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SUMMARY

The problem is considered of a wing with rectilinear plan form swept
so that both leading and trailing edges lie within their respective Mach
cones; moreover, the Mach lines fram the trailling-edge apex intersect the
leading edge. Formulas and design charts are presented for the 1ift in
such a case, based on approximate formulas for the 1ift distribution
developed in NACA TN 1991, 1949. The cherts cover a practical range of
aspect ratios smd plan forms of moderate teper, with tips parallel to the
stream. The leading-edge thrust and drag due to 1ift are also readily
calculated fram the material presented. Numerical results and an applica—
tion of the charts are included.

INTRODUCTION
Renge of Applicability of Formilas

Problems in linearized supersonic wing theory are characterized
primarily by the orientation relative to the wing boundaries of the Mach
lines arising from the various points of disturbance defining those
boundaries. Therefore, even when the plan form of & wing is specified,
a series of problems arises 1f the wing is to f£ly through any consider—
able range of Mach numbers. :

Paredoxically, the problem of the flow at higher Mach numbers has
proved more readily amenable to solution then that at lower speeds, |
because at the higher speeds the zomes of influence (Mach cones) are
narrow and interference problems are fewer. TIn the case of the conven—
tional swept-~back wing at an angle of attack, four Mach number ranges may
be said to have been investigated to a sufficient extent that the 1ift
and drag of any specified wing is readily cbtainable. The aerodynamic
characteristics were first computed (reference 1) Por that range of Mach
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2 NACA TN 2093

nunbers in which only the center sections of the wing are included in the

Mach cone from the leading—-ed.ge apex; formulas have also been given ¢
(reference 2) for the next lower range, where the leading-edge Mach line

cuts the’ tip; formulas (reference 2) and charts (reference 3) have been

given for a third range, where the leading—edge Mach line stands ahead of

the wing, but the Mach line from the trailing—edge apex is behind the

wing; and formulas have been given (reference 2) for the fourth case, in

which the trailing—edge Mach cone includes pa:rt of the tip, bu‘b not the

leading edge .

The last of these cases is illustrated in figure 1(a). In figure 1(b),
the same wing is shown at a smeller Mach number such that the trailing—
edge Mach line now intersects the leading edge. In reference 1!- ‘the flow
in such a case was investigated and formulas for the load distribution
were derived. Imn the present report, the load distribution will be inte—.
grated to obtain formulas for the total 1ift. Formulas for the leading—
edge thrust end the drag due to 1ift will also be presented.

The Mach number range to which the formulas and charts apply is indi-
cated as a function of taper ratio A and aspect ratio A for several
angles of sweepback A in figure 2. The upper—limit curves are determined
by the condition that the trailing—edge Mach line intersects the wing tip
at the leading edge. Above these curves, the formulas of reference 2 may
be used. A lower Mach number range, merging into the tramsonic and such
that the flow field of one wing tip extends laterally to include a part of o
the other tip, is defined by the lower—limit curves. The flow pattern in
such a case is too complicated to be treated by the method of the present
report. Mach numbers low enough to permit wing—tlp interference fall
within the scope of the approximate theory of reference 5.

The problem of wing—tip interaction also, of course, sets a lower
1limit on the range of aspect ratios covered. On the other hand, the method
of reference 4 and the present peper may in theory be applied to the com—
plete range of aspect ratios to the right of the boundaries shown in
Tigure 2. However, the necessary formulas have been developed only up to
a certain point beyond which the services of high-speed computing machin—
ery would be regquired for their evaluation. Both mathematical and physical
considerations make the spplication of the method to very highly tapered
plen forms inadvisable. For cases of moderate taper and a practical range
of aspect ratios, charts have been computed to facilitate the calculation
of both 1ift and drag due to 1lift. The formulas and charts have been
developed for wings with tips parallel to the stream only, but the general
Pprocedure is applicable to wings with raked tips also.

The symbols used are listed in the appendix.
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General Outline of the Procedure

In reference 4 it was found that, when interaction takes place
between the flow fields of the leading end trailing edges, the wing plan
form appears to comprise two principal regioms, separated (fig. 1(b)) by
the Mach line arising at the point of intersection of the trailing—edge
Mach 1line and the leading edge. Ahead of this line (region I) the flow
is most readily described in terms of conicel fields. Behind this line
(region IT), the flow is more nearly two—dimensional, and the loading can
be approximated by the well—known subsonic flat—plate formula, corrected
in magnitude to give the proper value of the pressure at the leading edge
of each section. The formulas for correcting the two—dimensional loeding
are given in reference 4. For an infinitely long wing, of course, the
loading approaches the subsdnic flat—plate loading, corrected for the angle
of yaw according to simple sweep theory. )

The total 1ift is found using for the loading in region I the conical—
flow solutions of reference 2 and in region IT the formulas given in
reference 4. From the integrated 1ift and the leading—edge thrust, the
drag due to 1ift can be calculated. The leading—edge thrust in region I is
the same as that for the triangular wing with the same leading—edge sweep,
and has been given by Jones (reference 6), Hayes (reference 7), Robinson
(cited in reference 8), and others. The disturbance arising at the
trailing edge affects the leading-edge suction in region IT. Formulas are

derived for calculating the resulting thrust, from which the dreg due to
1lift follows.

FORMULAS FOR LIFT

Region T

Conical—flows method.— The term "conical—flows method” is used to
designate briefly a method of superposition of conical flow fields! devel—
oped by Lagerstrom (reference 9) as an extension of some earlier work by
Busemann (reference 10). Thus, the load distribution on a swept—back wing
is calculated by superposing on the conical loading of an infinite triangu—
lar plate other conical flow fields of such magnitude and orientation as
to cancel loading on the portions of the triangular plate lying outside the
boundaries of the specified swept—back wing. This process, as applied at

the trailing edge of a swept—back wing, is more fully described in
reference 2.

1A conical field is one in which the velocities are constant along rays
emsnating from a point (the apex of the come).
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In figure 1(b), region I has been further divided into regioms Ia
and Ib by the Mach line from the trailing—edge apex. Region Ib is the
region in which the loading is modified by the addition of the fields used
to cancel the load behind the treiling edge. In region Ta, the loading is
gimply that on a triangular wing having the same apex angle as the swept—
back wing.

The conical flow fields were originally derived most conveniently as
velocity, rather than pressure, fields. The loading is obtained from the
veloclity by the linearized relation g

Lp _ Au
q '

where u is the streamwise component of the perturbation velocity on the
upper surface, V 1s the stream velocity, and Ap/q is the coefficient
of lifting pressure.

Load distribution in region I.— In terms of the conical variable
a = By/x, the loading over the triangular wing is given by

“o (1)
YA N meaZ

wvhere

__ mVa ( 2)

ﬁE(Vibﬂm )

is the streamvise component of the perturbation velocity along the wing
center line (a=0) and u, is the same velocity component elsewhere on

the wing.

Cancellation of the load in the wake, as described in reference 2,
is accomplished by superposing first a symmetrical field bhaving a constant—
load region colincident with the wake to cancel the perturbsation velocity

. ug throughout the wake, and then an infinite number of infinitesimally

loaded oblique elements to cancel the remsining 1ift. Figure 3 shows the
constant—load region (shaded) of a single "oblique” flow field.

Cancellation of ug Iinduces on the wing a pressure distribution
(equation (51) of reference 2, corrected) proportional to

- VimE, O (3)
(Au) (J_l:]:)F( | ?)
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where K(#~1-my2) is the complete elliptic integral of the first kind
of modulus N 1-my®, and F is the incomplete integral with argument

- [ 1.7
@ = sin Et% , (%)

Each of the oblique elements induces on the wing the perturbation
velocity (equation (50) of reference 2)

v (18)(bamt)—(me) (1-ty)
L

(fu), = :
(1-m ) (t4-2)

(5)

where u, 1s the differential of wu, obtained by differentiating with
respect to a, or

m_a
Ua. = (m2—a?) ® > de (6)

Uncorrected 1ift in region I.— In order to obtain the ‘boté.i 1ift in
region I,2 we first integrate the uncorrected loading of the triangular
wing over the entire aresa, obtaining

I_-Q__lin_luoc 2{l+m [ 1 — T4ap N mE—n 2 :l+
-3 o

5 cos -
(1m)" LV 1m? m(1+az) l+ap

Fo G ) e )
(7)

vhere az 1s the value of a corresponding to the ray through the point
of intersection =xz,y> of the trailing edge and the Mach line separating
reglons I and IT. (See figs: 1 and 3.) In terms of the wing plan—Fform
parameters,

2mmy,

a8z = 1-+m+m—mmy.

(8)

2Formlas which follow are for the complete wingj that is, the left—hand
side is included.

- e e —— -
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When mi=m (untapered wing), the second part of equation (7) becomes

indeterminate. In this case,
Lo _ ll._m Yo { 1+m = n+ap N mP—ap? J .
(

g B Va 1-m)3 [ Vi © m(l+ap) B l+ap

JESEE S

Wake corrections.— The wake corrections are to be integrated over
region Ib. Integration of the symmetrical wake correction (equation (3))
yields '

(AL)g _ —16m7%, > ug 2 ____,E( Vi‘mt ) (10)
ge  B(Tmg) o {l Iy [1 K( #1-mg?) ] }
where

Xy = = (11)

is the x coordinate of the intersection of the trailing—edge Mach line
with the leeding edge. (See fig. 3.)

For each oblique element, the reduction in 1ift is given by

1 dAL 2ug 1+m 2 (1+mt) (1-=)
q—md?da=—ﬁ17ai (mt—e)(zz—xq) [ /m——lj (12)

|

[¢]
X2 = _]l% + mt) l+r?1.t (13)

is the x coordinate of the intersection of the Mach line from x,,y;
with the trailing edge (see fig. 3) and

- Bt (1)

is the =x coordinate of the apex of the element a.
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Lift in region I.— The total 1ift in region I is then given by

L L AL 2 B2 gar,
(_.;> =04 _(____)_O_ + — — da (15)
qa qa gaJg da
The quantity —L ) is plotted against mg in figure L for
I

several values of the ratio m/my. This latter paramster is the ratio
of the tangents of the semiapex angles of the leading and trailing edges
and 1s constant for any one wing through the Mach number range.

Region IT

Tip—effect problems.— In figure 1l(b), region II is shown divided
into two sections by the Mach line from the leading edge of- the tip.
Such a division is actually an oversimplification of the problem. While
region ITa can be treated, by the method of reference 4, in such a way
as automatically to satisfy the Kutta condition at the trailing edge, the
tip effect, whith modifies the 1ift in region IIb, has not been determined
8o a8 to take this condition into account. In the cancellation method
used to determine the tip effect, a so—called "primary tip correction" is
first obtained by superposing conical Tlows to reduce the 1lift to zero
along and outboard of the side edge. A
further succession of steps (reference 2)
is required to cancel 1ift introduced in
the wake behind region ITb, and thereafter
outboard of the tip within the Mach cone
from x*,y* (see sketch) and so on. The
corrections obtained by this procedure
slternate in sign and become successively
smaller in magnitude, while increasing in
mathematical complexity. Since, moreover,
it is known from experiments that the
assumed flow in the tip regions is at var— .
iance with the physical flow, it would be XY
illogical to attempt any precise evalua—
tion of these corrections. A simple for—
mula will therefore be given, following
the derivation of the primary tip correc—
tion, for obtaining a fair estimate of the
"secondary correction"; further correc—
tions will be neglected.

!

Loading in region IT.— Except for tip
losses, the 1ift in region IT may be
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calculated by integrating out to the tip the approximate load distribution
given in reference 4. This loading is

2 _ g / roaZelco (16)
qa [mx—my, (x—c() 3 (mx—By)

which is merely the subsonic two—dimensional flat—plate loading, applied
on sections taken normal to the stream, and with a correction factor
inserted to bring the loading at the leading edge into agreement with that
derived for the swept—back wing by the conicel—flows method. The theoreti—
cal loading at a subsonic leading edge is, of course, infinite in any case,
with the Infinity entering as the reciprocal square root of the distance
to the leading edge. The coefficient ¢ 1s a measure of the strength of
the leading-edge singularity in the loading on the swept—back wing.

It is most convenient to describe the leading-edge singularity in
terms ‘of the coefficient in the perturbation velocity u of (m—By)—2/2,
where the quantity (mx—By) is P +times the spanwise distance to the
leading edge. This coefficient is then u+/mx—By and the strength of
the singularity in wu is the limit of its value as Py approaches mx
(the leading edge). The coefficient o 1s a nondimensional form of the

same quentity:
= (1 [IXBy
7= \Fe ./ o >B _ (a7) |

and is s function of x.

In line with the gemeral procedure of the conical—flows method, the
coefficient Cp of (mx—By)~1/2 corresponding to the triangular—wing
velocity distribution is found first, and is then corrected to take
account of the effects of canceling the loading in the wake, by the sym—
metrical canceling element and by the oblique elements. The resulting
expression for o is /

£) = 1 8g @-
of )‘ —r [CA + (&C), +.[ ™ daJ (18)

where

Cp = ug JZ= (19)
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is the uncorrected (i.e., triangular—wing) coefficient;

: __ hmy ‘
(20) = s o [K(k)E(k,v)-E(k)F(k,w)] (20)
Enlt('l—"ro) - _ . T°+ o mx -
with k = ) (romg) 7 ¥ _ gint ——miaTo ; and Ty = —

is the symmetrical wake correction; and

_ in uy ' [(1+a)(T ) )
da = m - *\/l—af/(mt—a)x—mtco { m l:K(ka)E(ka’ﬂ’a) -

E(%)F(ka,wa)]— /E[m;m(ka,%) — E(ka)F(ka, ¥o) ]} (21)

¥ &

ia the correction for a single oblique wake element, with

(mg—a)(1+7,)
(Tg—a)(14m)

Ty = (mt—ﬁ)mx—mtcoa

Y
(m—a)z-mic, V¥a = sin

(14m,) (1=,

L (1+7)
(l—mt)(1+:l'a) Vg = sin™t g a

Tg(1+m)

ky =

The upper limit of integration is

(1-m)z—c,
%o = Tt (l-m)z—mc, (22)

Equation (18) for the coefficient of the leading—edge sigularity is
mothematically complete for points immediately beyond X1,y1 @along the
leading edge, but if the aspsct ratio is very high or the Mach number
very low, the Mach line from xp,y2 may intersect the leading edge
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(see sketch) and bring ebout further
modifications of the flow on the
outboard portioms of the wing. The
only effect of this modificatlion on
the formulas presented herein is the
introduction of additional terms
into the expression for o for
values of 'x beyond xa, and in
sti1l more extreme cases, beyond
X5, and so on. Evaluation of these
terms by the conical—flows method
Involves miltiple integration and is
Impractical except with the aid of
high—speed computing machinery.
Each successive correction (to o)
is initially zero and enters with
zero slope at X5 2zero slope and
curveture at x5 and so on, so that
nA the three—-term expression for o
N given by equation (18) may be used
- with satisfactory accuracy for some
distance beyond the last value of
- x (xg) Por which it is strictly
valid. In practice, the third term
in equation (18) may also be neg—
lected for values of x only slightly
greater than x;.

———Mach lines

1
Charts giving *B;f- /%m as a function of XT_XL for the values of
; o

the taper—ratio parameter % covered in figure 4 are presented in

figure 5 as an aid to computing. The curves were computed. using equa—
tion (18) end are therefore exact only up to x=xg (shown by a vertical
mark in each curve). The points x=x_ are also indicated (by X's) as a
more practical limit to which use of ihe curves mey be extended. (These
points are off the scale for my = 0.8 and 0.9 in figure 5(a)). When the

vings are untapered (m/m; = 1.0), asymptotes

Bo /1-m _ 1

m m -VI+m

derived from simple sweep theory, may be drawn. The relative positions
of the curves in figure 5(a) and their asymptotes suggest that a further
extension beyond X5 Will probebly not introduce any serious error in
these cases. :

The curves are for the most part regular enough to pérmit inte -
. rpola:
tion within intervals of 0.2 of m. However, at mg = 1.0 the lines
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diminish to a point on the vertical axis; a curve for m = 0.9 was
therefore inserted in the charts for moderate values of m,/mt With
m/mt less than 0.5, mg = 0.9 represents, if x>x;, such extreme
taper that the successive points of reflection of the Mach lines

(x5, X55...) take place within a very small fraction of a chord—length
and no useful curve can be drawn. No curves are drawn for mt smaller
than 0.2 because of the tip—interference limitation discussed in the
introduction. :

Uncorrected 1ift, region ITI.— In order to f£ind the total 1ift (except
for tip.losses) in region II, a double integration with respect to x -and
y 1is performed on equation (16). A Pirst integration, with respect to
¥, JYyields for the indefinite integral )

Ap (mx—By) (mtco—mix+By)
ﬁfq—a dy = holx) /oo / my ¢~ m-m)x *

v mtco~(mg—m)x tan2 =By : (23)
m ¢, m By

The velues of By to be sub-—
stituted as limits in equation (23)
are indicated in the sketch to the
right. Along the leading edge, the
right—hand member of equation (23)
reduces to zero; along the trailing
edge it becomes '

ox o(x) ¥y Vmpe~(mm)x (24)

Then the total 1ift in region II

(on both wing halves), except for tip
losses, is
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7L 8/co *2 o | — T2 f2fg Sy
<€‘;‘>II =5 [f o(x) (fl tan E_;— + o ) dx + 5 [ o(x)fdx —
2

- s, Tafs
bs o(x) ( £1 ten fs+ f1> ax] ‘ (25)
m
where
£ = «/mtco—(mt—m)x
f2 = (1+m)(z=x;) £y = J/m(x—Bs/m) ' ‘
£g = o (L4mp)(z2x) ‘ £, = N my(xg=) | | .

The indicated integrations may be performed numerically or graphi-—
cally, using values of o(x) taken from the charts.

Primery tip correction.— A method of approximating the tip—induced
reduction in loeding is described in reference 4. The uncorrected
loading along the tip section is determined by equation (16), simplified

by replacing o(x). by the constant

o = o (%) ‘ .(26)

~ .
»

The assumption is then made that the 1ift to be canceled outboard of the
tip is a continuation of this loading along linss parallel to the leading -
edge of the wing. The cancellation is accomplished by means of the "tip
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solutions” of references 2 and 9,
flow flelds having constant
pressure over a region bounded by
the tip and a ray extending
outward from a point =xgs,58 on
the tip.

In canceling the cylindri-—
cal field assumed in this case, .
the rays would all be parallel.
to the leading edge. (See -
sketch.) The streamwise -com—
ponent of veloclity on the wing
due to one such element is

U, - m+t ,+2mt

— cos oy (27

where uc 1s the constant value
of the streamwise perturbation
velocity on the element and

t./B 1is the slope of a ray from
its apex x.,8. This velocity
is multiplied by 2pV to
convert to pressure and by

as B thIGHXc—- El5].15)']2
- B(mt—tc)=

dte

to obtain the 1ift on the differential of area shown in the sketch. Then
integrating with respect to tc from —1 .to O gives the total 1ift induced
on the wing by the single canceling element at xc. The result may be
written . :

20,2 m2 '
}_%_decf‘_‘ci’lt_"t_( /= 2__“;> (1-¢,)° (28)
90 dx, BVa(m;-m) mptme® g

where ¢&;, as shown in the sketch, is the distance of x,,8 behind the
leading edge, divided by the tip chord cy, or

o xte/m) (29)
o T Gor(Ps/mg)—(Ps/m)
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Since along the tip, from equation (16),

w(ze,8) - / [ Bs—my (x,-c, )] cg
Vo [ mpeo—(me—m)x,] (mx.—$Bs)

u(t,) gg 1-£,
Vo B Tfm_f"/g me—m (30)
c(l ~m CC _

where A 1s the taper rastio ct/co, the canceling velocities u must
be given by the differential

— = US d / l—gc dg
J?miasc/ mm
§°<l— mg §°>

Then the primery tip correction to the 1ift (both tips included)

(%3 B ﬁ?ﬁw mz >

tip

or

(31)

,/'—5—3’0[(15)/§< E_ >

c

[l (1¢,)2 / (1 i-‘:"_g >d§c ] (32

which may be integrated by parts to glve

(48), - L[ e (- 2)s] o

3B(m ; +mt m,t
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where K and E are the complete elliptic integrals of the modulus

In the case of an untapered wing, equation (33a) refuces to

< > —3:tc02 v L
tip EB 1+m

Secondary tip correction.— The
primary tip effect Just derived is
actually an overcdrrection, since
the load distribution of which it
is the integral does not go to zero
at the trailing edge. The residusl
1ift in the wake is the result of
superposition of an infinite number
of conicel fislds and therefore
cannot be canceled identically in
any simple way. Numerical results
indicate, however, as pointed out
in the previous reports (references
2 and 4), that the major part of
the tip effect arises in the can—
cellation of the infinite pressure
at the leading edge. In determin—
ing the secondary tip correction to
the loading, therefore, it may be
assumed as an approximation that
the residual velocity field in the
weke 1s conical with respect to the
leading—edge tip, the value of the
velocity along any ray +tp (see
sketch) being determined by the value

15

(33b)

at the intersection xy,,y;, of the ray with the trailing edge. Thus the
Kutta condition is satisfied, although some pressure differences remain

in the wake.

An expression for the correction to the total 1ift resulting from

this approximate cancellation of the tip—induced velocities at the

trailing edge has been given in reference 1 as eguation (71), from which

may be written
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S0 NPy 2 [Bmg /1o
t 211: hﬁ{v“ (_B—y*)< my A/E> m

[ el 5 ()

(34)

where x*,y* (see sketeh p. 15) is the point of Intersection of the tip
Mach line with the tralling edge, tm 3is B +times the slope of a ray
from the leading-edge tip, =x,,y, 1s the intersection of the ray with
the trailing edge, Au 1is the velocity to be canceled at xy,¥,

and Au* is Au(x*,y%). o -

Again experience has shown the integral term in equation (3k4), which
involves very lengthy computing, to be considerably smaller than the term
in Au¥. Since only an approximate tip correction is desired, it will
suffice, therefore, to calculate .

(& z—hs%f—(s-ym(/%—-ﬁ)ﬁ (35)

tip

From reference 4, equation (45),

Va N/ mAE *

where E¥* is the streamwise distance of x*,y* from the leading‘edge
expressed as a fraction of the tip chord; that is,

B* = o <x*—E§> | (37)

Aut s (36)

It is easlly determined that

. _ mtct
B(e-3*) = 7 reey
and consequently
e = my (1+m)

m( 1+m, )
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With these values, and Au*/Va from equation (36), equation (35) becomes

) ymmel 2 ([T )
qo tip B l+mt ./ (1+m)A m .. (3 )

Total tip correction.— The total tip-correction, to the degree of
approximation discussed, is the algebraic sum of equations (33) and (38).
Except for the occurrence of og,ct and A in the coefficient, the
resultant expression is a function of m and my only, independent of

BNA /AL

osct2 \ 4%

figure 6, in a form similar to the chart of (L—> (£ig. 14).

the tip location, Values of )ﬁ have been plotted in
P

Numerlcal Example

As a summary of the mothod, a sample calculation will be outlined.
The lift—curve slope CLcr, will be calculated for an untapered wing of

10—foot chord and 40—Poot span, swept back 45° and flying at a Mach
number of 1.08. Then cot A = 1.0, B = 0.4, m = 0.%, m = 0.4 and,
from figure L,

%) =13.3o§2§ ¢o2 = 1330 square feet

(Tt should be noted that = = cot A)

B
With velues of o obtained from figure 5(a), graphical integration of
equation (25) gives'

L) = 531 square feet
qa
IT

Since the leading-edge sweep is 45°, the tip is at x = 20, and, from

figure 5(a), 04=0.635 <§'> % = 0.518. TFrom figure 6, since A=1,

2
<@> = -1.69 ctBoS = —219 square- feet

e ———— e ————— ——_———- J— e
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gomiiznigg the three components of the 1lift, we obtain qa' = 1642 gquare
ee

CIU,=%'<§% = 1,10

DRAG DUE TO LIFT

The drag due to 11ft can be found as the Integral around the alrfoil
of the incremental pressure puV times the slope w/V of the surface.
In the case of a thin flat airfoil, this calculation gives merely the
1ift times the angle of attack over most of the-surface. However, as is
discussed in reference 11 in connection with the two-dimensional wing in
subsonic flow, an Infinite pressure acting on the leading edge results in
a suction force, which tends to reduce the total drag. When the wing is
swept behind the Mach lines from its apex, & similar suction can exist in
supersonic flow, since the pressure on a subsonic leading edge is theoret—
ically infinite.

Hayes (references 7 and 12), Robinson (see reference 8), and others
haye derived the formula for the suction force on a subsonic leading
edge by assuming the flow near the leading edge to be essentially two—
dimensional and spplying the results of two-dimensional potential theory.
The simple result obtalned in that manner has been verified for the long
swept—back wing by application of the somewhat different approach of
reference 13.

By the two—dimensional approach, the suction force i1s found to be
proportional to the square of the strength of the leading-edge singularity
in the perturbation velocity u. This quantity has already been discussed
in connection with the 1ift in region II, where the strength of the
leading—edge singularity was defined as the coefficient of the inverse
square root of mx-—By. This coefficient is CA (equation (19)) on the

forward part of the wing and CA+(AC)0-1_-f %gc-da (see p. 8)

o
behind the trailing-edge Mach line. From Robinson!s work, the longitudi-—
nal component of the suction force per unit length in the x direction
may be expressed, for region I, in terms of CA as follows:

;‘.T_-_,/'_CA

and similarly for the remminder of the wing with Cp replaced by the
corrected coefficilent.
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For a given wing, the total drag due to 1ift is the result of sub—
tracting the total thrust from the product of the 1ift and the angle of
attack; that is, .

Bs
m gp .
D=aL—£ = &= o (39)

or, in coefficient form,

= ;l-g—qag[ —dx) (10)

where S 1is the total area of the wing. Writing

Bs s
- m
[ _cA+(Ac)o+f %@.T dx} (41)
1 o]
we obtain
Bs 2 L Bs
2 fimar. - =[5 _i_fm }
G.a2o d.xd-K . l_m2[<Va, N m Jg, 0% dx (k2)
sotila'b
a® I 2 p?slz ()-L)
=G x| () e e[ e a ;
S qa o~

with the final integration to be performed numerically or graphically.
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APPLICATION AND DISCUSSION
Lift—-Curve Slope

The lift—curve slope CLu has been calculated for two families
, of untapered wings, with m constant at 0.2 and 0.4, and with varying

espect ratio. The results are plotted against the reduced aspect ratio
BA 1In figure 7. The circled points indicate the actual cases for which
calculations were made; the faired curves are only approximations, since
they ignore slight discontinuities in curvature associated with the omnset
of interaction between the wake and leading edge, and higher—order dis—
continuities associated with successive reflections of the trailing—edge
Mach lines., :

Two points corresponding to tapered wings with m = 0.4 and
m; = 0.6 are also included. In one case (BA = 1.6), and in the case
of the untapered wing with the same span (PA = 1.2), the trailing—edge
Mach lines did not intersect the leading—edge, and the values of Cry
were obtained by the formulas of reference 1. It should also be men—
tioned that the remaining velues agree within 2 or 3 percent with values
calculated entirely by the conical—flows method, the former being slightly
lower than the latter. )

The curves for the untapered wings may be seen to be approaching at
the upper end the value 2mm/\1-m2 given by simple sweep theory. At
the lower end, the curves should approach the origin along the line

C1g, = 3{2-A given by low—aspect—ratio theory (reference 14). As previously
mentioned, the present calculations cannot properly be extended below

BA = 1 'because of interference between the flow fields originating at the
tips. However, two such cases have been included for m = 0.2 because,
with so much sweep, the wing areas affected are small and the interference
losses should be negligible. Results in these latter cases may be compared,:
because of the small apex angle relative to the Mach angle, with the results
of the slender-wing theory of reference 5. This comparison is shown in
figure T, although a discrepancy in plan form lessens the significance of
the ag:reement.3 The results of reference 5 have also been plotted for

m = 0.4, in which case the assumption of extrems slenderness is no longer
justified and introduces an apprecisble error. (It should be mentioned

that the asymptote for the slender—wing—theory_gves is below the value
given by simple sweep theory by the factor 12,

SThe theory of reference 5, while applicable to any swept—back wing lying
well within the leasding—edge Mach cone, has been worked out only for a
limited family of plan forms, having straight leading and filleted
trailing edges, and, comsequently, a slight taper.
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Drag Due to Lift

In figure 8, the drag-rise factor Cp/Cr? is plotted for the same
families of wings. Comparison is made with a theoretical minimum for
slender wings in supersonic flight obtained by R. T. Jones in an unpub—
1ished analysis. Using a method similar to Hayes! (reference 12) and
assuming the wing to be marrow compared with the Mach cone, Jones has
derived a minimm "wave drag" coefficient

Cp, = 2iAx Cr” kk | (k)

where Ay 18 the aspect ratio defined In the streamwise, instead of the
spenwise, direction; that is, if 1 (numerically equal to =xy) is the
over-all length of the wing,

A =13 (45)

The wave drag is to be added to the "vortex drag," which is the
induced drag of subsonic flow, calculsted from the spanwise loading.
Using the minimim induced drag calculated from 1lifting—1ine theory gives
as the minimim supersonic drag-rise factor

Cp_1 ., 8% . (46)
C;® mA  2rnAy

It may be seen that the drag rise of the constant—chord swept—back
wings is fairly close to the minimm, especially at the lower values of
m for which equation (46) was derived. '

Ames Aeronautical ILaboratory,
National Advisory Committee for Aeronautics,
Moffett Field, Calif., Mar. 15, 1950.
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APPENDIX
SYSTEM OF ' NOTATION
General

free—stream velocity
free—stream Mach number
N

density of air

dynamic pressure (:%ﬁV%)

pressure difference. between upper and lower surfaces, or
local 1ift :

angle of attack, radians

lift

1ift coefficient (—%)
aQ

drag coefficient <?2{>
. as

Wing Dimensions

root chord

tip chord -

semispan

wing area

over—all length of the wing in the streamwise Airection
angle of sweep of the leading edge

taper ratio (ct/co)
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A

X,y

Za3a

X7
Xg,y8

X1,51

X2,¥=2

- x¥,y¥
xp,8
g*

aspect ratio (4s2/s)
Coordinates
Cartesian coordinates in the stream direction and across the

stream in the plane of the wing

coordinates of apex of oblique trailing-edge element (ses
equation (14))

coordinates of point on tralling edge, within the tip-Mach cone
coordinates of point on tip; apex of tip elemsnt

coordinates of intersection of trailing-edge Mach cone with
leading edge (see equation (11)) '

coordinates of intersec¢tion of Mach line from x;,y; Wwith
trailing edge (see equation (13))

coordinates of intersection of tip Mach line with trailing edge
coordinates of intersection of tip and tralling edge

streamwise distance of x*,y*¥. back from leading edge, as a
fraction of the tip chord (equation (37))

distence of =x, behind leading—edge tip, as a fraction of the
tip chord (equation (29))

In the following, all slopes are measured counterclockwise from a
line extending downstream from the apex of the wing or of the pertinent
elementary sector:

slope of leading edge _ 8 cot A

s8lope of Mach 1lines

slope of tralling edge

slope of Mach lines

slope of ray from the origin

L
slope of Mach lines P X

slope of ray from trailing—edge apex _ B y

slope of Mach lines X—Cgq

e e ee m e e ————— — A g e s ——— . e e  ———— e —— s —
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v

slope of ray from leading-edge tip 8 y—s
slope of Mach lines x— 88

slope of ray from apex of element a 8 P Y
slope of Mach lines X~Xg

slope of ray from apex of tip elemsnt _ 8 -8
slope of Mach linss XZ¢

the value of & corresponding to a trailing—edge element of
which the apex lies on the Mach forecone of the point at which

the load is being calculated (equation (22))

a(xzz2,y2) (equation (8))

the smallest value of ty &along which cancellation of pressure
shead of the leading edge can affect the point at which pressure
is being calculated. For a point on the leading edge,

To = to = mx/(x—,)

the smallest values of t, along which cancellation of pressure
ahead of the leading edge can affect the point at which pressure
is being calculated. For a point on the leading edge,-

(nm?ﬁyg)/(XPXa)
Streamwise Components of Perturbation Velocity

basic (uncorrected) perturbation velocity as given by solution
for triangular wing (equation (1))

value of up at a=0 (equation (2))

constant perturbation velocity on canceling (oblique) sector in
wake (equation (6))

constant perturbation velocity on canceling sector oxrbboard
of tip

symmetrical treiling-edge correctiom to u, (equation (3))

#@da., correction to ua due to single oblique trailing—edge

da
element (equation (5))

value of tip correction to u at the point x*,y* (equation (36))
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Arbitrary Mathematicel Symbols

Ca value of coefficient of (mzn—By)—cL/"2 in u, at the leading
: edge (equation (19))
(ac) decrement in due to reflection of (Au), at leading edge
o o
(equation (201})
dAC

== da decrement in Cp due to reflection of (Au)y at leading edge

da .
: (equation (21))
(o leading—edge correction coefficient defined by equation (17)
Og value of o at leading—edge tip
Elliptic Integrals
k modulus of elliptic integral, defined where used (also with

gsubscripts)

@ orVy argument of elliptic integrals, defined where used (also with
subscripts)

F(k,9) incomplete elliptic integral of the first kind of modulus k
and argument @

K,K(k) complete elliptic integral of the first kind of modulus Ik;
that is, K =¥k, 5) -

E(k,9) incomplete elliptic integral of the second kind
E,E(k) complete elliptic integral of the second kind of modulus k;
E(k,%)
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———— Mach lines

(a) M=/50 4 (b) M=1.15
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Figure [ - Plan view of swept-back wing af two supersonic
Mach numbers.
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Figure 4.— Chart for the computation of the liff in region T .
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for untapered wings.



