, followed by the cards for successive airfoils. The information is arranged on each card as follows:

Columns Description

> | $1-7$ | x-ordinate of the airfoil leading edge |
| :--- | :--- |
| $8-14$ | y-ordinate of the airfoil leading edge |
| $15-21$ | z-ordinate of the airfoil leading edge |
| $22-28$ | the airfoil streamwise chord length |
| $73-80$ | $\begin{array}{l}\text { the card identification, WAFORG } j \text { where } j \text { denotes } \\ \text { the particular airfoil. For example, WAFORG } 1 \\ \text { denotes the first (most inboard) airfoil. }\end{array}$ |
| | $\begin{array}{l}\text { (more }\end{array}$ |

Following the WAFORG cards are the wing airfoil ordinate (WAFORD) cards. The first card contains up to 10 of the upper ordinates of the first airfoil expressed as a percent of the chord length. If more than 10 ordinates are to be specified for each airfoil (there will be NWAFOR of them) the remaining upper ordinates are continued on successive cards. If the airfoil is not symmetrical (indicated by a negative value of NWAFOR on the first data input card for this case), the lower ordinates of the first airfoil are presented in the same manner on the next cards. The program expects both upper and lower ordinates to be punched as positive percent-of-chord values. The remaining airfoils are each described in the same manner, and the cards are arranged in the order
which begins with the most inboard airfoil and proceeds outboard. Each card is identified in columns $73-80$ as WAFORD j, where j denotes the particular airfoil.

Fuselage data cards.- The first card (or cards) specifies the array of fuselage stations at which the values of the fuselage cross-sectional area are to be specified (table $I(a)$). There will be NFUSOR stations given and the first fuselage station must be zero. This card (or cards) is identified in columns $73-80$ by the symbol XFUS j where j denotes the number of the last fuselage station given on that card. The XFUS cards are followed by a card (or cards) which gives the fuselage cross-sectional areas, identified by the symbol FUSARD j in columns 73-80.

Pod data cards. - The first pod or nacelle data card (or cards) specifies the location of the origin of each pair of pods. The information is arranged on each card as follows (table $I(a)$):

\[

\]

The PODORG data are continued on successive cards until all of the pod origins (INPOD of them) have been specified.

The next pod input data card (or cards) contains the x-ordinates, referenced to the pod origin, at which the pod radii (there will be NPODR of them) are to be specified. The first x-value must be zero, and the last x-value is the length of the pod. These cards are identified in columns $73-80$ by the symbol XPOD j where j denotes the pod number. For example, XPOD 1 represents the first (most inboard) pod.

The next pod input data cards give the pod radii corresponding to the pod stations that have been specified. These cards are identified in columns 73-80 as PODR j.

For each additional pair of pods, new XPOD and PODR cards must be provided.
Fin data cards.- If there is a single vertical fin (NFIN = I), it may be located anywhere on the configuration. If $N F I N=2$, the program will expect data for a single fin, but assumes that an exact duplicate is located symmetrically with respect to the $x-z$ plane. Exactly three data input cards (table I(a)) are used to describe a fin. The information presented on the first fin data input card is as follows:

Columns	Description
$1-7$	x-ordinate of lower airfoil leading edge
$8-14$	y-ordinate of lower airfoil leading edge
$15-21$	z-ordinate of lower airfoil leading edge
$22-28$	chord length of lower airfoil
$29-35$	x-ordinate of upper airfoil leading edge
$36-42$	y-ordinate of upper airfoil leading edge
$43-49$	chord length of upper airfoil
$50-56$	the card identification, FINORG
$73-80$	

The second fin data input card (table $I(a)$) contains up to 10 percent-chord locations (exactly NFINOR of them) at which the fin airfoil ordinates are to be specified. The card is identified in columns $73-80$ as XFIN.

The third fin data input card contains the fin airfoil ordinates expressed as a percent of the chord length. Since the fin airfoil must be symmetrical, only the ordinates on the positive y side of the fin chord plane are specified. The card identification, FINORD, is given in columns 73-80.

Canard data cards.- If the canard (or horizontal tail) airfoil is symmetrical, exactly three cards are used to describe the canard, and the input is given in the same manner as for the fin (table I(a)). If, however, the canard airfoil is not symmetrical (indicated by a negative value of NCANOR on the first data input card for this case), a fourth canard data input card will be required to give the lower ordinates. The information presented on the first canard data input card is as follows:

Columns	Description
$1-7$	x-ordinate of the inboard airfoil leading edge
$8-14$	y-ordinate of the inboard airfoil leading edge
$15-21$	z-ordinate of the inboard airfoil leading edge
$22-28$	chord length of the inboard airfoil
$29-35$	x-ordinate of the outboard airfoil leading edge
$36-42$	y-ordinate of the outboard airfoil leading edge
$43-49$	z-ordinate of the outboard airfoil leading edge
$50-56$	chord length of the outboard airfoil
$73-80$	the card identification, CANORG

The second canard data input card (table $I(a)$) contains up to 10 percentchord locations (exactly NCANOR of them) at which the canard airfoil ordinates are to be specified. The card is identified in columns 73-80 as XCAN.

The third canard data input card contains the upper ordinates of the canard airfoil, expressed as a percent of the chord length. This card is identified in columns $73-80$ as CANORD. If the canard airfoil is not symmetrical, the lower ordinates are presented on a second CANORD card. As in the case for the wing, the program expects both upper and lower ordinates to be punched as positive percent-of-chord values.

PROGRAM AND SUBROUTINE LISTING

The IBM 7090 electronic data processing system main frame, the input tape unit logical 5, and the output tape unit logical 6 are the on-line components used. A very minor use is also made of the on-line printer. The input data must be transferred from the punched data cards onto tape by an off-line card-to-tape machine.

The program, as initially developed by the Boeing Company, has been slightly modified in order to achieve compatibility with the Langley IBM 7090 data processing system. A complete FORTRAN listing of the source program and the subroutines which are not included on the standard FORTRAN II library tape as they have been used at the Langley Research Center follows.

COMMON

5

DIMENSION ABC(12),ABCD(14)
c
DIMENSION CANMAX(2,2), CANORD $(2,3,10)$, CANORG(2,4), DRAGTH(37). IFINORD $(2,3,10)$, FINORG (2,4), FUSARD (30), FUSRAD (30), JJ(7), 2ORDMAX $(10,2), P(3,3), P O D O R D(8,30), P O D O R G(8,3), R(49), R P(101)$, 3RX(101).S(6.51.37),SF(49),SI(101),WAFORD(10.3.30),WAFORG(10.4), $4 \times A F(30) \cdot X C A N(1 C), X F(49), X F I N(10), X F U S(30), \times 1(101), X P(101)$, $5 \times P O D(8,30), X X A(37), X \times 3(37)$
c
DIMENSION W(10.4)
EQUIVALENCE (w,WAFORG)
c
$\operatorname{ACOSF}(x)=\operatorname{ARTNQF}(\operatorname{SQRTF}(1 \cdot-x * * 2) \cdot x)$
IF ACCUMULATOR OVERFLOW $1 \cdot 1$
$1 D_{I}=202622077325$
$K E Y=0$
NCASE $=0$
C
c
C
5 READ INPUT TAPE 5.10,MACH,NX,NTHETA,NWAF,NWAFOR,NFUSOR,NPOD,NPODOR
X,NFIN,NFINOR.NCANOR,J1,J2, J3, J4, J5, J5, J7
10 FORMAT (1814)
IF (MACH)990.990.15
15 IF (NTHETA) $990.990,20$
20 IF (J7-9999) 25.35.25
25 WRITE OUTPUT TAPE 6.30
30 FORMAT (48HIDECK-STACKING ERROR -- I CANNOT GO ON LIKE THIS)
GO TO 990
35 READ INPUT TAPE 5.40.ABC
40 FORMAT (12AG)
$J J(1)=J 1$
$J J(2)=J 2$
$J J(3)=J 3$
$J J(4)=J 4$
$J J(5)=J 5$
$J J(6)=J 6$
$J J(7)=\downharpoonleft 7$
NCASE = NCASE +1
WRITE OUTPUT TAPE 6,41.NCASE
41 FORMAT(1H124X19HINPUT DATA FOR CASEI3)
$\times M A C H=F L O A T F(M A C H) / 1000$.
45 FORMAT (10 F7.0)

NREC=2
IF (J1-1) 68,50,68
$50 \mathrm{~N}=\times \mathrm{ABSF}$ (NWAFOR)
READ INPUT TAPE 5,45.(XAF(I),I=1,N)
NREC $=$ NREC $+(N+9) / 10$
DO 56 I = 1.NWAF
56 READ INPUT TAPE 5.45.(WAFORG(I,J),J=1.4)
NREC=NREC+NWAF
$L=1$
IF (NWAFOR) 58.58 .60
$58 \mathrm{~L}=2$
60 DO $65 \mathrm{I}=1$. NWAF
DO $65 \mathrm{~J}=1$, L
READ INPUT TAPE 5.45,(WAFORD (1,J.K) $0 K=1 \cdot N)$
IF (NWAFOR) 65,65.62
62 DO $64 K=1 \cdot N$
$64 \operatorname{WAFORD}(1,2, K)=W A F O R D(1,1, K)$
65 CONTINUE
NREC = NREC+NWAF*L* ($(N+9) / 10)$
68 IF (J2-1) 85.71.85
71 N=NFUSOR
READ INPUT TAPE 5.45.(XFUS(1),I=1,N)
READ INPUT TAPE 5,45,(FUSARD(1), $1=1, N)$
NREC=NREC $+2 *((N+9) / 10)$
DO $80 \mathrm{I}=1 . \mathrm{N}$
BO FUSRAD(I)=SQRTF(FUSARD(I)/PI)
85 IF (J3-1) 100.90 .100
90 READ INPUT TAPE $5,45 \cdot((P O D O R G(I \cdot J), J=1 \cdot 3), 1=1, N P O D)$
NREC $=\mathrm{NREC}+(\mathrm{NPOD}+2) / 3$
$N=N P O D O R$
DO 97 I=1,NPOD
READ INPUT TAPE 5.45,(XPOD (I $\cdot \mathrm{J}) \cdot J=1, N)$
READ INPUT TAPE 5,45,(PODORD $(1, J), J=1, N)$
97 NREC=NREC $+2 *((N+9) / 10)$
100 IF $(J 4-1) 110.105 .110$
105 READ INPUT TAPE $5,45,((F I N O R G(I, J), J=1,4), 1=1,2)$
N=NFINOR
READ INPUT TAPE $5,45,(X F I N(1), I=1, N)$
READ INPUT TAPE $5,45,(F 1$ NORD $(1,1, J), J=1, N)$
NREC $=$ NREC +3
110 IF (J5-1) $124.115 \cdot 124$
115 READ INPUT TAPE $5.45 \cdot((C A N O R G(1, J), J=1,4), 1=1,2)$
N=XABSF (NCANOR)
READ INPUT TAPE 5.45. (XCAN(I). $1=1, N)$
NREC $=$ NREC +2
$L=1$
IF (NCANOR) 116.116 .118
$116 \mathrm{~L}=2$
$11800 \quad 120 \quad \mathrm{~J}=1 \mathrm{l}$

READ INPUT TAPE 5.45.(CANORD(1•1.J), J=1•N)
120 NREC = NREC + 1
IF (NCANOR) $124 \cdot 124 \cdot 122$
122 DO $123 \mathrm{~J}=1 \cdot \mathrm{~N}$
$123 \operatorname{CANORD}(1 \cdot 2 \cdot J)=\operatorname{CANORD}(1 \cdot 1 \cdot J)$
124 DO $125 \mathrm{I}=1$. NREC
125 BACKSPACE 5
DO $1311=1$. NREC
READ INPUT TAPE 5.126.ABCD
126 FORMAT (13A6,A2)
IF (I-3) 127.127.129
127 WRITE OUTPUT TAPE 6.128
128 FORMAT (IH)
129 WRITE OUTPUT TAPE 6.130.ABCD
130 FORMAT (1H 13A6.A2)
131 CONT INUE
IF (XMACH-1.) 133.132 .140
$132 \times M A C H=1.000001$
GO TO 140
13.3 WRITE OUTPUT TAPE 6.232.ABC

WRITE OUTPUT TAPE 6.135.NCASE XMACH
135 FORMAT (14 HO CASE NO.I $3.13 \mathrm{H}, \mathrm{MACH}$ NO. $=F 6.4$)
GO TO 5
140 BETA = SQRTF (XMACH**2-1.)
NWAFOR $=\times A B S F$ (NWAFOR)
$N C A N O R=X A B S F$ (NCANOR)
$N=X M A \times O F$ (NFUSOR•1)
$X X=X F U S(N)$
C
C
C
190 IF (J1-1) 800.191.800
$191 K A T E=0$
IF (NWAF-2) 199.199.192
192 N=NWAF-1
$D \times A=W(N W A F, 1)-W(1,1)$
$D \times B=D \times A+N(N W A F, 4)-W(1,4)$
$D Y=W(N W A F, 2)-W(1,2)$
DO $195 \quad I=2, N$
IF ($(W-W(I, 1)) * D Y+(W(1,2)-W(1.2)) * D \times A) 194.194 .193$
$193 \mathrm{KATE=1}$
GO TO 199
194 IF ($(W(1 \cdot 1)+W(1,4)-W(1 \cdot 1)-W(1,4)) * D Y-$ $1(W(1.2)-N(1.2)) * O \times 3) 195 \cdot 195 \cdot 193$
195 CONT INUE
C
c
COMPUTE VOLUME OF EXTERNAL WING


```
C
    199 v=0.
        DO 205 I=2.NWAF
        DY=WAFORG(1,2)-WAFORG(1-1,2)
        El=.01*WAFORG(1-1,4)
        E2=.01*WAFORG(I.4)
        DO 200 J=2.NWAFOR
        OX= XAF(J)-XAF(J-1)
        DX1=DX*E1
        0\times2=0 X*E2
        DZ1=(WAFORD(I-1, 1,J-1)+WAFORD(1-1, 2,J-1)+WAFORD(1-1,1,J)+WAFORD(1-
        *1,2,J))*E1
            OZ2=(WAFORD(1, 1,J-1)+WAFORO(I,2,J-1)+WAFORD(I, 1,J)+WAFORD(1,2,J))*
        XE2
    200V=V+DY*(DX1*(2.*DZ1+DZZ)+DX2*(DZ1+2.*DZ2))/6.
    205 CONTINUE
        IF (J6) 790.208.208
            TRANSFORM WING COORDINATES FROM PCT-CHORD TO ACTUAL UNITS
            OF LENGTH, REFERRED TO COMMON ORIGIN OF PROBLEM. COMPUTE
            MAXIMUM ORDINATE OF EACH AIRFOIL.
208 DO 215 1=1,NWAF
    E=.01*WAFORG(1,4)
    E3=WAFORG(1.3)
    DO 210 J=1.NWAFOR
    WAFORD(I , 1, J)=E*WAFORD(1, 1, J)+E3
    WAFORD(I,2,J)=-E*WAFORD (I,2,J)+E3
210 WAFORD(1,3,J)=WAFORG(I,1)+E*XAF(J)
215 CONTINUE
    DO 219 I=1,NWAF
    DO 216 J=2,NWAFOR
    K=J-1
    IF (WAFORD(I.1,K)-WAFORD(1,1,J)) 216,217.217
216 CONTINUE
217 ORDMAX(I.1)=WAFORD(I,1.K)
    DO 218 J=2.N'NAFOR
    K=J-1
    IF (WAFORD(I,2.K)-WAFORD(I,2.J)) 219.219.218
218 CONTINUE
219 ORDMAX(1,2)=WAFORD(I,2,K)
800 IF (J4-1) 825.905.825
805 DO 815 I=1.2
    J=3-1
    E=.O1*FINORG(J.4)
    E2=FINORG(J.2)
    DO 810 K=1.NFINOR
    EE=FINORD(1,1,K)*E
    FINORO(J,1,K)=E2+EE
```



```
    FINORD (J.2.K)=E2-EE
    810 FINORD(J.3.K)=FINORG(J.1)+E*XFIN(K)
    815 CONTINUE
    FINMX1=0.
    FINMX2=0.
    DO 820 K=1,NFINOR
    FINMXI=MAXIF(FINMX1,FINORD(1,!,K))
    820 FINMX2=MAXIF(FINMX2,FINORD(2,1,K))
    FINTH1=2.*(FINMX1-FINORG(1,2))
    FINTH2=2.*(FINMX2-FINORG(2.2))
    825 IF (J5-1) 220.830.220
    830 DO 840 K=1.2
        I=3-K
        E=.Cl*CANORG(1.4)
        E3=CANORG(1,3)
        DO 835 J=1.NCANOR
        CANORD(I 1 1 | J)=E *CANORD(1.1.J)+E 3
        CANORO(I,2,J)=-E*CANORD(1,2,J)+E3
    835CANORD(I C 3.J)=CANORG(1,1)+E*XCAN(J)
    84O CONTINUE
    DO 860 I=1.2
    OO 845 J=2,NCANOR
    k=J-1
    IF (CANORD(I,1.K)-CANORD(I.1.J)) 845.850.850
    845 CONT INUE
    850 CANMAX(1,1)=CANORD(I,1,K)
        DO 855 J=2.NCANOR
        K=J-1
        IF (CANORD(I,2.K)-CANORD(1,2.J)) 860.860.855
    855 CONTINUE
    360 CANMAX(I,2)=CANORD(I.2.K)
C
C
c
220 IF (J2-1) 290.225.290
225 N=NFUSOR
    ELL = XX
    SN=FUSARD(1)
    Se=FUSARD (N)
    NN=N-2
    DO 230 I=1,NN
    XF(I)=XFUS(I+1)/ELL
230 SF (I)=FUSARD(I+1)
    K=1
    CALL EMLORD(ELL,SN,SE,NN,XF,SF,FDRAG,R,K,L)
    WRITE OUTPUT TAPE 6.232.ABC
232 FORMAT(1H1SX12AG)
```



```
        GO TO (245.235.235).L
```

 235 WRITE OUTPUT TAPE 6.240.NCASE.L
 240 FORMAT (15HO CASE NO.I3.17H ERROR RETURN NO.12.28H FROM EMLORD
 \(\times\) FIT TO fuselage)
 GO TO 5
 245 WRITE OUTPUT TAPE 6.250.FDRAG
 250 FORMAT (47HO FUSELAGE AREA DISTRIBUTION (O/Q =F9.5.1H)/
 X/)
 \(\times 1(1)=0\).
 XI \((101)=X F \operatorname{SO}(N)\)
 Si(1)=SN
 SI(101)=SR
 DO \(275 \quad \mathrm{I}=2.100\)
 Z=1-1
 \(E X=.01 * Z\)
 XI(I) =EX*ELL
 SUM \(=0\) 。
 DO \(270 \mathrm{~J}=1\), NN
 \(Y=X F(J)\)
 \(E=(E X-Y) * * 2\)
 \(E 1=E X+Y-2 \cdot * E X * Y\)
 \(E 2=2 \cdot * \operatorname{SQRTF}(E X * Y *(1 \cdot-E X) *(1,-Y))\)
 1F (E-1.E-8) \(265,265.260\)
 \(260 E 3=.5 * E * L O G F((E 1-E 2) /(E 1+E 2))+E 1 * E 2\)
 GO TO 270
 265 E3=E1*E2
 270 SUM=SUM+E3*R(J)
 E4 = (ACOSF (1.-2.*EX)-(2.-4**EX)*SQRTF (EX-EX**2))/PI
 IF DIVIDE CHECK 275.275
 275 SI(I)=SN+(SB-SN)*E4+SUM
 DO \(282 \mathrm{M}=1.51\)
 Ni \(=M-1\)
 \(\mathrm{N} 2=\mathrm{N} 1+50\)
 WRITE OUTPUT TAPE 6.280.N1.XI(M).SI (M).N2.XI(M+50).SI (M+50)
 280 FORMAT (19,2F11.4.113.2F11.4)
 282 CONTINUE
 DO \(285 \quad \mathrm{I}=1.101\)
 \(285 \operatorname{RX}(I)=\operatorname{SQRTF}(S I(I) / P 1)\)
 c
C
C
$290 \times N=N X$
$N N=N X+1$
XL =NTHETA
LL =NTHETA + 1
DELTH=P1/XL
$A=1$.
c
DO $685 \mathrm{~K}=1 \mathrm{LL}$

```
    IF (J6) 1700,1490,1700
    1700 IF (K-(LL+1)/2) 1490.1490.1710
    1710 N=LL+1-K
    XXA(K)=XXA(N)
    XXB(K)=XXB(N)
    DO 172O J=1,NN
    DO 1720 I=1.6
    1720 S(I,J.K)=S(I,J.N)
    GO TO 685
1490 E=K-1
    THETA=- -5*PI +E*DELTH
    COSTH=COSF (THETA)
    SINTH=SINF(THETA)
    B=-BETA*COSTH
    C=-BETA*SINTH
C
C COMPUTE END-POINTS OF SEGMENT OF X-AXIS OUTSIDE OF WHICH
C S(X.THETA) IS ZERO FOR CURRENT VALUE OF THETA
C
    XA=0.
    XB=0.
    IF (J2) 1505.1505.1500
1500 XB=XX
1505 IF (J1) 1535.1535.1510
1510 DO 1530 1=1.NWAF
    IF (I-1) 1525.1515.1525
1515 IF (J2) 1520.1520.1525
1520 XA=WAFORG(1.1)+B*WAFORG(1.2)+C*NAFORG(1.3)
    XB=WAFORG(1, 1)+WAFORG(1.4)-E*WAFORG(1,2)+C*WAFORG(1,3)
    GO TO 1530
1525 XA=MINIF(XA.WAFORG(I,1)+B*WAFORG(1, 2)+C*WAFORG(1,3))
    XB=MAX1F(XB,WAFORG(I,1)+WAFORG(1,4)-B*WAFORG(I,2)+C*WAFORG(I,3))
1530 CONTINUE
1535 IF (J3) 1570.1570.1540
1540 DO 1565 I=1.NPOD
    DO 1560 J=1.NPODOR
    XA=MINIF(XA,PODORG(1,1)+XPOD(I,J)+B*(PODORG(1,2)+COSTH*PODORD(I , J)
    X)+C*(PODORG(1,3)+SINTH*PODORD(I,J)))
    XB=MAXIF(XB,PODORG(I,1)+XPOD(I,J)-E*(PODORG(1,2)+COSTH*PODORD(I,J)
    X)+C*(PODORG([.3)-SINTH*POOORO(I , J)))
1560 CONTINUE
1565 CONTINUE
1570 IF (J4) 1610.1610.1575
1575 DO 1605 I=1,?
    IF (I-1) 1600.1580.1600
1580 1F (J1) 1585.1585.1600
1585 IF (J2) 1590.1590.1600
```



```
1590 IF (J3) 1595.1595.1600
1595 XA=FINORG(1.1)+B*FINORG(1,2)+C*FINORG(1.3)
    XB=FINORG(1,1)+FINORG(1,4)-E*FINORG(1,2)+C*FINORG(1.3)
    GO TO 1605
1600 XA=MIN1F(XA,FINORG(1,1)+S*FINORG(I,2)+C*FINORG(I, 3))
    XB=MAXIF(XB,FINORG(1,1)+FINORG(I,4)-E*FINORG(1,2)+C*FINORG(1,3))
1605 CONTINUE
1610 IF (J5) 1655.1655.1615
1615 DO 1650 I=1.2
    IF (I-1) 1645.1620.1645
1620 IF (J1) 1625.1625.1545
1625 IF (J2) 1630.1630.1645
1630 IF (J3) 1635.1635.1645
1635 IF (J4) 1640.1640.1645
1640 <A=CANORG(1.1)+B*CANORG(1,2)+C*CANORG(1.3)
    XB=CANORG(1, 1) +CANORG(1,4)-B*CANORG(1,2) +C*CANORC(1,3)
    GO TO 1650
1645 XA=MIN1F(XA,CANORG(1,1)+B*CANORG(1,2)+C*CANORG(1,3))
    XB=MAXIF(XB,CANORG(I,1)+CANORG(1,4)-B*CANORG(I,2)+C*CANOPG(1,3))
1650 CONTINUE
1655 XXA(K)= XA
    XXB(K)=XB
    DELX=(XB-XA)/XN
    DDELX=.OOO1*DELX
C
    DO 680 J=1,NN
    E=J-1
    X=XA +E*DELX
    IF (J-1) 294,292.294
    292 X=X+DOELX
    GO TO 298
    294 IF (J-NN) 298.296.298
    296 x = X-DDELX
    298 SUM=0.
    IF (J1)410.410.300
C
C COMPUTE S(X,THETA) FOR WINT
C
300 SUM=0.
    DO 405 M=1.2
    EE=(-1.)**(M-1)
    N=NWAF
    P(1,1)=WAFORG(1,1)
    P(2,1)=WAFORG(N,1)
    P(3.1)=WAFORG(1.4)+P(1.1)
    P(4,1)=WAFORG(N,4)+P(2,1)
    P(1,2)=WAFORG(1,2)*EE
    P(2,2)=WAFORG (N,2)*EE
    P(3,2)=P(1,2)
```



```
    P(4,2)=P(2,2)
    P(1,3)=ORDMAX (1, 2)
    P(2,3)=ORDMAX(N+2)
    P(3,3)=P(1,3)
    P(4.3)=P(2,3)
    P(5.3)=ORDMAX(1,1)
    P(6:3)=ORDMAX(N:1)
    P(7,3)=P(5,3)
    P(8,3)=P(6.3)
    DO 305 L=1,4
    P(L+4,1)=P(L,1)
305P(L+4,2)=P(L,2)
    IF (SWING(A,B,C.X.P)) 306.306.310
306 IF (KATE) 405.405.310
310 DO 400 L=2.NWAF
    IF (NWAF-2) 312.340.312
312 IF (L-2) 315.330.315
315P(1.1)=WAFORG(L-1.1)
    P(3.1)=WAFORG(L-1.4)+P(1.1)
    P(5.1)=P(1.1)
    P(7.1)=P(3.1)
    DO 320 1=1.7.2
320 P(I, 2)=P(I+1,2)
    P(1.3)=ORDMAX(L-1.2)
    P(3,3)=P(1,3)
    P(5.3)=ORDMAX(L-1.1)
    P(7.3)=P(5.3)
330P(2,1)=WAFORG(L,1)
    P(4,1)=WAFORG(L,4)+P(2,1)
    P(2,2)=WAFORG(L,2)*EE
    P(4.2)=P(2.2)
    P(2,3)=ORDMAX(L,2)
    P(4,3)=P(2,3)
    P(6,3)=ORDMAX(L,1)
    P(8,3)=P(6.3)
    DO 335 I=2.4.2
    P(I+4, 1)=P(! ! 1)
335P(I+4,2)=P(1,2)
    IF (SWING(A,B,C,X,P)) 400.400.340
340 NU=0
    DO 395 N=2,NWAFOR
    IF (N-2)345.370.345
345 DO 365 I=1.6
    IF (I - 3) 355.365.350
350 IF (I-4) 365.365.355
355 DO 360 INK=1.3
360 P(I,INK)=P(I+2.INK)
```

```
    365 CONT INUE
    370 P(3,1)=WAFORD(L-1,3,N)
        P(4,1)=WAFORD(L,3,N)
        P(7,1)=P(3,1)
        P(B,1)=P(4,1)
        P(3,2)=P(1,2)
        P(4,2)=P(2,2)
        P(7.2)=P(5,2)
        P(8,2)=P(6,2)
        P(3,3)=WAFORD(L-1,2,N)
        P(4,3)=WAFORD (L, 2,N)
        P(7.3)=WAFORD (L-1, 1,N)
        P(8,3)=WAFORD(L,1,N)
        IF (N-2) 380.375.380
    375 P(1.3)=WAFORD(L-1.2.1)
        P(2.3)=WAFORD (L.2.1)
        P(5,3)=WAFORD(L-1,1,1)
        P(6,3)=WAFORD(L.1,1)
    380 E=SWING(A,B,C,X,P)
    IF (J6-40) 384,384, 381
    381 IF (ABSF(THETA)-.01) 382.382.384
    382 WRITE OUTPUT TAPE 6.383.X.THETA,M,L.N.E
    383 FORMAT(4HO X=F8.2.7H THETA=FG.2,3H M=I1.3H L=I2.3H N=I2.3H E=F8.2,
        X/1
        WRITE OUTPUT TAPE 6.1383.((P(I,INK),I=1,8),INK=1,3)
    1383 FORMAT (20X,8F10.2)
    384 SUM=E+SUM
        IF (E) 385,390.385
    385 NU=1
    GO TO 395
    390 IF (NU) 400.395.400
    3 9 5 ~ C O N T I N U E
    4 0 0 ~ C O N T I N U E ~
    4 0 5 ~ C O N T I N U E ~
        S(1,J,K)=SUM
    410 IF (J2) 435,435.415
C
C
C
415 N=101
    MU=0
    E=O.
    CALL SPOD(N,BETA,X,THETA,XI,RX,E,E,E,AREA,MU)
    IF (MU-1) 420.430.420
420 WRITE OUTPUT TAPE 6.425.NCASE
425 FORMAT (15HO CASE NO.I 3.45H ERROR RETURN FROM SPOD SUBROUTINE
    X(FUSELAGE))
    GO TO 5
430 S(2,J,K)=AREA
```

```
    435 IF (J3) 470.470.440
C
C
C
    440 SUM=0.
        DO 465 L=1.NPOD
        XZERO=PODORG (L,1)
        ZZERO=PODORG(L,3)
        DO 445 N=1.NPODOR
        XP(N)=XPOD(L,N)
    445 RP(N)=PODORD(L,N)
        DO 460 M=1.2
        EE=(-1.)**(M-1)
        YZERO=PODORG(L,2)*EE
        MU=O
        CALL SPOD(NPODOR,BETA,X,THETA,XP,RP, XZERO,YZERO,ZZERO,AREA,MU)
        IF (MU-1) 450.460.450
    450 WRITE OUTPUT TAPE 6.455,NCASE,L
    455 FORMAT (15HO CASE NO.13.22H
        GO TO 5
    4 6 0 ~ S U M = ~ S U M + A R E A ~
    4 6 5 ~ C O N T I N U E
        S(3,J,K)=SUM
    470 IF (J4) 575.575.475
C
c
C
    475 IF (NFIN-1) 575,480,480
    480 SUM=0.
        DO 570 L=1.NFIN
        EE=(-1.)**(L-1)
        P(1,1)=FINORG(1,1)
        P(3.1)=FINORG(1.4)+P(1.1)
        P(5.1)=FINORG(2.1)
        P(7.1)=FINORG(2,4)+P(5,1)
        P(1,2)=FINMX1*EE
        P(2,2)=(FINMX1-FINTH1)*EE
        P(5,2)=FINMX2*EE
        P(6.2)=(FINM\times2-FINTH2)*EE
        P(1,3)=FINORG(1,3)
        P(5.3)=FINORG(2.3)
        DO 485 M=1,7,2
    485 P(M+1,1)=P(M,1)
        P(3,2)=P(1,2)
        P(4,2)=P(2,2)
        P(7,2)=P(5,2)
        P(8,2)=P(6.2)
```



```
    DO 505 M=2,4
    P(M,3)=P(1,3)
    505 P(M+4,3)=P(5,3)
    IF (SWING(A,B,C,X,P)) 570,570,510
    510 NU=0
    DO 565 M=2,NFINOR
    IF (M-2) 515.540.515
    515 DO 535 N=1.6
        IF (N-3) 525.535.520
    520 IF (N-4) 525.535.525
    525 DO 530 I=1,3
    530 P(N.1)=P(N+2.1)
    5 3 5 \text { CONTINUE}
    540 P(3,1)=FINORD(1,3,M)
    P(4,1)=P(3,1)
    P(7,1)=FINORD(2,3,M)
    P(8,1)=P(7,1)
    P(3,2)=FINORD(1,1,M)*EE
    P(4,2)=FINORD(1,2,M)*EE
    P(7,2)=FINORD(2,1,M)*EE
    P(8,2)=FINORD (2,2,4)*EE
    P(3,3)=FINORG(1,3)
    P(4,3)=P(3,3)
    P(7,3)=FINORG(2.3)
    P(8,3)=P(7,3)
    IF (M-2) 550.545.550
    545 P(1,2)=FINORD(1,1,1)*EE
    P(2,2)=FINORO(1, 2,1)*EE
    P(5,2)=FINORD (2,1,1)*EE
    P(6,2)=FINORO(2,2,1)*EE
    550 E=SWING(A,B,C,X,P)
    SUM=E+SUM
    IF (E) 555.560.555
    555 NU=1
    GO TO 565
    560 IF (NU) 570.565.570
    5 6 5 ~ C O N T I N U E ~
    570 CONTINUE
    S(4,J,K)=SUM
    575 IF (J5) 672.672.580
C
C
C
580 SUM=0.
    DO 670 L=1.2
    EE=(-1.)**(L-1)
    P(1,1)=CANORG(1,1)
    P(2,1)=CANORG(2,1)
    P(3.1)=CANORG(1,4)+P(1.1)
```

```
    P(4,1)=CANORG(2,4)+P(2,1)
    P(1,2)=CANORG (1,2)*EE
    P(2,2)=CANORG (2,2)*EE
    P(1,3)=CANMAX(1,2)
    P(2,3)=CANMAX (2,2)
    P(5,3)=CANMAX (1,1)
    P(6,3)=CANMAX (2,1)
    DO 585 M=1.4
585P(M+4.1)=P(M.1)
    DO 590 N=1.2
    DO 590 M=2.6.2
    I=M+N
590 P(1,2)=P(N,2)
    DO 605 N=1.6
    IF (N-3) 600.605.595
595 IF (N-4) 600.605.600
600 P(N+2.3)=P(N,3)
6 0 5 ~ C O N T I N U E ~
    IF (SWING(A.B.C.X.P)) 670.670.610
610 NU=0
    DO 665 M=2.NCANOR
    IF (M-2) 615,640.615
615 DO 635 N=1.6
    IF (N-3) 625.635,620
620 IF (N-4) 625.635.625
625 DO 630 I=1,3
630 P(N.I)=P(N+2.1)
6 3 5 ~ C O N T I N U E ~
640 P(3.1)=CANORD(1.3.M)
    P(4,1)=CANORD (2,3.M)
    P(7,1)=P(3,1)
    P(8,1)=P(4,1)
    P(3,2)=P(1,2)
    P(4,2)=P(2,2)
    P(7,2)=P(5,2)
    P(8,2)=P(6,2)
    P(3,3)=CANORD(1,2,M)
    P(4.3)=CANORD(2.2,M)
    P(7,3)=CANORD(1,1,M)
    P(8,3)=CANORD(2,1,M)
    IF (M-2) 650.645,650
645P(1.3)=CANORD(1.2.1)
    P(2,3)=CANORD (2,2,1)
    P(5.3)=CANORD(1.1.1)
    P(6,3)=CANORD(2,1,1)
650 E=SWING(A,B,C,X,P)
    SUM=E+SUM
```

```
```

 IF (E) 655.660.655
    ```
```

 IF (E) 655.660.655
 655 NU=1
 655 NU=1
 GO TO 665
 GO TO 665
 660 IF (NU) 670.665.670
 660 IF (NU) 670.665.670
 665 CONTINUE
 665 CONTINUE
 670 CONT INUE
 670 CONT INUE
 S(5,J,K)=SUM
 S(5,J,K)=SUM
 672 SUM=0.
 672 SUM=0.
 DO 675 I=1.5
 DO 675 I=1.5
 IF (JJ(1)) 673.675.673
 IF (JJ(1)) 673.675.673
 673 SUM=SUM+S(I:J:K)
 673 SUM=SUM+S(I:J:K)
 675 CONTINUE
 675 CONTINUE
 S(G.J.K)=SUM
 S(G.J.K)=SUM
 6 8 0 ~ C O N T ~ I N U E ~
 6 8 0 ~ C O N T ~ I N U E ~
 685 CONTINUE
 685 CONTINUE
 c
c
C
C
C
C
C
C
COMPUTE DRAG OF AREA DISTRIBUTION CORRESPONDING TO
COMPUTE DRAG OF AREA DISTRIBUTION CORRESPONDING TO
A PARTICULAR VALUE OF THETA
A PARTICULAR VALUE OF THETA
NU=NX-1
NU=NX-1
OO 690 J=1.NU
OO 690 J=1.NU
E=J
E=J
690 XF(J)=E/XN
690 XF(J)=E/XN
SUM=0.
SUM=0.
KK=LL
KK=LL
DO 745 K=1,LL
DO 745 K=1,LL
IF (J6) 691.694.691
IF (J6) 691.694.691
691 IF (K-(LL+1)/2) 694.694.592
691 IF (K-(LL+1)/2) 694.694.592
6 9 2 ~ N = L L + 1 - K
6 9 2 ~ N = L L + 1 - K
DRAGTH(K)=DRAGTH(N)
DRAGTH(K)=DRAGTH(N)
GO TO 712
GO TO 712
694 E=K-1
694 E=K-1
THETA=-0.5*PI +E*DELTH
THETA=-0.5*PI +E*DELTH
SN=S(6,1,K)
SN=S(6,1,K)
SB=S (6,NN,K)
SB=S (6,NN,K)
DO 695 J=1.NU
DO 695 J=1.NU
695 SF (J)=S(6,J+1,K)
695 SF (J)=S(6,J+1,K)
ELL = X XB(K) - X XA(K)
ELL = X XB(K) - X XA(K)
CALL EMLORD(ELL,SN,SB,NU,XF,SF,E,R,K,L)
CALL EMLORD(ELL,SN,SB,NU,XF,SF,E,R,K,L)
GO TO (710.700.700).L
GO TO (710.700.700).L
700 WRITE OUTPUT TAPE 6.705.NCASE.L.THETA
700 WRITE OUTPUT TAPE 6.705.NCASE.L.THETA
705 FORMAT (15HO CASE NO.I 3.17H ERROR RETURN NO.I2.31H FROM EMLORD
705 FORMAT (15HO CASE NO.I 3.17H ERROR RETURN NO.I2.31H FROM EMLORD
X SUBROUTINE, THETA=F7.4)
X SUBROUTINE, THETA=F7.4)
KK=K
KK=K
GO TO 74B
GO TO 74B
710 DRAGTH(K)=E
710 DRAGTH(K)=E
C

```
C
```

C
C

```
    COMPUTE DRAG OF ENTIRE AIRCRAFT
```

```
    COMPUTE DRAG OF ENTIRE AIRCRAFT
```

```
    712 IF(XMODF((K-1),NTHETA)) 720.715.720
    715 E=14.
        GO TO 740
    720 IF (XMODF((K-1).4)) 730.725.730
    725 E=28.
        GO TO 740
    730 E=64.
        IF(XMODF(K.2))}735.740.73
    735 E=24.
    740 SUM=SUM+E*DRAGTH(K)
    745 CONTINUE
    DRAG=SUM/(45.*XL)
    748 WRITE OUTPUT TAPE 6.232.ABC
        WRITE OUTPUT TAPE 6.750
    750 FORMAT (57HO D/Q ASSOCIATED WITH VARIOUS VALUES OF THET
        *A/ノ)
        WRITE OUTPUT TAPE 6.755
    755 FORMAT (55HO N
        THETA
        0/O/
        x/)
            J=XMINOF(KK,LL)
            DO 765 K=1.J
            N=K-1
            E=K-1
            THETA=(E*OELTH- 5*PI)*180./PI
            WRITE OUTPUT TAPE 6.760.N.THETA.DRAGTH(K)
    760 FORMAT(II5,F2O.3.F23.5)
    765 CONTINUE
            IF (KK-LL) 780.770.780
    770 WRITE OUTPUT TAPE 6.775,DRAG
    775 FORMAT (1HO 17X 26HD/Q FOR ENTIRE AIRCRAFT = F12.5)
C
C
C
    780 1F (J1) 781.795.781
    781 SUM1=0.
    DO 789 K=1.LL
    SUM2=0.
    DO 783 J=1.NN
    E=FLOATF(2*\timesMODF (J-1,2)+2)
    IF (XMODF (J-1,NX)) 783.782.783
782 E=1.
783 SUM2=SUM2+E*S(1,J.K)
    E2=SUM2* (XXB(K)-XXA(K))
    IF (XMODF(K-1,NTHETA)) 785.784.785
784 E=14.
    GO TO 789
785 IF (XMODF (K-1.4)) 787.786.787
```



```
786 E=28.
    GO TO }78
787 E=64.
    IF (XMODF(K.2)) 788.789.788
788 E=24.
7 8 9 ~ S U M 1 = S U M I ~ + E * E 2 ~
    VWING=SUM1/(135**XN*XL)
7 9 0 \text { WRITE OUTPUT TAPE 6.791.V}
791 FORMAT(44HO VOLUME OF FNTIRE WING = 1PE:2.5)
    IF (J6) 5.792.792
792 WRITE OUTPUT TAFE 6.793.VWING
793 FORMAT(44HO VOLUME OF EQUIVALENT BODY = 1PE12.5)
7 9 5 ~ W R I T E ~ O U T P U T ~ T A P E ~ 6 . 7 9 6 . A B C ~
796 FORMAT(1H12.3\times12A6)
    IF (J1) 900.900.910
9 0 0 ~ C A L L ~ T A B O U T ( J J . S . X X A , ~ X X B , N X . N T H E T A ) ,
    GO TO 5
910 IF (J2) 900.900.920
920 IF (J3+J4+J5) 900.930.900
930 DO 940 I=1.NFUSOR
    IF (FUSARD(I)) 940.940.90n
940 CONTINUE
    CALL WEBOUT (JJ.S.XXA, XXB,NX,NTHETA)
    GO TO 5
9 9 0 ~ I F ~ D I V I D E ~ C H E C K ~ 9 9 1 . 9 9 3 ~
991 WRITE OUTPUT TAPE 6.992
9 9 2 ~ F O R M A T ( I H I / 4 2 H O D I V I D E ~ C H E C K ~ O N ~ W H E N ~ S U C C E S S ~ S T O P ~ R E A C H E D ) ,
    GO TO 995
9 9 3 ~ W R I T E ~ O U T P U T ~ T A P E ~ 6 . 9 9 4 ~
9 9 4 ~ F O R M A T ( 1 H 1 / 2 1 H O S U C C E S S ~ S T O P ~ R E A C H E D ) , ~
9 9 5 ~ C A L L ~ E X I T ~
    GO TO }99
    END
```

SUBROUTINE EMLORD (ELL, SN, SB, NN, XX, SS, DRAG•R,K•L)

DIMENSION AA (49), B(49.49),C(49), P(49.49),Q(49),R(49), SS(49). $\mathrm{C} \times(49)$
$\operatorname{ACOSF}(x)=\operatorname{ARTNQF}(\operatorname{SQRTF}(1 \cdot-x * * 2) \cdot x)$
$P I=3.141592654$
$D R A G=0$.
IF (K-1) 390.328.390
328 DO $341 \quad N=1 \cdot N N$
$X=X \times(N)$
$Q(N)=(A C O S F(1 \cdot-2 * * x)-(2 \cdot-4 \cdot * x) * \operatorname{SQRTF}(x-x * * 2)) / P I$
DO $338 \mathrm{M}=\mathrm{N}, \mathrm{NN}$
$Y=X X(M)$
IF (M-N) 330.331.330
$330 \mathrm{~B}(\mathrm{M}, \mathrm{N})=0$.
GO TO 332
$331 B(M, N)=1$.
$332 E=(X-Y) * * 2$
$E 1=X+Y-2 \cdot * X * Y$
$E 2=2 \cdot * \operatorname{SQRTF}(X * Y *(1 *-X) *(1 \cdot-Y))$
IF (E) 336,337,336
$336 \mathrm{P}(\mathrm{M}, N)=.5 * E * \operatorname{LOGF}\left(\left(E_{1}-E 2\right) /(E 1+E 2)\right)+E 1 * E 2$
GO TO 338
$337 P(M, N)=E 1 * E 2$
338 CONTINUE
$N K=N-1$
IF (NK) 341.341.339
339 DO $340 \quad M=1$.NK
$E=P(N, M)$
$P(M, N)=E$
$340 \quad B(M, N)=0$.
341 CONTINUE
$D=0$ 。
$L=X S I M E Q F(49 \cdot N N, N N, P, C, D, A A)$
GO TO (390.399.399).L
390 DO $392 N=1$. NN
$392 C(N)=S S(N)-S N-(S B-S N) * Q(N)$
DO $394 M=1$, NN
SUM $=0$.
DO $393 \mathrm{~N}=1$.NN
393 SUM $=S U M+P(M, N) * C(N)$
$394 R(M)=S U M$
$S \cup M=0$.
DO $395 M=1 \cdot N N$
$395 S \cup M=S \cup M+R(M) * C(M)$
DRAG $=(4 * *(S B-S N) * * 2 ノ P I+S U M * P I) / E L L * * 2$
399 RETURN
END

c
FUNCTION INLAP(A, 日, C,D,P,P1,P2)
DIMENSION P(3),P1(3),P2(3)
c
EPS $=1 \cdot F-6$
$L=1$
$E_{1}=A * P_{1}(1)+B * P_{1}(2)+C * P_{1}(3)-D$
IF (ABSF (E1)-EPS) $10,10,20$
$10 \mathrm{~L}=2$
$20 E 2=A * P 2(1)+B * P 2(2)+C * P 2(3)-D$
IF (ABSF (E2)-EPS) $30 \cdot 30.70$
30 GO TO (40.60).L
40 DO $50 \quad 1=1 \cdot 3$
50 P(I)=P2(I)
$M=1$
GO TO 150
$60 M=$?
GO TO 150
70 GO TO (100.80).L
80 DO $90 \quad \mathrm{l}=1,3$
$90 \mathrm{P}(1)=\mathrm{P} 1$ (1)
$M=1$
GO TO 150
100 DX=P2(1)-P1(1)
$D Y=P 2(2)-P 1(2)$
$D Z=P 2(3)-P 1(3)$
$E 3=A * D X+B * D Y+C * D Z$
IF (ABSF (E3)-EPS) $110,110,120$
$110 \mathrm{M}=3$
GO TO 150
$120 \mathrm{~T}=-\mathrm{E}_{1} / \mathrm{E}_{3}$
$P(1)=P 1(1)+T * D X$
$P(2)=P 1(2)+T * D Y$
$P(3)=P 1(3)+T * D Z$
$M=1$
150 I NLAP $=M$
c
C
$M=1 \ldots$ NORMAL RETURN, PT. COORDS. STORED IN P-ARRAY
$M=2--$ LINE LIES IN PLANE
$m=3$--- LINE PARALLEL TO PLANE
RETURN
END
SUBROUTINE WEBOUT (JJ,S, XXA, XXB,NX,NTHETA)
DIMENSION JJ(7),S(6.51,37),XXA(37), XXE(37), TH(5.8), E(10),ELL(37),
XZ(4)
C

```
    XN=NX
    NN=NX+1
    XL =NTHETA
    LL =NTHETA+1
    DO 2 K=1.LL
    2 ELL(K)=XXB(K)-XXA(K)
    DELTH=180./XL
    M=LL/5+1
    MA = XMODF (LL,5)
    IF (MA) 10.5.10
    5 MA=5
        M=M-1
10 DO 15 L=1,M
    E1=L-1
    DO 15 K=1.5
    E2=K-1
15 TH(K.L)=-90.+(5.*E1+E2)*DELTH
    WRITE OUTPUT TAPE 5.18
18 FORMAT (1HO 44X 15HS(X,THETA) FOR )
20 FORMAT(1H1 44X 15HS(X,THETA) FOR )
    WRITE OUTPUT TAFE 6.25
25 FORMAT(1H+ 59X 15HENTIRE AIRCRAFT)
    OO 100 L=1.M
    LU=5*(L-1)
    N=5
    IF (L-M) 40.35,40
35 N=MA
40 N2=2*N
    WRITE OUTPUT TAPF 6.42
42 FORMAT (1HO4\times7HTHETA =4(17\times7HTHETA = ))
    WRITE OUTPUT TAPE 6,45.(TH(K,L),K=1,N)
45 FORMAT(1H+F18.2.4F24.2)
    IF (NX-50) 46.48.48
4 6 ~ W R I T E ~ O U T P U T ~ T A P E ~ 6 . 4 7 ~
4 7 ~ F O R M A T ( 1 H ) ,
48 WRITE OUTPUT TAPE 6.50
50 FORMAT(1H 5X1H\times9\times1HS4(13\times1H\times9\times1HS))
    DO 65 J=1.NN
    E1=J-1
    E2=E1/XN
    DO 55 KK=1,N
    K=LU+KK
    E(2*KK-1)=XXA(K)+E2*ELL(K)
55 E(2*KK)=S(6,J,K)
```


WRITE OUTPUT TAPE 6.60.(E(I),I=1,N2)
60 FORMAT(1H 2F10.3.4×2F10.3.4×2F10.3.4×2F10.3.4×2F10.3)
65 CONTINUE
IF (L-M) 70.100.100
70 IF $(N X-23) 75,90,70$
75 IF $(N X-13) 85,85,80$
80 IF (XMODF (L, 2)) 100.90.100
85 IF (XMODF (L,3)) 100,90,100
90 WRITE OUTPUT TAPE 6,20
WRITE OUTPUT TAPE 6. 25
100 CONTINUE
WRITE OUTPUT TAPE 6.110
110 FORMAT 11 H115×41HAREA DISTRIBUTION OF WING EQUIVALENT BODY/IHO22×1H
$\times \times 26 \times 1 \mathrm{HS} / / 1$
$Z(1)=32$.
$Z(2)=14$ 。
$Z(3)=32$ 。
$Z(4)=12$.
DO $170 \quad \mathrm{I}=1 \cdot \mathrm{NN}$
$x I=1-1$
$x=X \times A+X I * E L L / X N$
SUM $=0$ 。
DO $150 \mathrm{~J}=1$ LL
IF (J-1) $130 \cdot 120,130$
$120 \mathrm{E}=7$.
GO TO 150
130 IF (J-LL) $140 \cdot 120.140$
$140 K=\operatorname{XMODF}(J, 4)+1$
$E=Z(K)$
150 SUM $=$ SUM $+E * S(1,1, J)$
$E=$ SUM $/ X L / 22.5$
WRITE OUTPUT TAPE 6.160.X.E(1)
160 FORMAT (2F27.3)
170 CONTINUE
RETURN
END

SUBROUTINE TABOUT (JJ•S•XXA•XXB,NX,NTHETA)
c
DIMENSION JJ(7), S(6.51.37), XXA(37), XXE(37), TH(5), E(10), ELL(37). XJAY(5)
C
$X N=N X$
$N \times 1=N X+1$
$N=$ NTHETA +1
DO $10 \mathrm{~K}=1 . \mathrm{N}$
$10 E L L(K)=\times \times B(K)-\times \times A(K)$
$M=1$
IF (NTHETA-4) 40.40 .20
20 IF (JJ(6)) 30,30.60
$30 \mathrm{M}=\mathrm{NTHE} T \mathrm{TA} / 4$
40 DO $50 \mathrm{~K}=1.5$
$E=K-1$
TH $(K)=-90 .+E * 45$.
50 JAY $(K)=1+(K-1) * M$
GO TO 80
60 JAY $(1)=1+$ NTHETA/2
JAY(5) =NTHETA + 1
$J A Y(3)=(J A Y(1)+J A Y(5)) / 2$
$J A Y(2)=(1+J A Y(1)+J A Y(3)) / 2$
$\operatorname{JAY}(4)=(\operatorname{JAY}(3)+\operatorname{JAY}(5)) / 2$
XL = NTHETA
DELTH=180./XL
$0070 \quad K=1.5$
$E=J A Y(K)-1$
$70 \mathrm{TH}(\mathrm{K})=-90 \cdot+E * D E L T H$
80 WRITE OUTPUT TAPE 6.90
90 FORMAT (1 HO $44 \times 30 H S(X$. THETA) FOR ENTIRE AIRCRAFT) WRITE OUTPUT TAPE 6.100. (TH(K),K=1,5)
100 FORMAT (1 HOS (5X7HTHETA $=F 7.2 .4 \times$))
WRITE OUTPUT TAPE 6.110
110 FORMAT(1HOS(6X1HX10X1HS5X))
OO $140 \mathrm{~J}=1 \cdot N \times 1$
E1=Jー1
$E 2=E 1 / X N$
DO $120 K=1.5$
$N=J A Y(K)$
$E(2 * K-1)=\times \times A(N)+E 2 * E L L(N)$
$120 E(2 * K)=S(6 . J . N)$
WRITE OUTPUT TAPE 6.130. (E(I), I=1,10)
130 FORMAT(1H 5(F10.3.F11.3.2X))
140 CONTINUE
RETURN
END

```
=-
```

 FUNCTION SWING (A,B,C,D,D)
 c
DIMENSION H(100.2),P(8,3),P1(3),P2(3),R(3)
c
SWING=0.
$E P S=.00005$
$K=0$
$\mathrm{L}=0$
$5 K=K+1$
$N=(K-1) / 4$
$K K=0$
IF (K-4) 10.10.15
$101=2 * K-1$
GO TO 40
15 IF $(K-6) 20,20,25$
$20 \quad 1=K-4$
GO TO 40
25 IF $(K-8) 30 \cdot 30 \cdot 35$
30 1=K-2
GO TO 40
$35 \mathrm{I}=\mathrm{K}-8$
$40 \mathrm{~J}=\mathrm{I}+2 * * \mathrm{~N}$
$M=3-\times M O D F(N+1,3)$
DO $45 K K=1.3$
$P 1(K K)=P(1, K K)$
$45 \mathrm{P} 2(K K)=\mathrm{P}(J, K K)$
NU=INLAP (A,B,C,D,R,P1,P2)
GO TO (55.50,70),NU
$50 \mathrm{~L}=\mathrm{L}+1$
$H(L, 1)=P(1,2)$
$H(L, 2)=P(1,3)$
$L=L+1$
$H(L, 1)=P(J, 2)$
$H(L, 2)=P(J, 3)$
$K K=1$
GO TO 70
55 IF (R(M)+EPS-MIN1F(P(I,M).P(J.M))) 70.60.60
60 IF (R(M)-EPS-MAXIF(P(I.M),P(J,M))) 65:65.70
$65 \mathrm{~L}=\mathrm{L}+1$
$H(L, 1)=R(2)$
$H(L, 2)=R(3)$
$K K=1$
70 IF (KK) 75.110.75
75 IF (L-1) 110.110.80
$80 \mathrm{~L}=\mathrm{L}-1$
DO 90 LL=1.L1
IF (ABSF(H(L.1)-H(LL.1))-EPS) $85.85 \cdot 90$

```
    85 IF (AESF(H(L.2)-H(LL.2))-EPS) 105.105.90
    90 CONTINUE
        IF (K-4) 5.95.100
    95 IF (L-4) 5,120,120
100 IF (L-6) 110.120.120
105 L=L-1
110 1F (K-12) 5.115.115
115 IF (L-3) 125.120.120
120 SWING=SNGON(L,H)
125 RETURN
    END
```

```
    SUBROUTINE SPOD(N, BETA,EX,THETA,X,R,XZERO,YZERO,ZZERO,S,MU)
    BC=日ETA*COSF(THETA)
    BS=BETA*SINF (THETA)
    PI=3.141592654
    A =EX+YZERO*EC + ZZERO*ES - XZERO
    M=16
    XM=M
    SUM=O.
    MM = - 5
    EPS=10.**MM
    DO12OI=1.M
    xI=1
    PHI=2.*PI* *I/XM
    DPHI=180.*PHI/PI
    T=BETA*COSF(THETA-PHI)
    IF (ABSF(T)-EPS) 5.45.45
    5 lF(A-X(1)) 10.10.15
10 RHO=R(1)
    GO TO }8
15 IF (A-X(N)) 25.20.20
20 RHO=R(N)
    GO TO 85
25 DO 30 J=2,N
    K=J
    IF (A-X(K)) 40.35.30
30 CONTINUE
35 RHC=R(K)
    GO TO 85
40 RHO=R(K-1)+(R(K)-R(K-1))/(X(K)-X(K-1))*(A-X(K-1))
    GO TO 85
45 E=1 */T
    OO 75 K=1,N
    xx=x(K)-T*R(K)
    IF (A-XX) 50.50.75
50 IF (K-1) 55,55.60
55 RHO=R(1)
    GO TO 85
60 D=(R(K)-R(K-1))/(X(K)-X(K-1))
    IF (D-E) 70.65.70
65MU=2
    GO TO 125
70 B1=R(K-1)-D* (K(K-1)
    B2=-A*E
    RHO=(B2*D-B1*E)/(D-E)
    GO TO 85
75 CONTINUE
```

c
C

CONFILETNTAL

```
    80 RHO=R(N)
    85 IF (MU) 90.115.70
    90 1F (I-1) 105.95.105
    95 WRITE OUTPUT TAPE 6.100
100 FORMAT (56HO PHI RHO
    X//1
105 WRITE OUTPUT TAPE 6.110.I.DPHI,RHO
110 FORMAT(I16.F21.3.F21.4)
115 8=1.+MODF(XI,2.)
120 SUM=SUM+B*RHO
    S=4.*PI*SUM**2/(9**XM**2)
    MU=1
125 RETURN
    END
```

```
#
```

FUNCTION SNGON(N,O)

C
c
$E=P(1,1)$
DO $5 K=2 \cdot N$
$5 E=M \operatorname{INIF}(P(K, 1), E)$
DO $10 \mathrm{~K}=1 . \mathrm{N}$
L $=K$
IF (E-P(K.1)) 10.15 .10
10 CONTINUE
$15 \mathrm{IF}(L-1) 20,30,20$
20 DO $25 K=1,2$
$E=P(1, K)$
$P(1, K)=P(L, K)$
$25 P(L, K)=E$
c
c
c
$300085 K=2 \cdot N$
$35 \mathrm{DX}=\mathrm{P}(\mathrm{K}, 1)-\mathrm{P}(1 \cdot 1)$
$D Y=P(K, 2)-P(1,2)$
IF (DX-EPS) $40,40.75$
40 IF (ABSF (DY)-EPS) 45.45 .60
$45 N_{1}=N_{1}-1$
IF $(K-1-N 1) 50.50 .90$
50 DO $55 \mathrm{~J}=1,2$
$E=P(K, J)$
$P(K, J)=P(N 1+1, J)$
$55 P(N 1+1, J)=E$
GO TO 35
C
C
C
60 IF (DY) 65.65.70
$65 \mathrm{~T}(\mathrm{~K})=-1 \cdot E 6$
GO TO 80
$70 \mathrm{~T}(\mathrm{~K})=1 \cdot \mathrm{E} 6$

```
        GO TO 80
        75 T(K)=DY/DX
        80 IF (K-N1) 85.90.90
        85 CONTINUE
C
C ARRANGE PTS• OTHER THAN PI IN ORDER OF INCREASING T(K) -
C
C
    90 NU=N1-1
        DO 165 J=2.NU
        DO 155 L=J,NU
        K=L+1
        94 IF (ABSF(T(J)-T(K))-EPS) 95.95.135
        95 N1=N1-1
            E=P(J.1)-P(K,1)
            IF (ABSF(E)-EPS) 105.105.100
    100 1F (E) 115.115.120
    105 E=P(J.2)-P(K,2)
        IF (ABSF(E)-EPS) 120.120.110
    110 IF (E*T(J)) 115.115.120
    115 I=J
    GO TO 125
    120 I=K
    125 IF (I-N1) 128,128.160
    128 00 130 M=1,N1
        T(M)=T(M+1)
        P(M,1)=P(M+1,1)
    130 P(M,2)=P(M+1,2)
    GO TO 94
    135 IF (T(J)-T(K))150.150.140
    140 E=T(J)
        T(J)=T(K)
        T(K)=E
        DO 145 M=1,2
        E=P(J,M)
        P(J,M)=P(K,M)
    145P(K,M)=E
    150 IF (K-N1) 155,160,160
    155 CONT INUE
    160 IF (J+1-N1) 165,170,170
    165 CONTINUE
C
C DISCARD K-TH PT IF WITHIN TRIANGLE P1--P,K-1--P,K+1,
C
C
    170 NU=N1-2
    IF (NU-2) 220.172.172
    172 00 215 K=2.NU
    175 E=P(K,1)-P(K+2,1)
```

```
                K=3.N-2
```

```
        IF (ABSF(E)-EPS) 180.180.195
    180 IF (P(K+1,1)-P(K,1)) 185.185,210
    185 J=N1-2
    DO 190 M=K,J
    T(M+1)=T(M+2)
    P(M+1,1)=P(M+2,1)
    190 P(M+1,2)=P(M+2,2)
    N1=N1-1
    IF (K+1-N1) 175.220.220
    195 E=P(K,2)-P(K+2,2)
    IF (ABSF(E)-EPS) 200.200.205
    200 IF((P(K+1,2)-P(K.2))*T(K+1)) 185,185,210
    205 E1=(P(K+1,2)-P(1,2))/(P(K+1,1)-P(1,1))
    E2=(P(K+2,2)-P(K,2))/(P(K+2,1)-P(K,1))
    E=(E2*P(K,1)-E1*P(1,1)+P(1,2)-P(K,2))/(E2-E1)
    IF (P(K+1,1)-E) 185,135,210
    210 IF (K+2-N1) 215.220.220
    215 CONTINUE
c
c
C
220 E=0.
    NU=N1-1
    DO 225 K=2.NU
225E=E+ABSF(P(K,1)*P(K+1,2)-P(K+1,1)*P(K,2)-P(1,1)*P(K+1,2)
    $+P(K+1,1)*P(1,2)+P(1,1)*P(K,2)-P(K,1)*P(1,2))
        SNGCN=.5*E
        N=N1
        RETURN
    END
```

1. Whitcomb, Richard T.: A Study of the Zero-Lift Drag-Rise Characteristics of Wing-Body Combinations Near the Speed of Sound. NACA Rep. 1273, 1956. (Supersedes NACA RM L52HO8.)
2. von Kármán, Th.: The Problem of Resistance in Compressible Fluids. R. Accad. d'Italia, Cl. Sci. Fis., Mat. e Nat., vol. XIII, 1935, pp. 210-265.
3. Jones, Robert T.: Theory of Wing-Body Drag at Supersonic Speeds. NACA Rep. 1284, 1956. (Supersedes NACA RM A53H18a.)
4. Whitcomb, Richard T., and Sevier, John R., Jr.: A Supersonic Area Rule and an Application to the Design of a Wing-Body Combination With High LiftDrag Ratios. NASA TR R-72, 1960. (Supersedes NACA RM L53H3la.)
5. Whitcomb, Richard T.: Some Considerations Regarding the Application of the Supersonic Area Rule to the Design of Airplane Fuselages. NACA RM L56E23a, 1956.
6. Eminton, E.: On the Minimisation and Numerical Evaluation of Wave Drag. Report No. Aero. 2564, British R.A.E., Nov. 1955.
7. Eminton, E., and Lord, W. T.: Note on the Numerical Evaluation of the Wave Drag of Smooth Slender Bodies Using Optimum Area Distributions for Minimum Wave Drag. Jour. R.A.S., vol. 60, no. 541, Jan. 1956, pp. 61-63.
8. Adams, Mac C.: Determination of Shapes of Boattail Bodies of Revolution for Minimum Wave Drag. NACA TN 2550, 1951.
9. Robins, A. Warner, Harris, Roy V., Jr., and Jackson, Charlie M., Jr.: Characteristics at Mach Number of 2.03 of a Series of Wings Having Various Spanwise Distributions of Thickness Ratio and Chord. NASA TN D-631, 1960.
10. Carlson, Harry W.: Aerodynamic Characteristics at Mach Number 2.05 of a Series of Highly Swept Arrow Wings Employing Various Degrees of Twist and Camber. NASA TM X-332, 1960.
11. Robins, A. Warner, Spearman, M. Leroy, and Harris, Roy V., Jr.: Aerodynamic Characteristics at Mach Numbers of $2.30,2.60$, and 2.96 of a Supersonic Transport Model With a Blended Wing-Body, Variable-Sweep Auxiliary Wing Panels, Outboard Tail Surfaces, and a Design Mach Number of 2.6. NASA TM X-815, 1963.
12. Spearman, M. Leroy, Driver, Cornelius, and Robins, A. Warner: Aerodynamic Characteristics at Mach Numbers of $2.30,2.96$, and 3.50 of a Supersonic Transport Model With a Blended Wing-Body, Variable-Sweep Auxiliary Wing Panels, and Outboard Tail Surfaces. NASA TM X-803, 1963.
13. Driver, Cornelius, Spearman, M. Leroy, and Corlett, William A.: Aerodynamic Characteristics at Mach Numbers From 1.61 to 2.86 of a Supersonic Transport Model With a Blended Wing-Body, Variable-Sweep Auxiliary Wing Panels, Outboard Tail Surfaces, and a Design Mach Number of 2.2. NASA TM X-817, 1963.
14. Whitcomb, Richard T., Patterson, James C., Jr., and Kelly, Thomas C.: An Investigation of the Subsonic, Transonic, and Supersonic Aerodynamic Characteristics of a Proposed Arrow-Wing Transport Airplane Configuration. NASA TM X-800, 1963.
15. Spearman, M. Leroy, and Harris, Roy V., Jr.: The Longitudinal and Lateral Aerodynamic Characteristics at Mach Numbers of 1.41 and 2.20 of a VariableSweep Fighter Model With Wing Sweeps Varying From 25° to 75°. NASA TM X-759, 1963.
16. Anon.: Proceedings of NASA Conference on Supersonic-Transport Feasibility Studies and Supporting Research - September 17-19, 1963. NASA TM X-905, Dec. 1963.
17. McCracken, Daniel D.: A Guide to FORTRAN Programming. John Wiley \& Sons, Inc., 1961.

| | OYON甘 | － 0 | $96^{\circ} 3$ | $9 \underbrace{*}$ | 功（1） | $0 S^{\circ} 1$ | サr＊ | $9 て^{1}$ | | $6^{\circ} \mathrm{C}$ | | | $0^{\circ} 0$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | NV ${ }^{\text {a }}$ | $\bigcirc^{\circ} \mathrm{COL}$ | $0 \cdot \cap 8$ | $0 \cdot 02$ | － 09 | n． 05 | $0^{\circ} 04$ | 0＊ 5 | | －02 | | | $0^{\circ} 0$ |
| | 9४ONV | | | $1^{\circ} 9$ | $0^{\circ} 0$ | と＊わし | 8． 291 | $9^{\circ} 61$ | | $0^{\circ} 0$ | | － | $9^{\circ} \mathrm{LH}$ |
| | aYONIJ | ${ }^{\circ} 0$ | $266^{\circ} 0$ | 20¢＊ | $88 \pi^{\circ} 1$ | OSS＊ | 887＊ | 208＊ | | $6^{\circ} 0$ | 855 | | $0^{\circ} 0$ |
| | $N \mathrm{I} \ddagger \mathrm{X}$ | $9^{\circ} \mathrm{COl}$ | 5＊？8 | $0^{\circ} 02$ | $0 \cdot 09$ | $0^{\circ} \mathrm{OS}$ | $0^{\circ} 0 \pi$ | 0＊J | | －02 | | | $0^{\circ} 0$ |
| | 9YONIJ | | | 9＊9 | $9^{\circ} \mathrm{E}$ 乙 | $C^{\circ} \mathrm{O}$ | 8＊ 01 | て・8乙 | | て＊ε | | － | て＊カEI |
| 2 | yOOd | | | | | | 与こと・て | Sてを「て | | て＊て | DS 0 | | $068{ }^{\circ} 1$ |
| 2 | 00dx | | | | | | サ＊ 6 て | SL＊01 | | $0 \cdot 8$ | | － | $0^{\circ} 0$ |
| 1 | yood | | | | | | SZE＊て | 5で＊ | | C^{\bullet} Z | CS | | $068{ }^{\circ} 1$ |
| 1 | 00 dX | | | | | | サ＊ 6 L | SL•？ | | $0 \cdot 8$ | | ${ }^{\circ}$ | $0^{\circ} 0$ |
| | 98000d | | | | | ع•9－ | T＊ 6 | 0.16 | | $0 \cdot 8$ | | － | $0 \cdot 1 \geqslant 1$ |
| | lay＊Sny | | | $0^{\circ} 0$ | $L \cdot 01$ | H＊8乙 | $z^{\circ} 05$ | H＊ヶ9 | | $0 \cdot 72$ | | 51 | |
| | IO甘＊Sก」 | $2^{\bullet} 51$ | $z^{*} 52$ | $z^{\circ} \mathrm{SL}$ | z＊SL | $Z^{*} S_{L}$ | $S \cdot J L$ | $\varepsilon \cdot 65$ | | －カイ | | 8 | $0^{\circ} 0$ |
| 81 | 1 Snjx | | | $0^{\circ} 021$ | $0 \cdot 191$ | $0 \cdot 151$ | $0 \cdot 1+1$ | $0^{\circ} 1 \varepsilon!$ | | してし | $0 \cdot 0$ | | $0^{\circ} 000$ |
| $\therefore 1$ | 1 SnJx | $0 \cdot 06$ | 0．78 | $0^{\circ} \mathrm{OL}$ | $0 \cdot 09$ | 0.05 | $0 \cdot 0 \%$ | O＊OE | | － 02 | | O1 | $0 \cdot 0$ |
| \dagger | OHOJVM | $0 \cdot 0$ | $96^{\circ} 0$ | $01 * 1$ | 2\＃＊ | ＋19＊ | SL＊ | としゃ | | $5^{\bullet 1}$ | | | $\cdots \cdot 0$ |
| ε | OVOJVM | $)^{\circ} 0$ | $96^{\circ} 0$ | O1＊ | これ＊ | $49 *$ | SL＊ | εL^{*} | | $5^{\circ} 1$ | | | $0 \cdot 0$ |
| 2 | O甘OJVM | （－0 | $20^{\circ} 1$ | $\varepsilon S^{\bullet 1}$ | $96^{\circ} 1$ | Lて・て | $\Sigma 巾^{*}$ て | $6 \varepsilon^{\bullet}$ Z | | l^{*} Z | | － | $0^{\circ} 0$ |
| 1 | QYOJVM | $C^{*} 0$ | $50 \cdot 1$ | 95^{*} | $20^{\circ} \mathrm{Z}$ | $\varepsilon \varepsilon^{\circ}$ Z | $6 \%^{\circ} \mathrm{Z}$ | Sカ＊ | | L^{*} 乙 | | － | $0 \cdot 9$ |
| \dagger | $9 \forall 0 J \forall M$ | | | | | | | $0^{\circ} \mathrm{C}$ | | C＊0 | | 9 | $4 \cdot 951$ |
| $\boldsymbol{\Sigma}$ | 9४OJVM | | | | | | | $L^{\circ} 61$ | | $0^{\circ} 0$ | | 1 | 50171 |
| 2 | 98OJVM | | | | | | | 0．99 | | $0^{\circ} 0$ | | － | 2＊95 |
| 1 | פYOJVM | | | | | | | て・68 | | $0^{\circ} 0$ | | － | 8＊ CH |
| \bigcirc | I $\quad \exists \forall X$ | $3 \cdot \mathrm{COL}$ | C＊ 98 | $0^{\circ} \mathrm{OL}$ | $0 \cdot 09$ | O．05 | $0^{\circ} 07$ | O＊OE | | ${ }^{\circ} 02$ | | 01 | $0^{\circ} 0$ |
| | | $1=W \quad 1$ | 2＊80 | VM 1JV | ¢JyIV | 137 dWO | ± 0 NO | $1 * า ก ว า$ | | \downarrow | $\forall \supset$ | | |
| 1 | ヨSV36 | I | 1 | 1 | 101 | 011 | 5 | 81 | 31 | \dagger | 21 | 25 | 20s 1 |
| 1 ヨSVJ 80y V1＊O IndNI | | | | | | | | | | | | | |

TABLE I. - MACHINE TABULATED OUTPUT FOR SAMPLE CASE 1. CALCULATION OF THE WAVE DRAG OF A COMPLETE AIRCRAFT CONFIGURATION AT $M=1.50-$ Continued
(b) Enriched Fuselage Area Distribution

SAMPLE CASE 1 CALCULATION OF COMPLETE AIRCRAFT WAVE DRAG AT M=1. 5 :

| 0 | 0. | 0. | 50 | 85.0.09 | 75.2069 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1.7000 | 1.3796 | 51 | 86.70 .10 | 75.21556 |
| 2 | 3.4000 | 3.8384 | 52 | 88.4003 | 75.2022 |
| 3 | 5.1000 | 6.9330 | 53 | 90.1000 | 75.2001 |
| 4 | 6.8000 | 10.4899 | 54 | 91.8 Co 0 | 75.2056 |
| 5 | 8.5000 | 14.4033 | 55 | 93.5003 | 75.2108 |
| 6 | $10.200:$ | 18.6104 | 56 | 95.2000 | 75.2126 |
| 7 | 11.9000 | 23.0703 | 57 | 96.9060 | 75.2098 |
| 8 | 13.6000 | 27.6491 | 58 | 98.6000 | 75.2038 |
| 9 | 15.3090 | 32.2398 | 59 | 100.3000 | 75.2005 |
| 10 | 17.000 | 36.7366 | 60 | 102.020: | 75.2069 |
| 11 | 18.7000 | 41.0115 | 61 | 103.7001 | 75.2106 |
| 12 | 20.4000 | 44.8269 | 62 | 105.4\%00 | 75.2075 |
| 13 | 22.1000 | 47.9900 | 63 | 107.1000 | 75.1982 |
| 14 | 23.8000 | 50.7833 | 64 | 108.8000 | 75.1903 |
| 15 | 25.5000 | 53.3221 | 65 | 110.5005 | 75.2178 |
| 16 | 27.2000 | 55.6749 | 66 | 112.2000 | 75.2937 |
| 17 | 28.9000 | 57.8978 | 67 | 113.9009 | 75.3346 |
| 18 | 30.6000 | 60.0704 | 68 | 115.6000 | 75.2907 |
| 19 | 32.3000 | 62.2286 | 69 | 117.3000 | 75.1172 |
| 20 | 34.0000 | 64.3032 | 70 | 119.0000 | 74.7622 |
| 21 | 35.7000 | 66.2629 | 71 | 120.7000 | 74.1477 |
| 22 | 37.4000 | 68.0807 | 72 | 122.4000 | 73.1125 |
| 23 | 39.1000 | 69.7228 | 73 | 124.1000 | 71.7559 |
| 24 | 40.8010 | 71.1155 | 74 | 125.8000 | 70.1760 |
| 25 | 42.5000 | 72.2497 | 75 | 127.5000 | 68.4190 |
| 26 | 44.2000 | 73.1934 | 76 | 129.2000 | 66.5204 |
| 27 | 45.900) | 73.9705 | 77 | 130.9000 | 64.5194 |
| 28 | 47.6000 | 74.5921 | 78 | 132.6000 | 62.4755 |
| 29 | 49.3000 | 75.0582 | 7.9 | 134.3005 | 60.3386 |
| 30 | 51.3000 | 75.3409 | 80 | 136.0000 | 58.0681 |
| 31 | 52.7000 | 75.4644 | 81 | 137.7000 | 55.6300 |
| 32 | 54.4000 | 75.4825 | 82 | 139.4000 | 52.9774 |
| 33 | 56.1000 | 75.4275 | 83 | 141.1000 | 50.0115 |
| 34 | 57.8000 | 75.3293 | 84 | 142.8000 | 46.5770 |
| 35 | 59.5000 | 75.2237 | 85 | 144.5000 | 42.8900 |
| 36 | 61.203 j | 75.1759 | 86 | 146.2000 | 39.3761 |
| 37 | $62.90 J 0$ | 75.1713 | 87 | 147.9000 | 35.2233 |
| 38 | 64.6009 | 75.1780 | 88 | 149.6000 | 31.4172 |
| 39 | 66.3030 | 75.1867 | 89 | 151.3000 | 27.7832 |
| 40 | $68.00 \% 3$ | 75.1938 | 90 | 153.000 | 24.4443 |
| 1 | 69.7000 | 75.1990 | 91 | 154.7000 | 21.2878 |
| 2 | 71.4000 | 75.2063 | 92 | 156.4000 | 18.2741 |
| 4 | 73.1001 | 75.2123 | 93 | 158.1000 | 15.3860 |
| 4 | 74.8000 | 75.2141 | 94 | 159.8000 | 12.6095 |
| 45 | 76.5000 | 75.2115 | 95 | 161.5000 | 9.9050 |
| 6 | 78.2000 | 75.2057 | 96 | 163.2000 | 7.2677 |
| 7 | 79.9000 | 75.2002 | 97 | 164.9000 | 4.8253 |
| 8 | 81.6090 | 75.2021 | 98 | 166.6000 | 2.6797 |
| 9 | $83.303:$ | 75.2055 | 99 | 168.3000 | 0.9652 |
| 5 | 85.1000 | 75.2069 | 100 | 170.0000 | 0 . |

TABLE I.- MACHINE TABULATED OUTPUT FOR SAMPLE CASE l. CALCULATION OF THE WAVE DRAG OF A COMPLETE AIRCRAFT CONFIGURATION AT $M=1.50$ - Continued
(c) Wave Drag and Volume Check

SAMPLE CASE 1 CALCULATION OF COMPLETE AIRCRAFT WAVE DRAG AT M=1.50 D/Q ASSOCIATED WITH VARIOUS VALUES OF THETA

TABLE I. - MACHINE TABULATED OUTPUT FOR SAMPLE CASE 1. CALCULATION OF THE WAVE DRAG
OF A COMPLEIE AIRCRAFT CONFIGJRATION AT M $=1.50$ - Concluded
(d) Selected Equivalent-Body Area Distributions

SAMPLE CASE 1 CALCULATION OF COMPLETE AIRCRAFT HAVE DRAG AT M=1.5:

| THETA | -90.00 | THETA | -45.00 | THETA | 0. | THETA | 45.00 | THETA | 93.06 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| X | S | X | S | x | S | x | S | X | 5 |
| 0. | 44.888 | 0. | 44.888 | 0. | 44.888 | 0. | 44.888 | J. | 44.888 |
| 3.878 | 49.755 | 3.725 | 49.483 | 3.933 | 49.859 | 3.725 | 49.483 | 3.478 | 49.247 |
| 7.751 | 57.915 | 7.450 | 57.211 | 7.866 | 58.182 | 7.453 | 57.211 | 6.956 | 56.075 |
| 11.627 | 67.644 | 11.176 | 66.467 | 11.799 | 68.098 | 11.176 | 66.467 | 1.4 .434 | 64.551 |
| 15.503 | 77.819 | 14.901 | 76.280 | 15.732 | 78.400 | 14.931 | 76.286 | 13.912 | 73.679 |
| 19.379 | 86.947 | 18.626 | 85.329 | 19.665 | 87.559 | 18.625 | 85.329 | 17.390 | 82.474 |
| 23.254 | 94.387 | 22.351 | 92.825 | 23.598 | 94.972 | 22.351 | 92.825 | 20.868 | 90.015 |
| 27.130 | 100.316 | 26.077 | 98.811 | 27.531 | 100.873 | 26.077 | 98.811 | 24.346 | 96.192 |
| 31.006 | 105.431 | 29.802 | 103.905 | 31.464 | 105.996 | 29.802 | 103.905 | 27.824 | 151.277 |
| 34.881 | 109.973 | 33.527 | 108.456 | 35.397 | 110.539 | 33.527 | 108.456 | 31.302 | 115.796 |
| 38.757 | 113.810 | 37.252 | 112.426 | 39.330 | 114.547 | 37.252 | 112.426 | 34.780 | 19.862 |
| 42.633 | 116.734 | 40.977 | 115.820 | 43.263 | 118.893 | 40.977 | 115.820 | 38.258 | 113.356 |
| 46.509 | 119.665 | 44.703 | 119.423 | 47.196 | 123.567 | 44.703 | 119.423 | 41.736 | 116.132 |
| 50.384 | 123.868 | 48.428 | 123.287 | 51.129 | 128.251 | 48.423 | 123.287 | 45.214 | 118.555 |
| 54.260 | 128.919 | 52.153 | 127.675 | 55.062 | 133.937 | 52.153 | 127.675 | 48.692 | 121.863 |
| 58.136 | 134.206 | 55.878 | 132.988 | 58.995 | 140.450 | 55.878 | 132.988 | 52.170 | 126.139 |
| 62.011 | 140.213 | 59.604 | 138.929 | 62.928 | 147.283 | 59.604 | 138.929 | 55.648 | 130.771 |
| 65.887 | 146.812 | 63.329 | 145.120 | 66.861 | 154.269 | 63.327 | 145.120 | 59.126 | 135.667 |
| 69.763 | 153.645 | 67.054 | 151.635 | 70.794 | 161.182 | 67.054 | 151.635 | 62.604 | 141.196 |
| 73.639 | 160.411 | 70.779 | 158.220 | 74.727 | 167.823 | 70.779 | 158.22C | 66.082 | 147.153 |
| 77.514 | 166.879 | 74.504 | 164.635 | 78.660 | 173.722 | 74.504 | 164.635 | 69.560 | 153.288 |
| 81.390 | 172.819 | 78.230 | 170.568 | 82.593 | 178.857 | 78.23) | 175.568 | 73.038 | 159.379 |
| 85.266 | 178.075 | 81.955 | 176.297 | 86.526 | 184.019 | 81.955 | 175.865 | 76.516 | 165.257 |
| 89.141 | 184.427 | 85.680 | 182.325 | 90.459 | 188.452 | 85.682 | 183.284 | 79.994 | 170.743 |
| 93.017 | 191.498 | 89.405 | 187.701 | 94.392 | 190.973 | 89.405 | 183.667 | 83.472 | 175.717 |
| 96.893 | 197.258 | 93.131 | 191.335 | 98.325 | 190.387 | 93.131 | 186.685 | 86.950 | 179.983 |
| 100.769 | 199.252 | 96.856 | 192.873 | 102.258 | 187.541 | 96.856 | 189.334 | 99.428 | 183.453 |
| 104.644 | 198.265 | 100.581 | 193.884 | 106.191 | 183.791 | 100.581 | 190.701 | 93.906 | 185.935 |
| 108.520 | 195.695 | 104.306 | 193.716 | 110.124 | 179.397 | 104.306 | 189.605 | 97.384 | 187.424 |
| 112.396 | 191.603 | 108.031 | 191.593 | 114.057 | 172.973 | 108.031 | 186.947 | 10-862 | 186.310 |
| 116.271 | 185.730 | 111.757 | 186.742 | 117.990 | 164.658 | 111.757 | 183.665 | 104.340 | 190.158 |
| 120.147 | 177.575 | 115.482 | 179.847 | 121.923 | 156.377 | 115.482 | 178.740 | 107.818 | 191.649 |
| 124.023 | 167.185 | 119.207 | 171.635 | 125.856 | 149.623 | 119.247 | 171.585 | 111.296 | 191.592 |
| 127.898 | 156.604 | 122.932 | 162.941 | 129.788 | 143.140 | 122.932 | 162.941 | 114.774 | 188.242 |
| 131.774 | 146.521 | 126.658 | 153.486 | 133.721 | 135.677 | 126.653 | 153.486 | 118.252 | 181.673 |
| 135.650 | 136.720 | 130.383 | 143.229 | 137.654 | 129.549 | 130.383 | 143.414 | 121.730 | 173.514 |
| 139.526 | 126.522 | 134.108 | 134.082 | 141.587 | 124.802 | 134.109 | 136.255 | 125.208 | 163.912 |
| 143.401 | 116.104 | 137.833 | 126.857 | 145.520 | 119.816 | 137.833 | 134.088 | 128.686 | 154.496 |
| 147.277 | 105.587 | 141.558 | 119.186 | 149.453 | 116.073 | 141.553 | 133.620 | 132.164 | 146.985 |
| 151.153 | 97.602 | 145.284 | 112.105 | 153.386 | 113.055 | 145.284 | 129.822 | 135.642 | 146.722 |
| 155.028 | 93.762 | 149.009 | 106.374 | 157.319 | 106.517 | 149.007 | 12).533 | 139.12 J | 144.756 |
| 158.904 | 90.868 | 152.734 | 103.456 | 161.252 | 94.554 | 152.734 | 109.499 | 142.598 | 137.762 |
| 162.780 | 87.678 | 156.459 | 101.713 | 165.185 | 82.615 | 156.459 | 100.279 | 146.076 | 126.324 |
| 166.656 | 80.385 | 160.185 | 97.210 | 169.118 | 76.394 | 160.185 | 92.208 | 149.554 | 113.323 |
| 170.531 | 73.283 | 163.910 | 88.136 | 173.051 | 74.647 | 163.911 | 82.638 | 153.032 | 112.212 |
| 174.407 | 70.792 | 167.635 | 80.813 | 176.984 | 73.336 | 167.635 | 76.593 | 156.510 | 93.233 |
| 178.283 | 70.051 | 171.360 | 76.532 | 180.917 | 72.185 | 171.36? | 73.481 | 159.988 | 86.233 |
| 182. 158 | 69.421 | 175.085 | 74.164 | 184.850 | 71.150 | 175.085 | 72.093 | 163.466 | 81.384 |
| 186.034 | 68.902 | 178.811 | 72.076 | 188.783 | 70.008 | 178.811 | 75.796 | 166.944 | 75.133 |
| 189.910 | 68.359 | 182.536 | 69.828 | 192.716 | 69.153 | 182.533 | 69.335 | 173.422 | 69.659 |
| 193.786 | 67.929 | 186.261 | 67.929 | 196.649 | 67.929 | 186.261 | 67.929 | 173.900 | 67.929 |

TABLE II.- MACHINE TABULATED OUTPUT FOR SAMPLE CASE 2. CALCULATION OF THE

| WING AVERAGE EQUIVALENT BODY AT $M=1.50$(a) Input Data | | | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | | | | | | | |
| INPUT DATA FOR CASE 2 | | | | | | | | | | | | |
| 1500 | $50 \quad 12$ | 410 | 04 | | | | 1 | 1 | | | 9CASE | 2 |
| SAMPLE CASE | | E 2 CAL | CALCULATION OF | | WING AVERAGE | | EQUIVALENT BODY | | | AT $M=1.50$ | | |
| 0.0 | 10.9 | 20.0 | 30.0 | 40.2 | 50.0 | 60.0 | | 70.0 | $8 \% 0$ | 109.0 | XAF | 1 |
| 8.8 | 5.2 | 0.0 | 89.2 | | | | | | | | WAFORG | |
| 22.2 | 8.2 | 0.0 | 66.0 | | | | | | | | WAFORG | 2 |
| 107.5 | 31.7 | 0.0 | 19.7 | | | | | | | | WAFORG | 3 |
| 122.4 | 36.0 | 0.0 | 0.0 | | | | | | | | WAFORG | |
| 0.0 | 1.66 | 2.19 | 2.45 | 2.49 | 2.33 | 2.00 | | 1.56 | 1.05 | C.0 | WAFORD | |
| 0.0 | 1.62 | 2.14 | 2.39 | 2.43 | 2.27 | 1.96 | | 1.53 | 1.02 | $\because 0$ | WAFORD | |
| 3.0 | 1.17 | 1.54 | 1.73 | 1.75 | 1.64 | 1.42 | | 1.10 | C. 96 | 0.0 | WAFORD | |
| 0.0 | 1.17 | 1.54 | 1.73 | 1.75 | 1.64 | 1.42 | | 1.10 | 6.96 | 0.0 | WAFORD | |
| 0.0 | 55.7 | 110.3 | 166.0 | | | | | | | | XFUS | 4 |
| 0.0 | C.0 | 0.0 | 0.0 | | | | | | | | FUSARD | |

TABLE II．－MACHINE TABULATED OUTPUT FOR SAMPLE CASE 2．CALCULATION OF THE
WING AVERAGE EQUIVALENT BODY AT $M=1.50$－Continued
（b）Enriched Fuselage Area Distribution

SAMPLE CASE 2 CALCULATION OF WING AVERAGE EQUIVALENT BODY AT $\mu=1.52$

FUSELAGE AREA DISTRIBUTION $10 / 0=$ ，

| c | J． | 0. | 53 | 83.0002 | － |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1.8605 | 1. | 51 | 84.660 ） | \cdots |
| 2 | 3.3200 | 0. | 52 | 86.3200 | J． |
| 3 | 4.9800 | 0. | 53 | 87.9800 | J． |
| 4 | 6.6400 | 0. | 54 | 89.6400 | 0. |
| 5 | 8.3000 | 0. | 55 | 91.30 .5 | \therefore |
| 6 | 9.9600 | 0. | 56 | 92.9603 | 1. |
| 7 | 11.6200 | 0. | 57 | 94．62\％ | 0. |
| 8 | 13.2890 | u. | 58 | 96.2800 | 0. |
| 9 | 14.9400 | 0. | 59 | 97.9400 | \because |
| 1 | 16.6390 | 0 ． | 60 | 99.6000 | \therefore 。 |
| 11 | 18.2600 | 0. | 61 | 101.2600 | － |
| 12 | 19.9200 | 0. | 62 | 1.2 .9200 | 2. |
| 13 | 21.580 c | 0. | 63 | 104.5800 | \therefore－ |
| 14 | 23.2400 | 0. | 64 | 116.2400 | j． |
| 15 | 24.900 ： | 0. | 65 | 107.9000 | C． |
| 16 | 26.5600 | 0. | 66 | 109.5600 | － |
| 17 | 28.2200 | 0. | 67 | 111．220： | \checkmark－ |
| 18 | 29.880 ¢ | 0. | 68 | 112．88： | \bigcirc |
| 19 | 31.540% | 0. | 69 | 114.5400 | J． |
| 2 C | 33.2004 | 0. | 70 | 116.2000 | \bigcirc ． |
| 21 | 34.8600 | 0. | 71 | 117.8600 | j 。 |
| 22 | 36.5200 | 0. | 72 | 119.520 U | U． |
| 23 | 38.1800 | 0. | 73 | 121.1809 | 0. |
| 24 | 39.8400 | 0. | 74 | 122.8400 | 0. |
| 25 | 41.5000 | 3. | 75 | 124．5020 | 1 |
| 26 | 43.1600 | 0. | 76 | 126.1600 | 0. |
| 27 | 44.8200 | 0. | 77 | 127．8200 | u． |
| 28 | 46.4800 | 0. | 78 | 129.4800 | 2. |
| 29 | 48.1400 | 0. | 79 | 131.1400 | 0. |
| 3. | 49.8000 | 0. | 80 | 132.8000 | 0. |
| 31 | 51.4600 | 0. | 81 | 134.4600 | 0. |
| 32 | 53.1200 | 0. | 82 | 136.1200 | 0. |
| 33 | 54.7800 | 0. | 83 | 137.7800 | u ． |
| 34 | 56.4490 | 0. | 84 | 139.4400 | 0. |
| 35 | 58.1000 | 0. | 85 | 141.1000 | \therefore 。 |
| 36 | 59.7600 | 0. | 86 | 142.7600 | 2. |
| 37 | 61.4200 | 0 ． | 87 | 144.4205 | － |
| 38 | 63.0800 | 0. | 88 | 146.0800 | j 。 |
| 39 | 64.7400 | 0. | 89 | 147.7400 | 0. |
| 40 | 66.4000 | 0. | 90 | 149.4000 | 0. |
| 41 | 68.0600 | 0. | 91 | 151．0600 | 0. |
| 42 | 69.72 .50 | 0. | 92 | 152.7230 | 0. |
| 43 | 71.3800 | 0. | 93 | 154.3800 | α 。 |
| 44 | 73.0400 | 0. | 94 | 156.0400 | 0. |
| 45 | 74.7000 | 0. | 95 | 157.7000 | 0. |
| 46 | 76.3670 | 0. | 96 | 159.3600 | 0. |
| 47 | 78.0295 | 0. | 97 | 161.0200 | 0. |
| 48 | 79.6800 | 0. | 98 | 162.6830 | E． |
| 49 | 81.3400 | U． | 99 | 164.3402 | 0. |
| $5{ }^{\circ}$ | 83.0007 | 0 ． | 100 | 166.0000 | j． |

TABLE II.- MACHINE TABULATED OUTPUT FOR SAMPLE CASE 2. CALCULATION OF THE WING AVERAGE EQUIVALENT BODY AT $\mathrm{M}=1.50$ - Continued
(c) Wave Drag and Volume Check

SAMPLE CASE 2 CALCULATION OF WING AVERAGE EQUIVALENT BODY AT M=1.5\% D/Q ASSOCIATED WITH VARIOUS VALUES OF THETA

N
theta
$-9 r .000$
-75.000
-60.000
-45.000
-30.000
-15.000
3.
15.000
30.004
45.000
60.90 j
75.000
90.00 J

D/Q FOR ENTIRE AIRCRAFT $=4.74278$
VOLUME OF ENTIRE WING $=4.01752 E: 3$
table il. - machine tabulated output for sample case 2. calculation of the
WING AVERAGE EQUTVALIENT BODY AT $M=1.50$ - Continued
(d) Equivalent-Body Area Distributions

SAMPLE CASE 2 CALCULATION OF WING AVERAGE EQUIVALENT BODY AT M=1. 50

| $\underset{\mathbf{X}}{\text { THETA }}=$ | $\begin{gathered} -90.00 \\ 5 \end{gathered}$ | $\frac{\text { THETA }}{X}=$ | $=-75.00$ | $\underset{X}{\text { THETA }}=$ | $\begin{array}{r} -60.00 \\ 5 \end{array}$ | $\text { THE TA }_{X}=$ | $\begin{array}{r} -45.00 \\ 5 \end{array}$ | $\underset{X}{\text { THETA }}=$ | $=-3 c .00$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0. | 0. | 0. | 0. | 0. | 0. | J. | 0. | 3. | 0. |
| 3.320 | 0. | 3.320 | 0. | 3.320 | 0. | 3. 320 | 0. | 3.32. | こ. |
| 6.640 | 0. | 6.640 | 0. | 6.640 | 0.022 | 6.640 | 0.161 | 6.643 | 0.363 |
| 9.960 | 0.097 | 9.960 | 0.271 | 9.980 | 0.667 | 9.96\% | 1.175 | 9.96 U | 1.683 |
| 13.280 | 1.442 | 13.280 | 1.665 | 13.280 | 2.279 | 13.285 | 3.107 | 13.28 J | 3.923 |
| 16.600 | 4.359 | 16.604 | 4.561 | 16.600 | 5.161 | 16.60! | 5.977 | 16.60 , | 0.849 |
| 19.92 C | 8.318 | 19.920 | 8.488 | 19.920 | 9.040 | 19.926 | 9.924 | 19.92 J | 16.929 |
| 23.240 | 12.716 | 23.240 | 13.015 | 23.240 | 13.800 | 23.24C | 14.909 | 23.24 J | 16.764 |
| 26.560 | 17.713 | 26.560 | 18.070 | 26.580 | 19.737 | 26.56 | 20. 332 | 26.560 | 21.640 |
| 29.880 | 23.256 | 29.880 | 23.601 | 29.880 | 24.584 | 29.880 | 25.973 | 29.880 | 27.406 |
| 33.200 | 29.044 | 33.200 | 29.401 | 33.200 | 30.399 | 33.200 | 31.817 | 33.200 | 33.286 |
| 36.520 | 34.889 | 36.520 | 35.260 | 36.520 | 36.272 | 36.520 | 37.677 | 36.520 | 39.121 |
| 39.840 | 40.663 | 39.840 | 41.026 | 39.840 | 42.027 | 39.840 | 43.425 | 39.840 | 44.856 |
| 43.160 | 46.213 | 43.160 | 46.553 | 43.160 | 47.512 | 43.160 | 48.846 | 43.160 | 50.148 |
| 46.480 | 51.379 | 46.480 | 51.709 | 46.480 | 52.570 | 46.480 | 53.748 | 46.480 | 54.932 |
| 49.800 | 56.059 | 49.800 | 56.337 | 49.800 | 57.381 | 49.800 | 58.087 | 49.800 | 59.638 |
| 53.120 | 60.077 | 53.120 | 60.300 | 53.120 | 60.887 | 53.120 | 61.615 | 53.120 | 62.291 |
| 56.440 | 63.368 | 56.440 | 63.484 | 56.440 | 63.875 | 56.440 | 84.318 | 56.440 | 64.631 |
| 59.760 | 65.753 | 59.760 | 65.812 | 59.760 | 65.957 | 59.760 | 65.998 | 59.760 | 65.876 |
| 63.080 | 67.237 | 63.080 | 87.180 | 63.080 | 66.985 | 63. 080 | 66.581 | 63.080 | 65.963 |
| 68.400 | 67.652 | 66.400 | 67.506 | 66.400 | 66.980 | 66.400 | 66.033 | 66.400 | 64.791 |
| 69.720 | 67.034 | 69.720 | 66.715 | 69.720 | 65.763 | 69.720 | 64.247 | 69.720 | 62.417 |
| 73.040 | 65.224 | 73.040 | 84.777 | 73.040 | 63.439 | 73.040 | 61.311 | 73.040 | 58.793 |
| 76.380 | 62.295 | 76.360 | 61.707 | 76.360 | 59.960 | 76. 360 | 57.212 | 76.360 | 53.983 |
| 79.680 | 58.334 | 79.680 | 57.573 | 79.680 | 55.334 | 79.680 | 51.868 | 79.680 | 47.879 |
| 83.000 | 53.313 | 83.000 | 52.371 | 83.000 | 49.614 | 83.000 | 45.465 | 83.900 | $41.11=$ |
| 86.320 | 47.244 | 86.320 | 46.116 | 86.320 | 43.195 | 86.320 | 39.184 | 86.320 | 34.806 |
| 89.640 | 40.320 | 89.640 | 39.513 | 89.640 | 36.979 | 89.64C | 33.294 | 89.640 | 28.674 |
| 92.960 | 34.061 | 92.960 | 33.248 | 92.980 | 31.719 | 92.960 | 27.607 | 92.96 J | 23.702 |
| 96.280 | 28.801 | 96.280 | 27.983 | 96.280 | 25.780 | 96.280 | 21.972 | 96.280 | 20.147 |
| 99.600 | 24.465 | 99.600 | 23.620 | 99.600 | 21.314 | 99.600 | 17.749 | 99.600 | 17.915 |
| 102.920 | 20.555 | 102.920 | 19.813 | 102.920 | 17.175 | 102.920 | 15.549 | 102.920 | 16.208 |
| 106.240 | 16.981 | 106.240 | 18.323 | 106.240 | 13.629 | 106.240 | 14.069 | 106.24J | 14.808 |
| 109.560 | 13.755 | 109.560 | 13.024 | 109.580 | 11.370 | 109.560 | 12.663 | 109.563 | 13.471 |
| 112.880 | 10.879 | 112.880 | 9.720 | 112.880 | 9.968 | 112.880 | 11.331 | 112.88 J | 12.197 |
| 116.200 | 8.229 | 116.200 | 6.896 | 116.200 | 8.657 | 116.200 | 10.071 | 116.20 J | 10.985 |
| 119.520 | 5.576 | 119.520 | 5.454 | 119.520 | 7.437 | 119.520 | 8.886 | 119.520 | 9.837 |
| 122.840 | 2.678 | 122.840 | 4.362 | 122.840 | 6.309 | 122.840 | 7.774 | 122.840 | 8.751 |
| 126.160 | 0.157 | 126.160 | 3.330 | 126.160 | 5.272 | 126.160 | 6.735 | 126.160 | 7.729 |
| 129.480 | 0. | 129.480 | 2.255 | 129.480 | 4.339 | 129.480 | 5.770 | 129.480 | 6.769 |
| 132.800 | 0. | 132.800 | 1.060 | 132.800 | 3.476 | 132.800 | 4.878 | 132.800 | 5.872 |
| 136.120 | 0. | 136.120 | 0.005 | 136.120 | 2.626 | 136.120 | 4.069 | 136.120 | 5.037 |
| 139.440 | 0. | 139.440 | 0. | 139.440 | 1.684 | 139.440 | 3.324 | 139.440 | 4.267 |
| 142.760 | 0. | 142.760 | 0. | 142.760 | 0.505 | 142.760 | 2.598 | 142.760 | 3.568 |
| 146.080 | 0. | 146.080 | 0. | 140.080 | 0. | 146.080 | 1.811 | 146.380 | 2.913 |
| 149.400 | 0. | 149.400 | 0. | 149.400 | 0. | 149.400 | 0.920 | 149.400 | 2.254 |
| 152.720 | 0. | 152.720 | 0. | 152.720 | 0. | 152.720 | 0. | 152.720 | 1.517 |
| 156.040 | 0. | 156.040 | 0. | 156.040 | 0. | 156.040 | 0. | 156.040 | 0.823 |
| 159.360 | 0. | 159.360 | 0. | 159.360 | 0. | 159.360 | 0. | 159.360 | 0. |
| 162.680 | 0. | 162.680 | 0. | 162.680 | 0. | 162.680 | 0. | 162.680 | 0. |
| 166.000 | 0. | 166.000 | 0. | 166.000 | 0. | 186.000 | 0. | 166.003 | 0. |

TABLE II. - MACHINE TABULATED OUTPUT FOR SAMPLE GASE \therefore. GALCULATION OF THE WIMG AVERAGE EQUIVALENT BODY AT M - $1 .{ }^{\circ} \mathrm{C}$ - Cmanimed
(a) Equivalent-Body Area Distributions - Contimied

SIX, THETA) FOR ENTIRE AIRCRAFT

| THETA \bar{x} | $\begin{gathered} -15.00 \\ 5 \end{gathered}$ | $\begin{aligned} & \text { THETA }= \\ & X \end{aligned}$ | $1 \cdot{ }_{s}$ | $\underset{x}{\text { THETA }}=$ | $\begin{gathered} 15.03 \\ 5 \end{gathered}$ | $\underset{X}{\text { THETA }}=$ | $\begin{gathered} 30.0: \\ 5 \end{gathered}$ | $\underset{X}{\text { THETA }}=$ | $\begin{array}{r} 45.0 \\ 5 \end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0. | 0. | 0. | C. | 0. | 0. | 3. | V. | \% | i. |
| 3.320 | 0.001 | 3.320 | 0.0135 | 3.32 J | 0.001 | 3.320 | U. | 3.32; | c. |
| 6.640 | 0.536 | 6.640 | 0.604 | 6.640 | 0.536 | 6.540 | 5.363 | 6.64 .1 | $\because .161$ |
| 9.963 | 2.061 | 9.960 | 2.261 | 9.960 | 2. ${ }^{6} 1$ | 9.75 | 1.683 | 9.96 ; | 1.175 |
| 13.285 | 4.502 | 13.280 | 4.708 | 13.28 c | 4.502 | 13.28, | 3.923 | 13.283 | 3.177 |
| 16.60 L | 7.530 | 16.600 | 7.787 | 16.600 | 7.530 | 16.601. | 6.849 | 10.60) | 5.977 |
| 19.929 | 11.726 | 19.920 | 12.229 | 19.926 | 11.726 | 19.92. | 15.929 | 19.925 | 9.924 |
| 23.240 | 16.936 | 23.240 | 17.260 | 23.24 C | 16.936 | 23. 24. | 16.664 | 23.24. | 14.909 |
| 26.560 | 22.618 | 26.560 | 22.982 | 26.56: | 22.818 | 26.56 | 21.645 | 26.56 | 2.. 332 |
| 29.880 | 28.484 | 29.880 | 28.887 | 29.880 | 28.484 | 29.880 | 27.456 | 29.883 | 25.973 |
| 33.200 | 34.384 | 33.20 C | 34.789 | 33.200 | 34.384 | 33.205 | 33.286 | 33.23. | 31.817 |
| 36.520 | 40.209 | 36.520 | 40.614 | 36.520 | 40.209 | 36.52j | 39.121 | 36.52% | 37.677 |
| 39.844 | 45.928 | 39.840 | 46.315 | 39.840 | 45.928 | 39.84 V | 44.856 | 39.846 | 43.425 |
| 43.160 | 51.108 | 43.160 | 51.460 | 43.160 | 51.108 | 43.16 , | 50. 148 | $43.16)$ | 48.846 |
| 46.480 | 55.798 | 46.480 | 56.110 | 46.480 | 55.798 | 46.48 | 54.932 | 46.48) | 53.746 |
| 49.80 C | 59.681 | 49.800 | 59.908 | 49.800 | 59.681 | 49.80 : | 59.038 | 49.80 ; | 58.587 |
| 53.120 | 62.737 | 53.120 | 62.888 | 53.12 C | 62.737 | 53.12. | 62.291 | 53.129 | 61.615 |
| 56.440 | 64.766 | 56.440 | 64.795 | 56.440 | 64.766 | 56.44 C | 64.631 | 56.44\% | 64.318 |
| 59.760 | 65.668 | 59.760 | 65.564 | 59.760 | 65.688 | 59.76 | 65.876 | $59.76)$ | 65.998 |
| 63.080 | 65.343 | 63.080 | 65.078 | 63.480 | 65.343 | 63.780 | 65.963 | 63.380 | 86.581 |
| 66.400 | 63.675 | 66.400 | 63.223 | 86.40 C | 63.675 | 66.400 | 64.791 | 68.400 | 66.233 |
| 69.720 | 60.834 | 69.720 | 60.198 | 69.720 | 60.834 | 69.720 | 62.417 | 69.720 | 64.247 |
| 73.440 | 56.868 | 73.040 | 55.825 | 73.040 | 56.668 | 73.640 | 58.793 | 73.34 | 61.311 |
| 76.360 | 51.299 | 76.360 | 50.235 | 76.360 | 51.299 | 76.365 | 53.983 | $76.36{ }^{\prime}$ | 57.212 |
| 79.686 | 44.553 | 79.680 | 43.214 | 79.68 L | 44.553 | 79.680 | 47.879 | 79.68 : | 51.868 |
| 83.004 | 37.482 | 83.004 | 35.899 | 83.000 | 37.482 | 83.000 | 41.112 | 83.00 .2 | 45.465 |
| 86.320 | 30.916 | 86.320 | 29.724 | 86.320 | 30.918 | 86.32. | 34.936 | 86.323 | 39.184 |
| 89.640 | 25.919 | 89.840 | 25.248 | 89.640 | 25.914 | 89.64. | 28.674 | 89.64 v | 33.294 |
| 92.964 | 22.789 | 92.960 | 22.867 | 92.960 | 22.789 | 92.963 | 23.712 | 92.960 | 27.6 .7 |
| 96.280 | 20.578 | 96.280 | 20.711 | 96.280 | 20.578 | 96.28 | 23. 147 | 96.283 | 21.972 |
| 99.600 | 18.310 | 99.600 | 18.44 J | 99.60 U | 18.310 | 99.600 | 17.915 | 99.60 J | 17.749 |
| 102.92J | 16.562 | 102.920 | 16.676 | 192.920 | 16.562 | 102.925 | 16.238 | 102.92J | 15.549 |
| 106.240 | 15.201 | 106.240 | 15.323 | 106.24 L | 15.201 | 106.240 | 14.808 | 106.240 | 14. 169 |
| 109.560 | 13.907 | 199.560 | 14.544 | 109.560 | 13.907 | 109.560 | 13.471 | 139.5615 | 12.663 |
| 112.880 | 12.670 | 112.880 | 12.82 J | 112.880 | 12.670 | 112.880 | 12.197 | 112.880 | 11.331 |
| 116.200 | 11.491 | 116.200 | 11.652 | 116.200 | 11.491 | 116.203 | 10.985 | 116.20. | 10.171 |
| 119.52 c | 10.369 | 119.520 | 10.539 | 119.52 L | 10.369 | 119.52 | 9.837 | 119.520 | 8.886 |
| 122.84: | 9.303 | 122.840 | 9.481 | 122.840 | 9.303 | $122.84{ }^{\circ}$ | 8.751 | 122.840 | 7.774 |
| 126.160 | 8. 296 | 126.140 | 8.479 | 126.160 | 8. 296 | 126.16: | 7.729 | 126.16) | 6.735 |
| 129.480 | 7. 345 | 129.480 | 7.532 | 129.480 | 7.345 | 129.480 | 6.769 | 129.480 | 5.77 |
| 132.80 J | 6.451 | 132.800 | 6.641 | 132.800 | 6.451 | 132.80 J | 5.872 | 132.800 | 4.878 |
| 136.120 | 5.615 | 136.120 | 5.805 | 136.120 | 5.615 | 136.120 | 5.037 | 136.120 | 4. 369 |
| 139.440 | 4.836 | 139.440 | 5.024 | 139.440 | 4.836 | 139.445 | 4.267 | 139.44: | 3.324 |
| 142.760 | 4.114 | 142.780 | 4.299 | 142.780 | 4.114 | 142.760 | 3.568 | 142.760 | 2.598 |
| 146.080 | 3.459 | 146.780 | 3.636 | 146.08 C | 3.459 | 140.38% | 2.913 | 146.080 | 1.811 |
| 149.400 | 2.845 | 149.400 | 3.026 | 149.400 | 2.845 | 149.400 | 2.254 | 149.400 | C.920 |
| 152.720 | 2.230 | 152.720 | 2.431 | 152.720 | 2.230 | 152.720 | 1.517 | 152.729 | 0. |
| 156.040 | 1.544 | 156.740 | 1.793 | 156.040 | 1.544 | 156.340 | 0.623 | 156.34J | 0. |
| 159.360 | 0.736 | 159.36 C | 1.078 | 159.360 | 0.736 | 159.36: | 0. | 159.360 | 1. |
| 162.680 | 0. | 162.680 | 0. | 162.880 | 0. | 162.680° | 0. | 162.68u | 5 |
| 166.000 | 0. | 166.900 | 0. | 166.000 | 0. | 166. 200 | 0. | 166.20: | 0. |

TABLE II. - MACHINE TABULATED OUTPuT FOR SAMPLE CASE 2. CALCULATION OF THE
WING AVERAGE EQUIVALENT BODY AT $\mathrm{M}=1.50$ - Continued
(d) Equivalent-Body Area Distributions - Coneluded

| $\underset{X}{\text { THETA }}=$ | $8^{8 n} \cdot n$ | THETA ${ }_{\text {X }}=$ | 75.00 | THETA $=$ | 90.3 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 3. | 0. | c. | 0. | \therefore | 0. |
| 3.324 | $1 \cdot$ | 3.320 | こ. | 3.326 | 0. |
| 6.640 | 9.122 | 6.640 | 0. | 6.840 | 0. |
| 9.960 | $\because .667$ | 9.960 | 0.271 | 9.981 | ก. ${ }^{\circ} 97$ |
| $13.28 v$ | 2.279 | 13.280 | 1.665 | 13.280 | 1.442 |
| 16.60 v | 5.161 | 16.600 | 4.561 | 16.600 | 4.359 |
| 19.926 | 9.14? | 19.92\% | 8.488 | 19.920 | 8. 318 |
| $23.24{ }^{\text {c }}$ | 13.8.J | 23.240 | 13.615 | 23.240 | 12.718 |
| 26.56 : | 19.:37 | 26.560 | 18.079 | 26.563 | 17.713 |
| 29.880 | 24.584 | 29.88 u | 23.601 | 29.884 | 23.256 |
| 33.200 | 3.3999 | 33.20 v | 29.401 | 33.26C | 29.744 |
| 36.520 | 36.272 | 36.524 | 35.260 | 36.526 | 34.889 |
| 39.840 | 42.127 | 39.840 | 41.026 | 39.846 | 49.663 |
| 43.160 | 47.512 | 43.164 | 46.553 | 43.160 | 46.213 |
| 46.48 J | 52.57 | 46.480 | 51.709 | 46.486 | 51.379 |
| 49.806 | 57.081 | 49.304 | 56.337 | 49.806 | 56. 59 |
| 53.120 | 61.887 | 53.120 | 60.300 | 53.12i | 60.177 |
| 56.440 | 63.875 | 56.442 | 63.484 | 56.440 | 63.368 |
| $59.76{ }^{\prime}$ | 65.957 | 59.76% | 65.812 | 59.760 | 65.753 |
| 63.180 | 66.985 | 63.280 | 67.180 | 63.680 | 67.237 |
| 60.40 | 66.980 | 66.430 | 67.506 | 66.400 | 67.652 |
| 69.729 | 65.763 | 69.72 | 66.715 | 69.720 | 67. 134 |
| 73.04 L | 63.439 | 73.34 C | 64.777 | 73.640 | 65.224 |
| 76.360 | 59.960 | 76.360 | 81.7 ¢7 | 76.360 | 62.295 |
| 79.68: | 55.334 | 79.680 | 57.573 | 79.680 | 58.334 |
| 83.009 | 49.614 | 83.200 | 52.371 | 83.CCV | 53.313 |
| 86.324 | 43.185 | 86.320 | 46.116 | 86.320 | 47.244 |
| 89.644 | 36.979 | 89.640 | 39.513 | 89.640 | 40.320 |
| 92.96 L | 31.019 | 92.960 | 33.248 | 92.96: | 34.361 |
| 96.28 c | 25.780 | 96.280 | 27.983 | 96.28 c | 28.901 |
| 99.600 | 21.314 | 99.600 | 23.620 | 99.600 | 24.465 |
| 102.92i | 17.175 | 102.726 | 19.813 | 102.92: | 20.555 |
| 110.240 | 13.629 | 106.240 | 16.323 | 136.240 | 16.981 |
| 109.560 | 11.379 | 139.560 | 13.624 | 109.560 | 13.755 |
| 112.887 | 9.968 | 112.880 | 9.72 | 112.880 | 10.879 |
| 116.20) | 8.657 | 116.200 | 6.896 | 116.200 | B. 229 |
| 119.52 C | 7.437 | 119.520 | 5.454 | 119.52 l | 5.576 |
| 122.84 J | 6.329 | 122.840 | 4.362 | 122.840 | 2.678 |
| 126.160 | 5.272 | 126.160 | 3.330 | 126.166 | 0.157 |
| 129.48 C | 4.339 | 129.484 | 2.255 | 129.48 C | ?. |
| $132.80 u$ | 3.476 | 132.92 U | 1.col | 132.800 | C. |
| 136.120 | 2.626 | 136.120 | 0.005 | 136.12i | 0. |
| 139.44 | 1.684 | 139.440 | 0. | 139.440 | 0. |
| 142.780 | 0.5 .5 | 142.760 | C. | 142.760 | 0. |
| 146.080 | 0. | 146.080 | C. | 146.080 | 0. |
| 149.400 | 0. | 149.400 | 0. | 149.400° | 0. |
| 152.720 | \cdots. | 152.720 | C. | 152.720 | 0. |
| 156.640 | v. | 156.740 | 0. | 156.040 | 0. |
| 159.360 | 9. | 159.360 | 0. | 159.360 | 3. |
| 162.680 | 0. | 162.680 | 0. | 162.68J | 0. |
| 166.00 j | c. | 166.300 | 0. | 166.0CU | 0. |

TABLE II. - MACHINE TABULATED OUTPUT FOR SAMPLE CASE 2. CALCULATION OF THE
WING AVERAGE EQUIVALENT BODY AT $M=1.50-$ Concluded
(e) Area Distribution of the Wing Average Equivalent Body

AREA DISTRIBUTION OF WING EQUIVALENT BOCY

| x | S |
| :---: | :---: |
| J. | ก. |
| 3.320 | ?.Un) |
| 6.640 | -. 232 |
| 9.960 | 1.168 |
| 13.280 | 3.1 .92 |
| 16.600 | 6.124 |
| 19.920 | 10.047 |
| 23.240 | 14.952 |
| 26.560 | 20.34% |
| 29.880 | 26.02 : |
| 33.200 | 31.867 |
| 36.520 | 37.715 |
| $39.84{ }^{\circ}$ | 43.459 |
| 43.160 | 48.834 |
| 46.480 | 53.751 |
| 49.800 | 58. 335 |
| 53.120 | 61.551 |
| 56.440 | 64.192 |
| 59.760 | 65.828 |
| 63.080 | 66.369 |
| 66.400 | 65.738 |
| 69.720 | 63.933 |
| 73.040 | 60.919 |
| 76.360 | 56.739 |
| 79.680 | 51.331 |
| 83.000 | 45.109 |
| 86.320 | 38.767 |
| 89.640 | 32.873 |
| 92.960 | 27.825 |
| 96.280 | 23.514 |
| 99.600 | 19.987 |
| 102.920 | 17.322 |
| 106.240 | 15.116 |
| 109.560 | 13.139 |
| 112.880 | 11.278 |
| 116.200 | 9.599 |
| 119.520 | 8.296 |
| 122.840 | 7.111 |
| 126.160 | 6.077 |
| 129.480 | 5.066 |
| 132.800 | 4.150 |
| 136.120 | 3.311 |
| 139.440 | 2.750 |
| 142.760 | 2.197 |
| 146.780 | 1.713 |
| 149.400 | 1.261 |
| 152.720 | 0.794 |
| 156.040 | 0.510 |
| 159.36 U | 0.222 |
| 162.680 | n. |
| 166.000 | 0. |

```
#***CONFI#ENPTALM
```

WING VOLUME ONLY

| INPUT DATA FOR CASE 3 | | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1500 | $50 \quad 12$ | 4 | 10 | | | | 1 | | -19999CASE | | 3 |
| | | SAMPLE CASE 3 | | | CALCULATION OF | | WING | VOLUME ONLY | | | |
| 0.0 | 10.0 | 20.0 | 30.0 | 40.0 | 50.0 | 60.0 | 73.0 | 80.0 | 100.0 | XAF | 10 |
| 42.8 | 5.2 | 0.0 | 89.2 | | | | | | | WAFORG | 1 |
| 56.2 | 8.0 | 0.0 | 66.0 | | | | | | | WAFORG | 2 |
| 141.5 | 31.7 | 0.0 | 19.7 | | | | | | | WAFORG | 3 |
| 156.4 | 36.0 | 0.0 | 0.0 | | | | | | | WAFORG | 4 |
| 0.0 | 1.66 | 2.19 | 2.45 | 2.49 | 2.33 | 2.00 | 1.56 | 1.05 | 0.0 | WAFORD | 1 |
| 0.0 | 1.62 | 2.14 | 2.39 | 2.43 | 2.27 | 1.96 | 1.53 | 1.02 | 0.0 | WAFORD | 2 |
| 0.0 | 1.17 | 1. 54 | 1.73 | 1.75 | 1.64 | 1.42 | 1.10 | 0.96 | 0.0 | WAFORD | 3 |
| 0.0 | 1.17 | 1.54 | 1.73 | 1.75 | 1.64 | 1.42 | 1.10 | 0.96 | 0.0 | WAFORD | 4 |
| | | | OLUME OF | E ENT | E WIN | 4. | 1752E | | | | |

| NASA TM X-947
 THIS CARD UNCLASSIFIED
 National Aeronautics and Space Administration.
 AN ANALYSIS AND CORRELATION OF AIRCRAFT
 WAVE DRAG. Roy V. Harris, Jr. March 1964.
 63p. (NASA TECHNTCAL.MEMORANDUM X-947)
 A computer program, developed by the Boeing Company, which applies the slender-body theory in combination with the supersonic area rule to determine aircraft wave drag has been studied at the Langley Research Center. The results of this study are presented. and the details of the computer program are given. | I. Harris, Roy V., Jr.
 II. NASA TM X-947
 GROUP 4
 Downgraded at 3 year intervals; declassified after 12 years
 THIS CARD UNCLASSIFIED NASA | NASA TM X-947
 THIS CARD UNCLASSIFIED
 National Aeronautics and Space Administration.
 AN ANALYSIS AND CORRELATION OF AIRCRAFT WAVE DRAG. Roy V. Harris, Jr. March 1964. 63p. (NASA TECHNICAI MFAMRRANDUM X-947)
 A computer program, developed by the Boeing Company, which applies the slender-body theory in combination with the supersonic area rule to determine aircraft wave drag has been studied at the Langley Research Center. The results of this study are presented, and the details of the computer program are given. | I. Harris, Roy V., Jr.
 II. NASA TM X-947
 GROUP 4
 Downgraded at 3 year-6.:
 intervals; declassified after 12 years
 THIS CARD UNCLASSIFIE® ${ }^{\circ}$ NASA |
| :---: | :---: | :---: | :---: |
| NASA TM X-947
 THIS CARD UNCLASSIFIED
 National Aeronautics and Space Administration.
 AN ANALYSIS AND CORRELATION OF AIRCRAFT
 WAVE DRAG. Roy V. Harris, Jr. March 1964.
 63p. (NASA TECHNICAL MEMORANDUM X-947)
 A computer program, developed by the Boeing Company, which applies the slender-body theory in combination with the supersonic area rule to determine aircraft wave drag has been studied at the Langley Research Center. The results of this study are presented, and the details of the computer program are given. | I. Harris, Roy V., Jr.
 II. NASA TM X-947 $\begin{aligned} & \text { GROUP 4 } \\ & \text { Downgraded at } 3 \text { year } \\ & \text { intervals; declassified } \\ & \text { after } 12 \text { years } \\ & \hline \end{aligned}$
 THIS CARD UNCLASSIFIED NASA | NASA TM X-947
 THIS CARD UNCLASSIFIED
 National Aeronautics and Space Administration.
 AN ANALYSIS AND CORRELATION OF AIRCRAFT
 WAVE DRAG. Roy V. Harris, Jr. March 1964.
 63p. (NASA TECHNTCAL_MEMORANDUM X-947)
 A computer program, developed by the Boeing Company, which applies the slender-body theory in combination with the supersonic area rule to determine aircraft wave drag has been studied at the Langley Research Center. The resuits of this study are presented, and the details of the computer program are given. | I. Harris, Roy V., Ir'.
 II. NASA TM X-947
 THIS CARD UNCLASSIFIED NASA |

[^0]: $I_{\text {An }}$ abbreviated version of this report was presented in "Proceedings of NASA Conference on Supersonic Transport Feasibility Studies and Supporting Research - September 17-19, 1963." NASA TM X-905, Dec. 1963, pp. 153-163.

 2Title, Unclassified.

