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. TECHNICAL NOTE 2604

A GENERAL THEQORY OF THREE-DIMENSIONAL FLOW IN
SUBSONIC AND SUPERSONIC TURBOMACHINES OF
AXTAT.-, RADIAL-, AND MIXED-FLOW TYPES

By Chung-Hua Wu

SUMMARY

A general theory of steady three-dimensional flow of a nonviscous
fluid in subsonic and supersonic turbomachines having arbitrary hub and
casing shapes and a finite number of blades is presented. The solution
of the three-dimensional direct and inverse problem is obtained by
investigating an appropriate combination of flows on relative stream
surfaces whose intersections with a z-plane either upstream of or some-
where inside the blade row form a circular arc or a radial line. The
equations obtalined to describe the fluld flow on these stream surfaces
show clearly the several approximations involved in ordinary two-
dimensional treatments. They also lead to a solution of the three-
dimensional problem in a mathematically two-dimensional manner through
iteration. The equation of continuity is combined with the equation of
motion in either the tangential or the radial direction through the use
of a stream function defined on the surface, and the resulting equation
is chosen as the principal equation for such flows. The character of
this equation depends on the relative magnitude of the local velocity of
sound and a certain combination of velocity components of the fluid. A
general method to solve this equation by both hand and high-speed
digitel machine computations when the equation is elliptic or hyperbolic
is described. The theory is applicable to both irrotational and rota-
tional absolute flow at the inlet of the blade row and at both design
and off-design operations.

INTRODUCTION

The problem of three-dimensional flow in turbomachines of axial-,
radial-, and mixed-flow types is treated in references 1 to 19. Because
of the enormous mathematical difficulties involved in the problem, Lorenz
(reference 1) first introduced the idea of an infinite number of blades
of infinitesimal thickness in order to follow the flow on a glven surface.
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Bauersfeld (reference 2) added to the theory the condition of integra-
bility for the blade surface that must be satisfied in the inverse, or
design, problem. The theory is further clarified and strengthened by
the works of Stodola (reference 3), von Mises (reference 4), and Dreyfus
(reference 5), and is the basis of many recent investigetions on axial-,
radial~, and mixed~flow compressors and turbines.

For incompressible flow, Ruden (reference 6) proves that the
through-flow solution obtained under the assumption of an infinite num-
ber of blades gives a circumferentially average value of the fluid prop-
erties, provided the deviations of the fluid properties from their cir-
cumferential averages are small. In reference 7, Traupel points out the
oscillatory nature of radial flow in a multistage turbomachine and glves
solutions of the three-dimensional potential flow through inclined
stationary blades and also of the rotational flow through a homogeneous
stage of identical nontwisted blades for an incompressible fluid and an
infinite number of blades bounded by cylindircal walls. Meyer gives a
detailed treatment of three-dimensional potential flow in a stationary
blade row, for an incompressible fluid and cylindrical bounding wall,
in reference 8, where the solution for an infinite number of blades is
extended to & finite number of blades by the vortex<and-source method of
Ackeret, which is originally given for two-dimensional flow (reference 9).
In reference 10, a linearized solution for an incompressible fluid and an
infinite number of blades for a prescribed loading and cylindrical
bounding wells is obtained by Marble, and is used later to investigate
the problem of mutual interference of adjacent bladé rows and off-
design operations (reference 11). Siestrunck and Fabri (reference 12)
also obtained a linearized solution for incompressible flow, and the
method is extended to compressible flow. TFor general wall shapes,
Spannhake (reference 13) examines the flow through diffuser and impeller
by the use of bound vortices for blades. The incompressible through
flow in a mixed-flow impeller is treated by Gravolos (reference 14).

In reference 15, Wislicenus examines the influence on the meridional
flow of the blade force and nonuniform circulation along the blade span.

For compressible flow, Reissner (reference 16) gives a blade-design
method in which the extension from an infinite number of blades to a
finite number of blades is accomplished by the use of a power series in
the circumferential direction, end the terms in the series are deter-
mined by a comparison of the equations for an infinite number of blades
and a finite number of blades. (In reference 5, Dreyfus gives a method
of designing water turbines of thin blades, in which the solution for
an infinite nunber of blades is extended to a finite nunber of blades by
the use of a power series, the second term of which is determined from
the equations of continuity and irrotational absolute flow and is
explicitly given.) In reference 17 the compressible flow problems in
axial turbomachines having an infinite number of blades are treated, and
both the direct and inverse problems are considered. Methods for
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limiting solutions for zero and infinite blade-row aspect ratios and a
step-by-step method of solution, as well as a simpler method based on an
approximate knowledge of the shape of the streamline, for a finite blade-
row aspect ratio are given. Unaware of the work of Traupel at the time,
the authors of reference 17 also emphasized the oscillatory nature of
radial flow in multistege machines and suggested the use of a simple
sinusoidal form of the streamline as a first approximate solution. Their
methods are derived for compressible flow, however, and are also extended
to the case where both the hub and cesing walls or either is tapered.
Reference 18 gives & general through-flow theory for both direct and
inverse problems end for subsonic or supersonic flow in turbomachines
having arbitrary hub and casing shapes. The supersonic through flow in
rotating impellers having a prescribed flow along the casing and pre-
scribed blade shapes is treated in reference 19.

A general theory of three-dimensional flow in subsonic and super-
sonic turbomachines of axial-, radial-, and mixed-flow types for a
finite number of thick blades of finite thickness has been developed at
the NACA Lewls laboratory and is presented herein. Both the direct and
inverse problems are considered. The theory is appliceble to either
irrotational or rotational absolute flow at the inlet of a blade row
and to both design and off-design operations.

In the section BASIC AEROTHERMODYNAMIC RELATIONS, the motion and
energy equations for the unsteady flow of a nonviscous compressible fluid
in a rotating blade row are expressed in terms of the velocity components
and of two basic thermodynamic properties of the fluid, namely, entropy
end a modified total enthalpy for flow in rotating blade rows with change
in radial distance from the machine axis. Estimated entropy changes due
to shock waves (in the case of supersonic flow), heat transfer (in the
case of a cooled turbine), or viscous effect can be easily accomodated
in the calculation. The equations obtained show clearly the condition
under which the flow through blade rows can be treated on the basis of
irrotational ebsolute flow.

In the following section, a general potential equation is obtained
for steady three-dimensional compressible flow through rotating or
stationary blade rows when the absolute flow can be taken as irrobta-
tional. The methods of solution for both subsonic and supersonic flows
are briefly discussed.

A simpler method of solving the three-dimensional irrotational
(absolute) flow, which is also applicasble to rotational (absolute) flow,
1s obtained by considering fluid flows on & number of relative stream
surfaces whose intersection with a z-plane either upstream of or some-
where in the blade row form a circular arc or a radial line. Equations
governing the flow on these surfaces are obtained in the next four sec-
tions. Through the use of a stream function defined on the stream
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surface, the equations of continuity and motion for fluld flow on these
surfaces are combined into one principal equation. The character of the
principal equation is dependent on the relative megnitude of the local
velocity of sound and a certain combination of velocity components.

The process involved in solving the direct and inverse problems by
this approach is described in the section STEPS FOR COMPLETE SOLUTIONS
OF THREE-DIMENSIONAIL: DIRECT AND INVERSE FROBLEMS. In the inverse prob-
lem, besides the blade-thickness distribution determined by blade
strength and other considerations, either the tangential velocity, a
relation between the tangential and axial veloclty, or one other rela-
tion is prescribed on a mean stream surface about midway between two
blades. The last section gives a general method of solution of the
principal equation when it is elliptic or hyperbolic.

SYMBOLS

The following symbols are used in this report:

a velocity of sound

B,b integrating factor for continuity equation for Sz and S
surfaces, respectively

mpi differentiation coefficient -used to multiply function value

o } at point j to give the mbP derivative at point 1 “based
on nth degree polynomisal

C,c nonzero term on right-hand side of continuity equation for
So and Sy surfaces, respectively

CpsCy specific heat of gas at constant pressure and volume,
respectively

%% differentiation with respect to time following relative
motion of fluid particle

qu ntl derivative of o]

F,f vectors having the unit of force per unit mass of fluid

G,g given function of W,/M, on 8

H total enthalpy per unit yass of fluid, h + ZV°

h static enthalpy per unit mass of fluid, u + p/p
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I modified total enthalpy for flow in rotating blade row with
change in radial distance from machine axis,

1
h+%-w2-§ 2r2 or H - o(Vyr)

J,K,L,M,N coefficients of first- and second-order derivatives in the
principal equation

k thermal conductivity

L distance along streamline

1,9 orthogonal coordinates on surface of revolution

M mess flow between mean stream surface and one surface of
blade

N nunber of blades

n unit vector normal to relative stream surface S

P static pressure

Q heat added to fluid particle along its path per unit mass
per unit time

o} any quantity on relative stream surface S

R gas constant

mpl remainder term of mPR derivative at point i obtained by

n using nth degree polynomial

r radius vector

51 relative stream surface passing through fluid particles
lying on a circular arc upstream of or midway in blade
row

So relative stream surface passing through fluid particles
lying on a radial or curved line upstream of or midway in
blade row

8 entropy per unit mass

s * s/R

T static temperature
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time
velocity vector of blade element at radius =
interval energy per unit mass |
absolute velocity of fluid
velocity of fluid relative to blade, Vv - U
A’an + Wgz
independent variables
distance along turbomachine axis

1 Wy

arc 'ban;ﬁ;

ratio of specific heats

average value of ¥ for the temperature range involved

grid spacing

equal to 1 and 1T for S, and S, surfaces, respectively

independent variable z or r for Sy surface and z for
8o surface

independent variable ® eaend r for S and Sp; surfaces,
respectively

angular distance of fluid particle measured with respect to
stationary radial line

slope of characteristic curves, Vv %%
tan o
arc sin =

W

equal to r and 1 for 87 and Sy surfaces, respectively
absolute vorticity, VXV

fluid density
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generalized variable used for general density table

o angle between tangent of streamline or boundary wall in the
meridional plane and axial direction

T radial, axial, or angular thickness of stream sheet

) velocity potential

¢ generalized variaeble used for genersl density table

@ angular distance of fluid particle measured with respect to
radial line on rotating blade

X angle between w and axial direction

¥,y stream functions defined on relative stream surfaces Ss and
respectively

o angular velocity of blade

Subscripts:

c casing

e exit

h hub

i inlet

1 meridional component

m mean stream surface

o lower limit of integration

r,u,z radial, circumferential, and axisl components

8 isentropic

T total state.

M,& components in 1- and {-direction, respectively

1 on Sy, or in front of rotor

2 on Sy, oOr behind rotor
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Superscripts:

ab, . . . k refer to polnts a,b, . . . k, respectively

BASIC AEROTHERMODYNAMIC RELATIONS:

The three-dimensional flow of & nonviscous, compressible fluild
through & turbomachine is governed by the followlng set of basic laws
of aerothermodynamics: From the principle of conservation of matter,
the equation of continulty is .

% +V+(pW) = 0 (1)
oxr
VWt D]])‘I,zp 0 (1=)

For a blade rotating at a constant angular velocity @ about the
z-axis, Newton's second law of motion gives

w 2 1
ﬁ"'—ﬂ) r + 2u0XW = - EVP (2)

Because the boundary walls are surfaces of revolution and the relative
flow can be approximated as being steady in many cases, it is convenient
to use a relative cylindrical coordinate system r, ®, and z with
¢ measured with respect to the rotating. blade (see fig. 1). By use of

gt_w=%%"+(w.v)w_%‘ff )

the scalar forms of the equation of motion (2) in the axial, circum-
ferential, and radial directions can be expressed as

N My Wy oWy My, WP

st tTop ey - oo - Wiy = - %%}3(2&)
oW oW, Wy oWy, My, W Wy, 1
5{E+Wr3r—u+ a—-—+WZa—l—1+ +2a>wr=-p—rg% (2b)
oW oW, W, oW, oW
M st e e g - S P (2¢)

1some of the relations given in this section have been given in refer-
ence 18. They are repeated here for completeness and easy reference

for the following developments.
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The first law of thermodynamics may be written

]—;%+pDJ-%tﬁ=Q (3)

vhere u 1s related to the temperature T by
du = cy 4T (4)

and Q is given by the following equation if only conduction is
consldered:

Q=plv.(kvT) (5)

For the ranges of temperature and pressure encountered in ordinary
turbomachines, p, p, and T of the gas are accurately related by the
following equation of state:

P =R pT ()

Although the flow of the gas through the turbomachine is completely
defined by the preceding equations together with the known variations of
and k with temperabture and the given boundary and initisl condi-
tions, it is found more convenient in references 17 and 18 to express
the state of the gas in terms of the entropy and the total enthalpy or
e quantlty I of the gas, besides its veloclity components. These
quantities are defined as follows:

T ds = du + p d(p~L) (7)
H=h+5 V2 (8)
1 1
I=h+3zW -350%=1- o7 (9)
and
-1
h=u+ pp (10)

From equations (10), (4), and (6) is obtained

dh = (cytR) AT = cp AT = ¢ (11)
where 1 1is equal to Cp/cv and is a function of temperature. Another

expression for dh is obtained by using equations (10) and (7), so that

=%1-°-+Tds (11a)
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By the use of equations (7), (4), and (8),
sy _ 1 Y .
d(ﬁ)—r-ldlnp-r_—-ldlnp (12)

and

d(%):;%dln'ﬂ—dlnp (12a)

can be obtained, and the equation of continuity can be written

Veows L DInT D, (13)

BEquation (13) can be expressed in a slightly different form. From the
definition of the local velocity of sound (reference 20),

2 3p>
a” = 14
(sp 8 ( )
By the use of equations (12) and (8),
al = y %: YRT (14a)

Substituting this relation into equations (12a) and (13), with the use of
equation (11), results in

" dh s
dlnp--a?-dﬁ (12p)
and
1 Dh D s
V‘W'l‘;.?—rl "DERT 0 (158.)

From equations (9) and (1la),

%Vp -l-%VWZ - @Pr =VI - TVs

The equation of motion (2) can then be written

g“—: - WXUXW) + 20XW = -VI + Tvs (15)

An alternative form of equation (15), which involves the vorticity of
the absolute motion, is obtalned as follows: With the z-axis parallel
to w,
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V=W+wXr (18)
hence
VXV =VXW +VX (wXr) (17)
But V
IX(wxr) = (rv) o ~(@V) r +w(ver) - r(vew) = 2w
therefore

VXV = VXW + 2w (17a)

This relation can also be seen from the following expressions of rela-
tive and absolute vorticity expressed in terms of the rotating and
stationary cylindrical coordinates r, @, z -and r, 6, z, respectively:

W oW N
xW = E 55 - 5
oW oM
(VX W), = B?r’ - &E ) (18)
1 d(Wyr)  q oWy
(VXW)y = & —— - T 3% y
ov av.
1 Z u
VXV). =S5 - 55
V. oV,
30, - o 09

o(v,r) ov.
1 w 1
(VXV), = r or Fa'éz

and the relation

J(Vy,r) ' o(w,r)
dr " or

Using equation (17a) results in the alternative form of equation (15)

oW

£ -WX(VX V) = VI + Vs (152)
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By use of equations (2), (9), and (1lla),

DI Ds ., 10p , 1 . Dw DU
ﬁ-_T—D‘+B&'+‘5(Wv)P+W'Dt'UODt

_oDs 1 2 Dy 1p
“T—m*;a?*w‘(“”“z‘”x“’)‘u Dt"TDt 5 3%t (20)

It may be emphasized that the preceding equation is a consequence
of the equation of motion (2) and the thermodynamic relations (4), (86),
(7), and (10). For steady relative flow, the rate of change of I
along the streamline is seen to be proportional to the rate of cha.nge
of entropy along the streamline.

The energy equation (3) can be used to express the rate of change
of entropy along the streamline by the use of equation (7) as follows:

Ds
Q=T5 (21)

The preceding equations lead to several important general consider-
ations: If the blade rows are not placed too close together and no
trailing vortices are shed from preceding blade'rows (or where these
effects can be neglected), the fluid properties at a fixed point rela-
tive to the blade can be taken as constant with respect to time. Con-
sequently, according to equations (20) and (21), the quantities s and
I of the gas remain constant along the streamline for adiabatic flow.
The invariancy of I means that the rate of change in total enthalpy
along the streamline is equal to the anguler speed of the blade multi-
plied by the rate of change in angular momentum (about the machine axis)
of the fluid particle along its streamline, which is the well-known
FEuler turbine equation uwsually derived under less general conditions.

In a cooled turbine where the heat transfer may be large, the rate of
change of s and I along the streamline can be corrected by equa-
tion (21) for an estimated value of Q. Again, for steady relative flow,
equation (15a) shows that either when gradient I and gradient s both
vanish or when the difference between YI and TV s vanishes, the
absolute vorticity elther vanishes or is parallel to the relative
velocity.

For the flow through a stationary blade row w = 0, W becomes V ,
I becomes H, and equation (15a) becomes

%’-vx(vxv):-vﬂ+mvs (15p)

which agrees with similar relations previously obtained by Vazsonyi
(reference 21) and Hicks, Guenther, and Wasserman (reference 22). Tt
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is interesting to see that, for relative flow in a rotating blade row,
VX(Y XV) becomes WX(YXV) and H becomes I.

If it is assumed that the fluid enters the inlet guide vanes of a
turbomachine with uniform H and s and zero vorticity and that the
flow is adiabatic, s does not vary in the inlet guide vanes and p
is then a funetion of only p, according to equation (12). Conse-
quently, by virtue of Kelvin's circulation theorem, the absolute vor-
ticity will remsin zero in passing through the Inlet guide vanes and the
flow in the inlet guide vanes can be treated on the basis of irrota-
tional absolute flow. ‘

Jf the guide vanes impart a radial variation of tangential velocity
of the fluid in a z-plane downstream of the vanes simildr to that in a
potential vortex, that is, inversely proportional to the radius, the
circulation is constant along the blade span and the fluid maintains a
uniform s and H and a gero vorticity of absolute flow entering the
following rotor-blade row. If the rotor-blade row is situated far away
from the inlet guide vanes, the fluid enters the rotor with a uniform
I in the circumferential direction, as well as in the radial direction,
and the flow through the rotor blades can again be treated on the basis
of zero absolute vorticity and steady relative flow. If the rotor is
close to the gulide vanes, however, vortices are shed from the inlet
guide vanes because of periodic variation in circulation caused by
unsteady flow, and the flow downstream of the stator and through the
rotor blades should theoretically be treated on the basis of rotational
flow. .

If the guide vanes impart a radial variation of tangential velocity
of the fluid at a z-plane downsitream of the vanes not inversely propor-
tional to the radius, the circulation varies along the span of the guide
vanes, vortices are shed from the trailing edge to the flulds downstream
in the direction of the exit veloecity, and the fluid enters the follow-
ing rotor blades with a uniform s and H bDut a nonuniform I and a
nonzero value of absolute vorticity. Consequently, the flow through the
rotor-blade row can no longer be treated on the basis of zero absolute
vorticity, even if it is far apart from the preceding guide vanes.

From the preceding discussion, the choice of s and H or I
as the two basic thermodynamic variasbles of the gas besides its veloc-
ity components is apparent. Compressor and turbine rotors are usually
designed to impart or subtract the same amount of energy to or from the
gas radially; hence H is usually radially constant throughout the
machine if the inlet flow is uniform (except in the boundary layer along
hub and casing walls). If the circumferential velocity of the gas
upstream of the blade row is zero or varies inversely with radius, I
is then constant throughout the machine. These facts will be utilized
in the following developments.
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POTENTTATL EQUATTON FOR THREE-DIMENSIONATL, FIOW THROUGH
ROTATING BLADE ROW

Consider first the special case of steady relative flow where the
fluid upstream of the blade row is free of vorticity and is uniform in
I and s. The adiabatic flow through the blade row is then relatively
steady and absolutely irrotational and is most conveniently treated by
the use of a velocity potential ¢ bhased on the zero absolute vorticity
and related to the relative velocity components through equation (16) as

follows:

0d
== Vr=Wr
-rl-giq’;_—. V, = Wy + ar (22)
o0
3z ° VZ=WZ

For steady isentropic flow, the continuity equation (13a) becomes

o(W,r) oW W W
1 T 1 oh oh oh
T~ or +?acpu - (Wraf —ua—cp Wy BE>=° (23)

From equations (9) and (22),

2
od l l oo o
h=T +(D-y I‘EC_P) + <B_Z)] (24)
- W N2 V,q2 2

We 32 Wy %9 W
th_(r8¢ W % Wz 3 (250)

2 Wy
oh (\ o 3 @ 3 %)
= - \W o —— W - (250)
dz rQdzdor T 55— 322 '

By the use of equations (22) and (25a) to (25c), the continuity equa-
tion (23) may be written
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Willy 1320, Wlz 1 320 Wallr 320 1 39
27 roro® 2 Tz romz 2 2 smr T 1*’ “a?’o
(26)

Equation (26) is then the three-dimensional potential equation for
isentropic flow in a rotating blade row. It is seen from this equation
and equation (16) that the three-dimensional flow through a rotating
blade row cannot be treated by & three-dimensional flow through a sim-
ilar stationary blade row with the same inlet condition relative to the
blade row, as in the case of two-dimensional flow on a cylindrical sur-
face, because the difference between the absolute and relative vorticity
2w does not enter into the two-dimensionsl flow on & cylindrical surface
but does enter into the three-dimensional case.

Equation (26) is very similar to the ordinary three-dimensional
potential equation for flow past stationary objects, except that both
relative and absolute velocity components are involved in the coeffi-
cients of ® derivatives and that @ is directly defined by the abso-
lute velocity. The real difficulty in solving this equation lies in
the fact that all the velocity components change greatly in passing”
through a turbomachine and, consequently, the equation cannot be lin-
earized and yet give a good approximate answer. For supersonic relative
velocity, the method of characteristic surfaces (references 23 and 24)
may be used to solve equation (26), with the initial conditions not
given on a characteristic surface. For subsonic relative flow, the
equation is more conveniently written in the form

d? o9 P %
_9.4.%54._]:2._ _E __gﬂ .__3_8 T£=O
(26a)

and can be solved by Southwell's relaxation method (reference 25) or
other numerical methods using the differentiation formulas obtained in
reference 26 to take care of the unequal grid spacings near the blade
surfaces and the curved hub and casing walls. The last three terms in
equation (26) are computed fraom the ¢ values or velocities obtained
in the previous cycle and kept as constants during each improvement of
® values, and the whole process is repeated until the desired accuracy
is obtained. Because a three-dimensionsl stream function cannot be
defined, the use of velocity potential results in a boundary-value prob-
lem of the gecond kind, which is more difficult to handle in the calcu-
lation than the first kind. The boundary condition to be satisfied is
that the relative velocity normal to the moving blade is zero, or
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Wp 0. + W, n, +W, n, =0 (27)

where n is the unit normal vector at the boundary surface, and that,
at inlet and exit stations far away from the blade, the velocity is
parallel to the bounding hub and casing walls, which, in the case of
the axial machine, means that

Vr=g§=0 at z = %o (27a)

In both the subsonic and supersonic cases, the solution is
extremely time-consuming., Furthermore, this direct approach to the
three-dimensional problem requires that the absolute velocity at the
inlet to the blade row be irrotational and the flow be adiabatic. In
actual machines, the flow entering the blade rows is always rota-
tional, which is caused by & nonuniform total enthalpy and entropy at
the inlet of the machine, by entropy change caused by shock waves or
heat transfer, or by the effect of boundary layers along the hub and
casing walls. Some other approach to the problem, which is simpler to
handle and is also applicable to rotational inlet flow, is therefore
desirable. One approach is suggested in the following sections.

FOLLOWING FILUID FIOW ON RETATIVE STREAM SURFACES

In order to solve the steady three-dimensional flow, with either an
irrotational or rotational absoluté fiow at the inlet, in a relatively
simple manner, an approach is taken to obtain the three-dimensional
gsolution by an appropriate combination of mathematicelly two-dimensional
flows on essentially two different kinds of relative stream surface
(figs. 1 to 3). The first kind of relative stream surface is one vhose
intersection with a z-plene either upstream of the blade row or midway
in the blade row forms a circular arc (fig. 1). The second kind of
relative stream surface is one whose intersection with a z-plane either
upstream of the blade row or somewhere inside the blade row forms a
radial line (fig. 2). These two kinds of relative streem surface will
be hereinafter designated stream surfaces 831 and 82, respectively.

Sl Stream Surface of First Kind

In figure 1 is shown & stream surface of the first kind formed by
fluid particles lying on a circular arc &b of radius oa upstream
of the blade row. It is usually assumed in ordinary two-dimensional
treatments (for example, references 27 to 30) that the stream surface
thus formed is a surface of revolution. In the following development,
the surface will be allowed to take whatever shape it should have in
order to satisfy all the equations governing the three-dimensional flow.
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In most cases, the deviation of the surface from a surface of revolution
is not large, and it is satisfactory to consider 8, surfaces formed by

£luid particles originaelly lying on a circular arc upstream of the blade
row. If the rotationality of the inlet absolute flow is large, if the
blade is designed for a velocity diagram quite different from the free-
vortex type, or if the blade length is long in the direction of the
through flow (radial- and mixed-flow machines), the twist of the surface
may be quite large, resulting in very large circumferential derivatives.
If this effect is found during calculation or known from experience, it
1s more satisfactory to consider 87 surfaces formed by fluid particles
originally lying, in front of the blade row, on curves inclined to the
circular arc in a direction opposite to the twist of the surface. In
this way, the intersection of the 8; surface with a constant z-plane

about midway in the flow path is & nearly circular arc, and the total
twist of the surface will be about equally distributed toward the
upstream and downstream directions (fig. 3). If this distribution of
the twist of the stream surface is still not enough, it may be necessary
to divide the complete flow path into a few shorter paths and consider
an 57 surface for each of them. Under these conditions, 87 surfaces

formed by f£luid particles originally lying on the hub or casing walls
upstream of the blade row should not be chosen in order that the compli-
cation erising from the possibility of fluid particles leaving the wall
and flowing along the blade surface may be avoided. In such cases it

is better to consider the S; surface a short distance from the hub”’ and
casing; otherwise, for an approximate solution the fluid can be con-~
sidered to follow the hub and casing walls, which are surfaces of rev-
olution, and the calculation is thus much simpler than that for a
general surface,

82 Stream Surface of Second Kind

A stream surface of the second kind is shown in figure 2. The
most importent surface of this family is the one about midway between
two blades dividing the mass flow in the channel into two approximately
equel parts. This surface is designated the mean stream surface
(SZ,m)' For blades with radial elements, such as the one shown in fig-

ure 2, 1t is convenient to consider a mean stream surface formed by
fluid particles originally lying on a radial line &b upstream of the
blade row if the twist of the surface is not expected to be large.
Otherwise, the radial line is chosen about midway in the passage with
the fluld particles originally starting out fram a curved line upstream
of. the blade row such as shown in figure 3.

The mean stream surfaces for axiasl-flow gas turbines designed on a
free-vortex velocity diagrem are shown in figures 3 and 4. The radial
element of the mean stream surface (fig. 4) is.chosen accordingly as the
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stator is designed to aline the blade sections radially at the leading
edge, trailing edge, or somewhere between. Inasmuch as the rotor-blade
sectlions are_ usually alined radially at or near the center of gravity
of the blade sections, the radial position of the mean relative stream
surface is chosen at the same position (figs. 3 and 4). The continua-
tion of the stream surface outside the blade row is not shown. The mean
stream surfaces for the inlet stage of a multistage axial compressor
designed on the principle of a symmetrical velocity diagram et all radii
are shown in figure 5.

Both of these two kinds of stream surface are employed, in general,
in the solution of the three-dimensional problem. The correct solution
of one surface often requires some data obtainable from the other, and,
consequently, successive solutions between these two are involved., Yet,
the solution of each surface is manageable with the present mathematical
technique and computational facilities. In many practicel cases, and
especially in the inverse problem, however, this iteration may not be
required if only an approximate solution is required or if the prescribed
values lead to a satisfactory blade shape. These points will be dis-
cussed in the section next to the last (pp. 53 to 57).

Relations among Relative Velocity of Fluid, Coordinates of
Stream Surface, and Normael to Stream Surface

In general, the coordinates of the stream surfaces and their differ-
entials are related, respectively, by the following equations:

S(I‘,CP,Z) = 0 (28)
%—E—dr+%§pdcp+%szdz=o (29)

Rather than use the three partial derivatives of 8 with respect to
the coordinates, 1t is convenient to consider the unit vector n normal
to the surface, which is related to S by

or = “u = nz = 1 (30)
? 1 3_35 §_§ 3\ /1 38\ /3s\2
r T o Z =
V&6 -3
The vector n is, of course, perpendicular to the relative velocity W,
so that

NneW=20
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or
nW, + oW, + nW, =0 (31)
By using equation (30), equation (29) can be written

n. dr + n, r AP+ n, dz =0 (292)

The vectors n and W are shown on Sy and 8, surfaces in fig-
ures 1 and 2.

EQUATIONS GOVERNING FLUID FLOW ON S, SURFACE FOR AXTAL-FLOW AND
AXTAT.-DISCHARGE MIXED-FILOW TURBOMACHINES

If the fluid motion on S; is followed, equations (28) and (31)
can be used to eliminate one of the three coordinates. For axial-flow
Efigs. 6(a) to 6(c)) and axial-discharge mixed-flow turbomachines

fig. 6(d)), it is convenient to express r in terms of ® and z.

For radiasl-flow and radial-discharge mixed-flow turbomachines (figs. 6(e)
and 6(f)), this system will encounter difficulty at the exit where the
rate of change of f£luid state with respect to 2z Dbecomes infinite. It
is therefore necessary to eliminate 2z and to consider r and @ as
the two independent variables.

Flow Along General S, BSurface

For axial- and mixed-flow turbomachines, any quantity gq on the
81 surface is considered a function of ¢ and z; that is,

q= Q.I:q): z,r(P, Z)_—_l

The change in q along 51 due to a small change in @ vwhile z is
held constant is (see fig. 1)

dq = %% aoQ + g—f—‘j % daeo
From equation (29a),

= -

sl
n,.

3%
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hence

With a bold partial derivative sign used to denote the rate of
change of any quantity q on 8; with respect to ¢ or z, with the
other kept constant, the preceding relations give

123 13 "udq
FSe"r 0P &
(32)
ag dq Iz 9
32 % E &

" With the JFelations (31) and (32), the rate of change of g along a
streamline on™ Sl is

[}

W
B.z._l_l._(l.;.wz
T

T (33)

8
w{m
] 1=

Equations of continuity and motion. - When the fluid motion is
followed along the stream surface and equations (31) and (32) are used,
the continuity equation for steady relative motion becomes

9(pWy)  9(pWy)

S 59— * 5= 0 o(®2) (34)
Where
1 B(W T) Bwu
C(Q),Z)=-n—r- ?T+nuy+nza— (35)

For rotational steady relative motion, the equations of motion (14)
in the radial, circumferential, and axial directions are
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- 20, = - g% + T gg

1Ol , T Js
rw‘&‘>+2‘1ﬂr=-;w+;a?p

oI 3
"V EZ__Y>+W‘1(I'W-BZ—>=- A

(36)

Relations (9), (16), (31), and (32) along the relative stream sur-
face 5) can be used to reduce equations (36) to the following:

2 -
Wu" Wy OWp oWy oh ds 2
T tT ap tVzg %Wy = -\F - Tsa-or

Lo

13l T as nu(Bh 35 2r>

W:cHu Wr awr (l GWZ 3W1>

r "T 59 "2\rep 5z) T =-Taptrae no\or T o0

MWy 1 W, Oy 3T as Iz (dn S =2 )
- Wr az + IW’u (F 5$ = az ) = - "a'z- + T -—az - — (‘g‘r - T 5 -
(37)

The last term in each of the preceding three equations is propor-
tional to the components of the normal vector and therefore can be
expressed as a component of a vector that is parallel to n and has
the dimension of force per unit mass. If this term is defined as

‘f = _% %_T%_mzr> ne= - %(%%-wzr) n (38)

the preceding eq_ua:’cions can be written

2
Wy oWy M, Wy
T 39 "Vagsz T T =Ir (392)

Wity Wy 8y 1 A,  aW,
T r 3p "'z

5%?5*5{) Ty = - 23t T et fu (390)
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Similarly, the equations of motion in the form of equations (2) can be
written

Yo My o T Voo, )
r 3P Z 3z T r
Wu dWy Wy | WrWy 1 ap .
?‘SE-I-WZ‘BT-F - +2(L)Wr=—§¥p'+fu (4:0)
W, oW, aW 1ap | .,
T tV2 3" " 55t Th )
where
b _ 1 13 n

Because this vector f 1is parallel to n, it is perpendiculaxr to
the relative velocity of fluid, or

PWp + By + £,W, = O (41)

By the use of equation (41) and equations (39), it can be shown that for
steady flow on an Sl surface,

%%:T%ts- (41s)
. which agrees with equation (20). Therefore, for the present problem of
steady relative flow on a stream surface, the relation (4la) can be
taken either as one of the equations of motion or to represent the rela-
tion given by equation (41). In other words, there are only four inde-
pendent relations among equations (39a), (39b), (39c), (41), and (4l1a).

Just as in the case of the continuity equation, either set of the
preceding equations of motion is expressed in terms .of, the special par-
tial derivatives with respect to the two independent varigblies @ and
z. The effect of radial pressure gradient is taken into account in all
these equations by the f term, which is neglected in the ordinary two-
dimensional treatment on a surface of revolution. Equations (28), (31),
(34), and (39) or (40), however, lead to a possibility of correctly
solving the three-dimensional flow of fluid particles on an 83 surface

in a mathematically two-dimensional manner.

Principal equation. - The equations of continuity and the equation
of motion in the circumferential direction can be combined into a prin-
cipal equation through the use of a stream function  as follows:
First, if a variable b is introduced such that
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o n, W
Dinb _ ., 27z (42)
Dt n, r
or
b ' n, Wy 1 Ly Wy,
In g— = - (C-g;')dx:- W(C-ET—}— ax  (42a)
i ti Ly

in which the integration is performed along a streamline on the 51
surface, then the continuity equation (34) can be written

a(pru) a(prZr)

= 48
3% + ps 0 (34a)

The preceding equation is the necessary and sufficient condition that
there exist a function ¥ with

oy _

2% rbpW, (432)
A

32 = -boWy, (43b)

The difference in Wl at two points j and k on the Sl surface 1is

k k
v -yl = ay = | bp(W,r dp - W, dz)
J J

In particular, the difference in 1V at two points j and k on the
constant-z plane at the inlet where the f£fluld state is uniform is

k
ﬂ!k-‘if‘j"bipiwz,ij‘wrdq)
pd

These two equations show that, physically, the integrating factor D
can be interpreted as proportional to the local radial thickness of a
thin stream sheet whose mean surface 1s the stream surface considered
here. The continuity equation (34a) can also be obtained by consider-
ing the masg flow going into an element of such a stream sheet as shown
in figure 7. By equating to zero the mass flow going into the element,
which is defined by two axial planes d¢ apart and two normal planes
dz apart (see fig. 7(a)), and letting dp and dz approach zero,
there is obtained :
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a(Tpwy) . a(tpW,r) B

39 5z (34p)

where T 1s the radial thickness of the stream sheet. From equa-

tions (34a) and (34b), it is apparent that b is proportional to T,
and the differences in ¢ at two points J and k as given by the
two equations preceding equation (54b) are proportional to the mass flow
across any line joining the two points. In actual computation, only the
ratio b to by or T to T4 is important (a dlfferent initial value
amounts to a different constant multiplier of the relation between
and mass flow). In the following, b will be retained in the equation,
but in actual calculation it is simpler to evaluate the ratio T +to

T; than to evaluate the ratio b to bj, both from the data obtained

on the S, surface to be discussed later. Although the evaluation of

this ratio requires, in general, calculatiens on the 8, surfaces, a
means is nevertheless provided to determine correctly the flow on a
general S, surface through iteration.

From equation (43),

bp 1Mz _ 13% 1almbpay M 1ok (440)
T3P 232 2 0P 89 n, 2 3p
My 32y ainb
- = - p Y
be 57 gl 3z oz (44b)

The third terms in the preceding équations can be expressed in terms
of h +through the use of equation (12b):

dlnbp=dlnb +=dh - ds* (45)
a

where s* = s/R. But from equations (9) and (43),

2 2
mzr -2
h=TI+—5— ———-—(b) [(r acp 8z>:| (46)
Then from equations (45) and (48),
2.2 —17 &
[+2 - (w2 +w,2)] 22200 12 O W) e? (an b as*)
& - ku r 3 2 + 3p  3p
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2 2 2\] 8lnbp @ ofz? -y ¢ 2faInb 9s*
l:a. '(Wu +WZ Y =5E I+-——2——r— + a 3z -az>-

2
(bp) 1 CE %y a%) _Wp” oy

r 3Y9z uazz r n,

Substituting the preceding two equations into equations (44a) and (44b)
and adding yield

- 2 2
oW oW a” - W W.W
prZ _ (Wuz +sz):| (_]_. Z u) - u 8?‘\.]! _ o Mu'lz 9%y

+
r op 3z rZ acpz T 542
2 2y 2 2 2 . 2
(az_w 2) .a_l_lf.- liQ:.l.mzr.—Wr> +§'_ 3 lnb_as* - 2 Wu’ n_u.i.al_
21 g,6 | T 30 2 r ET0) Y] r -n.|rap

2.2 2 2
3 I+(Dr 'Wr + a2 aln'b_as* _WZ k Y (47)
9z 2 3z oz r n, oz

Substituting the preceding equation into equation (39b) and dividing by
a2 glve the principal equation for the determination of fluid motion
along e genersal S surface:

2 2\ o
Q__%)_;_azxy p 1u'z %y +(-W———z>—’{az + 3w,
opaz a aZZ T 3y

8,2 I‘2 aq)z azr a ' 9z
48
where (48)
2 2
M= aln'b+as*+i __a_:l:__l_'w‘ SWr+0)r2+WZ f.—z.
T 3z ) az T a3z r n,.

dlnb laos* 1 (_1 31 Wr oW az—(Wuzﬂ'Izz) W.

3P T3 Z\Tr T T W,

2 (o 2 2.2 2 (. 2 z)
a®-(W, “+w°r®)n a“-\w “w 3
(W, u)+ (u 2 [_La_l.+l§i+fu+p&,(%a_cp£_&l>]

The equation of the characteristics of the differential equation (48) is
(reference 31)
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sz> ay WM, ( __)
( - % r(dz) r2 - _ (49)

2 2.2
r 80 Wy Nef(E4W,E - a?) (50)
az az_WZz g 2

from which

Equation (50) shows that the characteristics are real when
I\IWuz + sz >a, in which case the method of characteristics for two inde-
pendent variables (references 20, 30, 31, and 32) can be applied. When

/\’Wuz + Wz2< a, the characteristics are imaginary, and it is more con-
venient to solve the equation by relaxation (references 25, 33, 26, and
29) and matrix methods (references 26 and 29) in the following form,
which is obtained by substituting equations (44) into equation (39b):

ia _g 81nbp__£)_8i+alnbp_a_q_f .

% ag?  8z° o 9z 0oz

_1.1‘1’. I: ;% T tTut T3 ~ Ve \F t2|=0 (48a)
T 39

Procedure of solution. - It may be noted that equation (39b),
instead of (39c), is chosen to form the principal equation (48) or (48a),
because f,; 1is, in general, much smaller than f,. The various quan-
tities appearing in equation (48) or (48a) are to be computed from
other eguations given earlier. With the introduction of the stream
function, there are altogether seven basic independent relations -~ one
energy equation (21); three equations of motion, (48) or (48a), (39a),
and (39¢); two equations between V¢ derivatives and fluid properties,
(432) and (43b); and the orthogonal relation between W and f, equa-
tion (41) or (4la). On the other hand, there are ten basic dependent
varisbles in ¥, b, Wy, Wy, Wyy £, £y £5, 6, and I (or h or p)
to define the flow and the shape of the surface. In general, the vari-
able b is to be evaluated according to equation (42a) or from the var-
iation in the radial thickness of stream sheet using the data obtained
in the solution of 8; surfaces and is therefore considered as given
here, If during the complete solution of the three-dimensional flow the
shape of an Sy surface is taken as the one obtained by Joining corre-
sponding streamlines obtained on 8, surfaces of the preceding cycle,

two relations between the n- (or f-) components are given by equa-
tions (29), and there are now altogether nine equations to be solved to
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find the nine unknowns. Alternatively, the variation of W, may be
considered as known from the S, solutions of the previous cycle, and

the remaining eight variables, which determine the flow on and the shape
of the S; surfaces, can be determined from the seven preceding rela-

tions given and the following additional relation: Because £., T,

and f£,, respectively, are proportional to %%w %'%%y and %%, of the
integral surface S, they satisfy the following equation (reference 34):

foVUXFf= 0 (51)

which may be written

df d(£, ) df.. of [ d(£,r) of
1%z 1 ur T z 1 u 1 %p
fr[;am r or +fu3§‘"ar)+fz; > "roel=®

(51a)

By using equations (31) and (32), equation (5la) becomes simply

T f.r
9 (CZ2). 8 (%
()= 2 () (522)

This equation can be used to give ‘fu by integrating along a constant
® line: :

L @Er_) ) Gﬁ) ax (51c)
had r Z:ZO ZO CP xr
Ifat z= ZO’ fu = O, then
Z
£ £
£ 2 (2)ax (514)
u r 3P \f..
ZO

In this case, then, the shape of the S, surface is determined after

the f-components (or n-components) are cbtained in the solution. In
either case, equations (21) and (41a) are invariably to be used first to
determine the change of s and I. If the flow is isentropic, s

and I remain constant along its streamlines on the surface. (For
such a case and for a uniform.iflet condition, p 1in the continuity
equation may be replaced by HT-l and, consequently, the ® and =z
derivatives of 8, as well as those of I, will not be involved in
the equations (46) to (48)). In case of heat transfer or shock, the
changes in s and I can be estimated by whatever method is available
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and used in the calculation. For supersonic flow, all the equations are
used to compute the fluid state at each point and the solution is carried
downstream step by step. For subsonic flow, lteration over the whole
domain is necessary. The details of these computations will be given in
the last section. In general, the solution of the flow on the general
S1 suwrface is very laborious, and is to be used in the final stages of
calculation of the complete three-dimensional problem or when a high-
speed computing machine is available.

If the flow is such that it may be assumed to take place on a sur-
face of revolution (at the hub and casing walls or other radii), the
equations are considerably simplified as follows:

Flow along Surface of Revolution
When the S, surface is a surface of revolution,

.o, =f,=0 (52)
Let

= tan 0 = A (53)

I

1
H'-bl NH:

It
SI Hﬂ

)¢

b4

where A is a given function of z. (For a conical flow surface, A
is simply a constant.) Equation (35) now gives

W, oW oW
c=_<_§_+§1_->+>\3r_z (54)

Whether ¢ can be taken as zero will be determined by the relative
magnitude of the three terms on the right side of the equation. In
general, for nonnegligible c, equations (43) now become

% = rbpW, (55a)
gﬂg’ = - bpW, (55b)

Because W, is now related to W, by equation (53), the three velocity

components .can be solved simultaneously as follows: By use of the rela-
tions (52) and (53), equation (39b) can be changed to

W av W
2, 1 %y u u L /13T Tos
(l“);w“a_z"A(—r‘* 5‘”) T Wz ;an‘EEFP):o (56)
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Tnstead of equation (46),

h=1I+ "iz—— -5 L (bp)~? [(m\ 3“’) ( :] (57)

should be written. Then

* W
(a.z_w ) __a___BB i—% ar é%%}__%%} ~ (bp)_l[(l+)\z Yz 8211[ "ug \trz:l

23 T 98
2 2 3 2 2[/31Inb as 2 dA
( I) = +N0r+a (—a?— az>+(w+W)AWZ>\EE-
_ W, a2 2
(bp) l[(1+>\2) e EZ‘ZE]
(58)

Combining the preceding equations with equations (55) and substituting
the resulting equation into equation (56) give the following principal
equation for the flow on & surface of ret¥olution:

2 2
(l+7\2)K -——) —:;- B_@;E -2 (142%) auzz g%z+<l-wr:zz ) azg +§ %+M

(59)

2 2 2 2 ,..2..2
in * . a®-Wwe-w -W -u°r 37
M:-a b+aS +i _a_I..]. L )\+WZ2},
, 9z b= ¥4 2l z

213 mb 13s% 1 13I] a®w2[ 20 1 (L3I T O
N = - (1+X7) FW'?W’*’?FB@E" = [wz X E%‘?Bﬁ')

For this equation, the characteristics are real or imaginary when the
resultant relative velocity W 1s supersonic or subsonic, respectively.
For the subsonic case, it is again better to use the following form

obtained by differentiating equations (55) and substituting the result-
ing equations into equation (56):
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3 2
2y 1 Oy 9% Aav 181nbpaqr Yy
(W) 5 FE T 5 [(1“@) ? St e 3 ] ZNabp. -
(bp)2 (13T T ds
W rac‘p';a—ep> 0 (592)

With A given and b determined from data obtained on the S,
surface, there are now the six independent relations equations (21),
(59) or (59a), (55a), (55b), (53), and (41a) for the determination of
the six main variables in ¥, W, W W., 8, and I. The f~components

are not involved in the calculation. If the flow is adisbatic with
uniform I and s, +the equations are further simplified.

Flow along Cylindrical Surface

If the flow near the walls of an axial-flow turbomachine can be
considered to take place on a cylindrical surface, then

ny,=1n, =f;, =%, =W.=0 (60)

Equation (35) now gives

c= - 5= (61)

which is relatively small. (If c is negligible, b can be taken as
1 everywhere.) For flow without change in radial distance, the quantity

2
I can be replaced by Hy; ( h + Wz ) The equations governing the

cylindrical flow are then (compare reference 29)

% = rbpW,, (622)
g% = - bpWy (62p)
Ds
T35 =@ (63)
D By Ds

o - T (64)
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and

a r a2 T 0Pz a2 / dz
(85)
where
" dinb ds* 1 OH
=T ta " 23
2

- P - U Bt W G G A -
T T r dp T 0P g2 w2 r o9 sz T 0P

or

1 %y 821]; 1 3 In bp 3 1mbp v\ (vp)? (1 By T 3
—"a—cpz"f (;E'_Bﬁp_— qa+1—z—£sz) %gi racp'FBTp:O

In general, the circumferential derivatives of H, and s are to
be determined by the inlet flow and equations (63) and (64). For adia-
batic flow with uniform H; and s upstream of the blade row, these
derivetives are equal to zero everywhere, making the problem much sim-
pler. The main differehce between thisg simplified case and the ordinary
two-dimensional flow on & cylindrical surface is the inclusion of the
factor b in equations (62) and (65) (in general, b is a function of
® and z). If the velocity diagram is such that there is considerable
radial gradient in the radial velocity or considerable variation of the
distance between the adjacent streamlines, the factor b is not
negligible.

EQUATIONS GOVERNING FLUID FIOW ON S SURFACE FOR RADIAL-FLOW
AND RADTATL-DISCHARGE MIXED-FIOW TURBOMACHINES

Flow along General §S; Surface

For turbomachines with radial discharge, T and ¢ are conslidered
as the two indépendent variables; that is,

a=alr, o, z(xr,p)]
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Then

3 Oy dq \
eégl:g' n, dz
lsg_ 19q oy dq
55%) r 39 " n, oz i (66)
Dg _ 24 Wy
_l)'t—Wl'ar"'-'r_égéP J

Bquations of continuity and motion. - By the use of these relations,
the equations of continuity and motion become

1 3(eWpr) 3 3leWy)

——————— —_— !
T ar T 3P = ec (67)
where
1 oM. My, M,
Cx=1-~— nr3—+nur+nzg— (68)
and
.2
W oW W,, oW W
u u u “'r Z _ oI '
_—r-—VTu-a-I‘—+—i—§*’r- z 37 mu——5—r-+Tar+f (69a)
W0 W W,. oW W, oW
r'u u MM T2z o o L3 TBs o,
T r ar Tr 9P Tr 99 T r3d T P u
(69D)
oW 3w W,, oW
Z b:4 u g .
. =Wzt = 3% = £l (69¢c)
with
oh Js 1 1dp N
l=___ = - =
f F‘ Ta—)ﬂ nzpﬁn (70)

Principal equation. - If a variable b' is introduced such that

t -
2n 2
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or

!
1n.%7»= - c! dx = - = dx - (71a)

in which the integration is performed along a streamline on the surface,
then the continuity equation (67) can be written
1
3(b'pW 1) N a(b'eW,)
or 9

=0 ‘ (72)

and a stream function- ¥ can be defined on the surface with

v

5= = -b'olly (73a)
v _ o
= b 'pW,. (75b)

Here b! can be interpreted as.the thickness (in the z-direction) of
the stream sheet whose mean surface is the §; surface considered. The
continuity equation (72) can again be obtained by equating the mass Fflow
into and out of an element of the stream sheet as defined by two axial
planes d® angle gpart and two cylindrical surfaces dr distance apart
as shown in figure 7(b). As before, the difference of V¥ at any two
points on the 57 surface is equal to the mass flow across any line
connecting these two points. By the use of the preceding two equations
and the relation

202 WP 1 -2 2 2
e e (P R3] o

the principal equation for the flow of this surface is obtained from
equation (39b):

2 2 )
W 2 W W 2 W
Q_-L)H_zrula_‘_l’_ Q_L>1ﬂ+M%g+g%

—— — + ——
22 | 372 22 T 9ra® 22 ) 72 aqp

(75)

3T W, az-(Wr2+Wu?) w?rz+wrz
- T Wy 5p * T T
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- Bt * 3w
N__:_lalub +ies +l _ ol Z\,

r 99 r 39 alp 299 z ?p
2 2,9 2
W) 1z, 2% ey - 2w +Wz_awz>

T T u - r*r 3
a.zwr CP 3 ¢
This equation is seen to be hyperbolic or elliptic when Wrz-l-Wuz is

greater or less than the speed of sound, respectively. For the elliptic
case, it is preferable to use the following form:

azw

31‘

2 W, oW,
D! 19X 9s u
i(:_é%__ “F3et T 'E>+f1'1+racp WI.< +Za>l=0 (752)

T 3

a2y (9 Inb'p 3y 1 al_nb'pa‘clf
aq,z ar ar 2

+ =+
o2

The integrability condition (51) is now written
T fyr
2 (X - I ekl
3p (f)z or (fz ) (78)

hence

r
b £ £
f_ui _ (%EE) +j 2 <f_r> ax (768)
z 2 r=rq Ty P Mz

The procedure of solving the principal equation with the various terms
in it determined by other flow equations is the same as that in the
previous system.

Flow along a Surface of Revolution

For the special case of flow on a surface of revolution, equa-
tions (52) and (53) hold (with A considered as a function of r) and
the expressgsion of c¢! reduces to

M

H awZ
° z "% (77)

>’l|-'
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Furthermore, equations (73) become

§i = -b'pi, (78a)
%: bW, ' ~ (78b)

and equation (69b) becomes

M, oW W
1)1 My u 1 {LOI T os
(“ >r5—_ '(_r—'l'?w)"v_f—(?%'F&b):O (79)

Using the relation

h=1+@_%(b,p)_z[<%>2+ Q+£E)<%%>z] (80)

gives the corresponding principal equation as
2 2
W5+ 2 W W, a2
(1-’? 22)3‘21'_21+i2 ua 1+ -
a ar A2/ alrp

where

mh‘
+
E
ol
45
z:
k4
o

2.2 2.0 222
3lnb'  as* 1 a1 | 8% WEMEW, St W2 gy
M= - + +—§ -

ar ar 5r T T A dr

we - (L4 l)(L3inbr 13s* 1 or\ &fwfl2w, 1 (3 . s
STNTRRNe T Troe iz ) 2 |WLToz \» T Sy

a r Wer
or
2
3%y 1ay 1\ 1 alnb'paqr 1) 1 3d1nbl'p Y
ar2+rar+( >2 > [ +(l+>\2>r2 % 3%
2
b! d
&nb‘p—TJ(_ o) (%gc%-f—‘g—) 0 (81a)
T 39
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Flow on Redial Plane
For the special case of flow on & radial plane,

nT=nu=fr=fu=Wz=0 (82)

and equations (77) to (81) reduce to

' My,
N - iy (842)
g%) = rb'oW,, (84b)
h=I+ia)zr2- iall“f2+ aﬂrz (85)
2 r dp or
2
Q__Wr>az.¢r_2wrwua% + 1-@)1—-&.,.1494';4.}_1@.:0
02 / a2 22, Ord® a2 /) 22 3 dr T 3P
(86)
where
, . 2 2y 2 afr?
T
a X4 r
. a2y 2 o
131mb'  1s* 1 u 9L  afWE . 9s al-W2 2w
TTr o9 T3P 2y e ™ g2 o) a2 Wy
and
%y 193y, 1% (dlnblpdy 1 31nbpdy
SFJ'?BFJ'?Z'acpZ“(W wt oy 9w T WP
(b'p)z 1LOI T Os
laﬂf racprEFp =0 (86&)



NACA TN 2604 37

Alternative Form of Equations for Flow along
Surface of Revolution

The equations given in the preceding sections are obtained for
turbomachines to avoid an infinite value of the partial derivative with
respect to 2z. Difficulty still exists in using either of the systems
in the case of a mixed-flow type machine with an axial inflow and a
radial outflow. For solutions of general 51 surfaces, this difficulty
can be avoided by dividing the machine at the middle of the flow path
and using the first system at the inlet portion and the second system
at the exit portion. If the S, surface can be epproximated by a sur-

face of revolution, it is convenient to use & set of orthogonal coordi-
nates 1 and @, vwhere 1 1s the arc length of the generating line of
the surface of revolution in the meridionel plane and @ is the usual
cylindrical angle (fig. 8). Because

Wy ar

.W'_Z = 'aT = s8in o (87)
and

Wz dz

W-——Z = T = co8 O (88)

then, for use with the first system,

8q _

5z = % O 3y (89)
and, for use with the second system,

L] = aq

-0y (%0)

By use of the preceding relations, the equation of motion in the circum-
ferential direction as given by either equation (56) or (79) for the
two systems, respectively, becomes in both cases

W oW W
1 Oy u u 1 /13 TOs
;BTP—-&—_<T+2®>SMU-W;<—ITBTP-;X¢>=O (79a)

which agrees with the results obtained in references 29 and 30 in a
different manner. The subsequent equations given in these two refer-
ences can be modified and used for such surfaces. (The last term on the
left side of equation (79&) represents the rotationality of the absolute
flow and is not included in reference 29, which is derived for irrota-
tional absolute flow.)
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By comparing the integrating factor b used herein and the thick-
ness of the stream filament of revolution T used in these two refer-
ences, it is seen that the two play exactly the same role in the con-
tinuity relation. Although b is obtained mathematically as an inte-
grating factor, physically it may then be visualized as the thickness
of the stream filament in the r or z-direction for the two systems,
respectively. The use of b herein is, of course, more general in that
it varies two-dimensionally over the surface in the general case, where,
as in references 29 and 30, T 18 considered a function of 1 only.

EQUATIONS GOVERNING FIUID FLOW ON Sp SURFACES

In the preceding section, it was shown that the determination of
the flow on S3 surfaces requires a knowledge of the radial variation
of the velocity components. This knowledge can be obtained by following
the fluid motion along relative stream surfaces of the second kind, So.
On S5, the relations (28) to (31) also hold. These relations, how-
ever, will now be used to eliminate the independent variagble ; that
is, any quantity q on S, 1is now considered as

qa=a EI‘, z,9(x, Z):I

Accordingly, on Ss

33 _9 _Trldg
3r Oor ny T oY
(91)
3g_9a Iz 12
9z Oz n, T OQ
and along a streamline on Sgp
Da_ . 39 2
5t = Yr 57 + Yz 57 ‘ (92)

Equations of Continuity and Motion

Equations (30) and (91) are used to change the continuity equa-
tion (35) to

1 a(pWyr)  3(pW,)
r

37—+ 52 = P C(r,z) (93)
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where

M. My W,
C(r;Z) = -n—ul?Qnrr'i‘nur-l'nz 8—) (94)

For general rotational motion, the equations of motion (14a) in the
three perpendicular directions are

3(V,r) awr]
T or ~ 39

(T T YN
3z " &) &ty

o(Vyr) BW%] 1 oWy aw#) 10 , T s 95)
T "l " Y2\fsp "%/ FmtT oy f(5
BW BW (l awz awﬁ) oL T Js
a— sr— r3p dz/ " S=Zztt3 U

In following the motion on S0, equations (95) are reduced to the fol-
lowing form by using equations (9), (16), (31), and (91):

Wy 3(Vyr) My, W, N as
T Tar +WZ(aT-5r—=—ar+T P (96a)
Wy 3(Vr) W, 3(Vr) D(Vyr) A
T e tT e =T [ Far= g (96®)
W W W, o(v,r)
r Z u w oI as
'W(E""3T>'T 5z~ "az T T tFz (%)
where F 1is a vector having the unit of force per unit mass of gas
defined by:
l oh 1 109p
F = ~ T n - = = n 97
T \5% a?p> " 5Fp (o7)
A similar result is obtained for the equation of motion in the form of
(2):
2
oW. aw. v
W. _I‘+w _.._r_._u__:._i.a_p..{.F
r or Z 3z r p ar r
Wy 3(Vyr) W, 3(V,T) (98)
T et T Taz u
oW oW
Wy o b W —2= - 28 4 p

%2 3z T ar p 93z
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Because the vector F is normal to the S, surface,
FW,. +F W, +FNW, =0 (99)

By the use of equations (99) and (96), it can be shown for steady flow
on an S, surface that

DT Ds

-D—t =T D—t' (99&)
This result is the same as that obtained for the S, surface. Again,
for the present problem of steady relative flow on the S, surface, the
relation (99a) can be taken either as one of the equations of motion or
to represent the relation (99). In other words, there are only four
independent relations emong equations (96a), (96b), (96c), (99), and
(9%2) . In the following development, it is found convenient to use
equations of motion in the form of equation (96), not only because
OI/or is zero in many design problems (whereas Op/dr # 0), but also
because equation (96) leads to a form capable of a rigorous solution
for both subsonic and supersonic £flow and shows clearly how the various
design factors affect the three-dimensional motion in general. (See
equations (106) to (114) that follow.)

In & menner analogous to the $7 surface, the continuity equa-
tion (93) is put into the form
a(rBoW,.) a(erwZ)
+ =0

or 22z (100)

by the use of an integrating factor B, which is related to C by the
following equation:

D1In3B 9.1n B 3 1In B
Bt = W ————'ar + W, 3z = C (101)

or

B . L C
In 5~ = C dx = 7 ax (101sa)

Equation (100) is the necessary and sufficlient condition that a
stream function ¢ exist and

(102a)
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vy
= - xBoW, (102b)

The difference in ¥ at two points j and k on the S, surface is

k K ©
L W‘j = . d.’llf = ; I‘BD(WZ dr - WI‘ d.Z)
J

Similar to" the flow on the 5, surface, the preceding equation
indicates that B d1is proportional to the angular thickness of a thin
stream sheet whose mean surface is the stream surface Sz considered
herein and whose variable circumferential thickness is equal to xB.
Indeed, if the mass flow into and out of the element of such a stream
sheet (cut between two planes normael to the z-axis, and a distance dz
apart and between two cylindrical surfaces dr apart (fig. 7(c))) is
equated to zero and the distances dr and dz approach zero as a limit,
the following equation is obtained:

a(TpWy.) N a(ToW,) _
ar 9z

0 (1002)

Comparing this equation with equation (100) and considering the mass
flow relations show T +to be proportional to rB. This proportionality
means that B can be physically intepreted as a quantity which is pro-
portionel to the angular thickness of a stream sheet whose mean surface
is the S, surface considered herein. With this interpretation, B is
immediately seen to be closely related to the angular distance between
two neighboring blades. 1In actual calculation, only the ratio rB to
(rB); or T to T3 is important, and it is also easier to obtain the
variation in rB from the distaence between adjacent streamlines
obtained on S surfaces than to evaluate B/B; by equations (10la)
and (94) using data obtained on S surfaces.

Principal Equation for Case with V,r Given

In the solution of flow on an So surface, the continuity equations
and the equation of motion in the radial direction are combined to form
the principal equation. The principal equation will now be obtained for
two main groups of present designs in which a certain desirable varia-
tion of the angular momentum of the fluid V,;r and of the ratio of

relative tangential and axial velocity are prescribed on the Sz,m sur-

face, respectively. These equations can also be used for the solution
of a direct problem, in which the same information obtained on Sq
solutions of a previous cycle is used as known values in the Sgp
solution.
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For the first group, the following equation is considered known:

Vur = G(r,2) (103)

Among this group of designs are the free-vortex design (in which G is
simply a function of z), the more general "solid-body rotation" design,

the "symmetrical velocity diagram at all radii" design, and others (for
example, see references 17 and 18).

From equations (102) and (45),

W, a3t *
z v 1 1 3h ,6 3s 9 1n B\ 9V
er‘ér*a—r?*(';‘gﬁar ar " ar )'a? (104a)
Gl 2,1,
r 9 1 8h , 3s* 3 1n B\ a8V
TP E T2\ ZeE T T )s;: (104p)

2 ‘ 2 Zl
2red W w)
_ wer u 1 -2 ) v
h=171I+ —— -5 -3 (er) (.55- +(8—Z—> (105)

2 2, 2 - 2
¥ e I+a:2r2-wu + (P (L4 2122 S2et),
a2 ar ar 2 z

or
(zB0)-1 (Wz ﬁ o'y )

- HI’
az
ar® or

32'(“r2+“z2)a_h_'3 I+°21’2'Wu2 s (w2 (2B 8t
2 3z 9z 2 r Tz

al 9z oz
(er)"l (w ﬁ_ - W. ﬁ)

Z araz T az@

Substituting the preceding equations into equations (104) and adding
give

o, oW 2 52
[22- Qﬁrzmzz)] rBp (a—ri - -a—zr-> = (a2 ) f’;g -z, 2Ly

Z 3raz
2 oo
(awg)azw ____Q _Wu"”r>_&2 @ InB _@s*\|a¥
Nz T ar 2 aT ar ar

3 (I ) Wu2—<1)2r2> _2(amB _as* oy (106)
T 2z 2 Jz 3z 2z
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Substituting equation (106) into equation (96a) and dividing by
a2 yield the following principal equation for the fluid flow on sur-
face BSg3:

_WI'Z azllf_ W W, 8219' l_sz 32W+N3¥+M-a—lg—0
a2 /| are a2 araz a2 / aze ar az =~
(107)
where ’
3 1InB , as* 1 fa1 Ay
M= - oz T 3z ";5 a_z_wuaz
1 23lnB  as* I (arI My, 2>
N=-2 - "% %o *;z(ar'"’usf‘*‘” +

PP [ o ey e S0
a2y 2 ~ or ar ' T " r " ar

From the coefficients of the second derivatives, the principal equation
is seen to be hyperbolic or elliptic when the meridional velocity

Wy = ,‘,}ﬁrz + WZ2 is greater or less than the speed of sound, respec-

tively. For the elliptic case, it is again convenient to write the
principal equation in a slightly different form. From equation (101),

oW
cpo Mz _ 8% _10v 5 inp o¥

ar Brz r or ar or
(108)
Wy 2%% 3 1n Bp OV
~IBp T oz 3z
9z
Substituting into equation (96a) results in
2y 12y  2°¢ (3 1nBp ¥ 3 1nBp 3V
ar2 T Ar 42 ar ar 3z 23z
2w, a(v,r)
(rBp) [ u u oI Qs :l 3
3¢ LT or ~ar t T g+ T =0 (107a)

or
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With the variation of V,, or W, prescribed by the designer in an
inverse problem or teken from the previous 87 calculation in a direct
problem, the meridional velocity components are determined by equa-
tions (107) and (107a). (Other equations are used to determine various
terms involved in the coefficients M and N.)

Principal Equation for Case with W,/W, Given

In the second group of designs, the following relation is pre-~
scribed on an Sz,m_ surface (for example, see references 17 and 18):

W
__U. = g(r, Z) (109)
i,

-

In order to result in blades with the mean blade surface composed of all
radial elements (for high-speed rotation), it may be desirable to spec-
ify a mean Sy surface consisting of all radial elements. Then

W

W—:= r gi(z) (110)

Similarly, in order to obtain a cooled turbine rotor blade with minimum
twist, the following function may be specified on Sz,mF

W
T = 8(2) (112)

In application to direct problems, one of the preceding relations is
obtained from the Sy solution in the previous cycle and is considered
as given in the S; solution. In both inverse and direct problems,
with the relation between W, and W, given by these equations, all

three veiocity components are to be combined into the main terms of the
principal equation as follows: Substituting relation (109) into equa-
tion (96a) gives

oW aul.
2y 2 X g 2&) L (3L qpas =
(1+8%) 37~ - 33 +g(r+ar Wz+?a)g+wz<ar+Tar+Fr 0

Instead of equation (105),

h=T+ “# - -21- (rBo) ~2 l:(l+g2) <§§)2 + (gg)z] (113)
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should now be written. Differentiating with respect to r and 3z,
combining with equation (104), and substituting into equation (112)
give the following form of the principal equation:

W2\ a2 W W, a2 Wy, 24,2\ g2
(1+g2) | 1-—— Y -2(1+g2) =2 7Y (- nTFz) %Wy -G—E+M o
az ar? a Z

gl Oroz a 372 dr ]
(114)
where
M. _21B 3 1 (a1 W2 og
dz 9z 22 \3z g2 3z
_ 2y/1,91nB as* 1(31_ 2. _ w2 . o8
N (1+g%) t ar 37 AT Wzt g o2) |t

2.2 2 .2
8 W (& 28,2 H a+Ta—S+F + 2l
a2 ar

azwzz or

This equation is hyperbolic when the relative velocity is supersonic,
elliptic when the relative velocity is subsonic. For the subsonic case,
a form of this equation more convenient for computation is obtained by
substituting equation (108) into (112):

3%y (1 oy %y _ 2 Bp 3V , alanggr:l
(l+g ) arz (r & ar> ar 322 [(l+g ) dr 3r ) 9z +

2gwrBp + ﬁﬁ@p—)— ( + ‘1‘ 3=+ Fr>= 0 (1i4.-a)

It may be noted that for both groups, equation (96a)-rather
than (96c) is chosen to obtain the principal equation of the present
problem, because F, is always much smaller than F, in axial
machines and Fp 1s zero or nearly zero on $Sp surfaces for high-speed
centrifugal and mixed-flow impellers whose mean blade surfaces are
usually composed of all radial elements. (For low-speed. centrifugal

impellers, equation (96c) can be used to form the principel equation
in a similar manner.)
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Procedure of Solution

Although the equation of motion (968.) is chosen to form the prin-
cipal equetion, other equations are to be used to obtain the wvarious
terms involved in the principal equation. As in the case of general
51 surfaces, there are ten basic variables to define the flow and the
shape of the Sy surface. They are: ¥, B, W,., W,, W,, F., F,, F,, 8,
and I (or p). B is considered given. (In the direct problem, B
is evaluated directly from the distances between adjacent streamlines
or according to equation (100a) using the value of C obtained on 531
surfaces; in the inverse or design problem, B 1is estimated (refer-
ences 29 and 35) from the blade thickness as desired from blade stress
and other considerations.) On the other hand, there are seven inde-
pendent relations in one energy equation (21); three equations of
motion, one of equations (107), (107a), (114), or (114a), and equations
(96b) and (96c); the orthogonality relation between W and F, equa-
tion (99a); and the two equations relating ¥ and velocity, (102a)
and (102b). '

Direct problem. - In the direct probiem, two alternative procedures
mey be used. If the shape of the S surface (determined from the
date obtained on 83 surfaces) is considered as given in the present

S2 solution, two additional relations between the n- or F-components
completely define the problem. The procedure of calculation is as
follows:

(1) Use equations (20) and (21) to determine the variation of
s and I.

(2) Compute W, from the orthogonality relation as follows:

np g
W, =« —W.+ —TW

(3) Compute ¥, from equation (96’b)
(4) Solve the principal equation.
(5) Obtain W, eand W, from equations (102).

If only the tangential velocity or the relation (109) is taken
fram the S7 solutions of the previous cycle and is considered as

given in the present Sy solution, one more relation is available
between the F-components such as that which exists between the
f-components on the S; surface:

F-VXF=0 (115)
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Writing equation (115) in scalar form and using the relations (31)
and (91) give

F F
) z\_ 9 (’r
or Fur> - &z <Fur> (1152)

By integrating along a constant z-line, equation (115a) provides the
following relation to determine the value of F, to be used in the
principal equation from the values of Fy and Fg:

F F z F

T T 9 A

Fur — (Fu¥>o + . 5;'(Fup> dz (115b)
o

If F.=0, at zg

F.=Fr —-a—liz-——d_z (115¢)
roTw or \F,r
20
The procedure of calculation is as follows:

(1) Use equations (21) and (99a) to determine the variation of s
and I. ‘

(2) Compute F, and F, from equations (96b) and (96c).

(3) Compute F,. from equation (115b) or (115c).

(4) Solve ¥ from the principal equation.

(5) Compute Wy and W, from equations (102a) and (102b).

Inverse problem. - In the inverse or design problem of a finite
number of thick blades, in addition to the blade-thickness distribution

or its equivalent B, either equation (103) or (109) is prescribed on
& mean stream surface Sz p. It may appear that still another rela-

tion can be prescribed on the mean surface. The differentials of the
coordinates of the surface are now governed by

Fp dr + Fyr dp + F, dz = 0 (116)
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however, and, in order that this differential equation will lead to an
integral surface of the form represented by equation (28), F must
satisfy the condition of integrability as given by equation (115)
(reference 34). An expression similar to equation (115a) for the case
of an infinite number of blades was first pointed out by Bauersfeld
(reference 2) in a discussion of the Lorenz peper (reference 1). In
effect, it restricts the freedom that the designer has in prescribing
the velocity components of the fluid on the surface. Hence, in the

" inverse problem of a finite number of thick blades, in addition to the
blade thickness distribution or its equivelent B, the designer can
specify only one relation on the mean stream surface, which relation may
be either the tangential velocity as given by equation (103) , the flow
angle between the tangential and axial velocity as given by egua-

tion (109) , the axial velocity, or any other reasonable relation that
will leed to a solution of the set of equations.

In the preceding consideration, the hub and casing shapes are also
prescribed by the designer in the inverse problem. Alternatively, the
prescription of the hub shape can be replaced by a prescription of
ancther relation at the casing, thereby fixing the shape of and the flow
elong §S2 ,m at the casing entirely. The flow is then extended to the

hub and the last streamline gives the hub contour (reference 19).

¢

Approximations Involved in Through-Flow Theory

When the equations previously derived in reference 18 for a large
number of thin blades are compared with the corresponding equations
derived herein along a stream surface, the two are obviously exactly
the same if the ordimary derivetives used in reference 18 are replaced
by the present partial derivetives following the stream surface, and
if B is equal to 1 or if the variation of B along the flow path
is zero. 1In the interpretation of the through-flow solutions as the
flow along a mean stream surface (which divides mass flow into two equal
parts circumferentially) or as the flow along the mean channel surface
(geometrical mean), the first difference can easily be removed by simply
interpreting the values obtained in the solution as those along the sur-
face rather than in the meridionel plane. The second condition, however,
is satisfied only when the circumferential variation of all the velocity
camponents approaches zero, or when the circumferential derivative of
the tangential velocity and the ratios of n, and n; to ny approach

zero (see equation (94)).

Besides the use as a limiting solution in general and to give cer-
tain trends where the contribution due to the finite number of blades
is small or constant, the through-flow calculation should be properly
modified by the factor B in its application to actual turbomachines
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of a Pinite number of thick blades. As B can be physically inter-
preted as the ratio of the local angular thickness of the stream sheet
to its inlet value, a good approximate value can be cobtained by solving
the two-dimensional flows on a number of stream surfaces of revolution
starting at different radii at the inlet. ZFor.the subsonic flow in the
turbine cascade reported in reference 29 and for the supersonic flow in
two impulse bladings investigated in reference 30, the reductions in
angular thickness from the inlet value along the mean streamline are
seen to be a chordwise average of 4 and 9 percent more than the reduc-
tion in the channel width, respectively. Also, in the subsonic case,
the influence is extended a certain distance outside the blade row. The
inclusion of this factor B, even if it is approximate, should give a
much closer answer than that obtained with B +taken as 1.

In this interpretation of the infinite number of blades solution
as the solution of through flow along a particular stream surface
between two adjacent blades, the distributed "body force" F has a
definite meaning, as given by equation (97). (For an infinite number
of blades, F becomes the blade force.) For blades with large turning
and large radial twist, as in a free-vortex turbine, the influence of
the radial component of F on the flow is not negligible.

CIRCUMFERENTTAL VARTATION OF FLUID PROPERTIES BY USE OF POWER SERIES

In general, the blade-to-blade variations of fluid properties are
to be obtained from calculations on §S; surfaces. When the twist of

the B7 surface is large, some other method of obtaining the blade-to-
blade information is desirable, For subsonic irrotationsl absolute
flow, this information can be obtained by extending the solution
obtained on the mean stream surface in the circumferential direction by
the use of power series (without the consideration of the shape of the
81 flow surfaces). The various derivatives involved in the series are
obtained from the flow condition on the mean stream surface. The higher
the solidity and the thinner the blade sections, the fewer are the terms
required for a given accuracy. Results obtained in references 29 and 36
indicate that only three terms in the series will be required to give
sufficient accuracy for high-solidity turbines and centrifugal com-
pressors.

The series method will also be used in one of the two methods of
the inverse solution in which the flow obtained on the mean stream sur-
face is extended out circumferentially.

Denoting the absolute vorticity VXV by § and using the rela-
tions (16), (91), and (97) in equations (19) give
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e 1 oMy  O(Vur)| 10Wz 1 3(Vur) Fp OWy
r=T|3p - "oz J=TOP T 8z ~ For o9 (1172)

oW, OJW, oW, W, F, oW, TFp M,

by = 3z Or . ¥z  @r + Fyr 0P  Fyr o9 (1270)
l[a(vur) | 13(Vyr) Fp My 1 M
zZ = r dr "3 | =Tr ar TFroP T Top (117¢)
From the preceding equations,
W, AW, Fpby + Fuby + Fol, Ty a(V,r) . Fr 3(Vyr) (118)

9z or Fu Fyr  or Fyr o2

This equation means that the apparent vorticity, which is obtained by
differentiating the velocity on the mean stream surface with respect to
the coordinates, is not zero even if the absolute vorticity is zero or
tangent to the mean stream surface. Substituting equations (]_'1.7a.)

and (117c) into equation (94) results in

2y T T
13Wu_ Fu [Fr a(Vu)_‘_Fz 8(‘Vu)_‘_ Fy gr_i:_zgz;, (119)

rop e |Fgr ar Fyr 9z C+f‘;

Bubstituting equation (119) into equations (117a) and (117c) gives

1M, 1 3(Vyr) ot FF, | Fr 8(Vﬁ;)+ F, 3(V,r) v e Fy . Fp ¢
rdP T 9z TT g2 |Fyr or  Fyr @z Fp ¥~ F, °%
(120)
1 MWy 1 3(Vyr) : F F, [Fp 3(Vyr) F, 3(Vyr) i s Fp - Fr 3
T3 r Br = "2 g2 |Fgr ar | Fyr 9 Fp T Py
(121)

The first derivatives of h or p, and p can be obteined as follows:
From equation (97),

Hir

T _1
r

oh
3 T3P~ prop - u (222)
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Or from equation (9),

13h 131 (¥ oWy Wy oW, W, BWZ> -~
T3P rop \r 3% " T® * T 5 (1222)
With % known, %% can be obtalned by using equation (12b):
13Inp _ 1 dh 103s*
T 0P | 52,09 T OP (123)

The second derivatives of the fluid properties with respect to o
can be obtained in a similar manner. Differentiating the continuity
equation (1) with respect to ® and dividing by r give

1 O%(pWyr) 3 %(eWy) 7 d(pW,)

r—zw—r +;§ acpz +; 5z 50 =0 (124)

Equations (91) are used to change equation (124) to

1 82(pW'u) 5 O{pW.r) Fr 3% (pWr) 3(sz) . Fz az(pwz)‘
;E'a—cpz_=_—ar—5__ Fy az T ET df

(1242)

Differentiating equations (117a) and (117c) with respect to ¢ and
dividing by r result in

1 %, 13, L1 2(vyr) 4 3k, L1 1T o2,
r23pp T O ;2 0z20p roP | .28z OP 2 Fy 3
(125)
1 A, 3, 1 ) 3, 1 V) 3 B 3%,




52 NACA TN 2604

Substituting equations (125) and (126) into (1243) ‘and noting that F
is perpendicular to -W give

1 9%, FRB[F 5 3(Vyr) , Fz 5 d(Vyr) L1 8 3(pW,x) .
F.pl 9T pT

;z'acpz='Fz 39 Fraz P 2 ar  op

1 O(eW,) _L3wmo F, O Ty aﬁz] (127)

praz o0 L) +Fr8¢p -Furbcp

Equation (103) is to be used in equations (101) and (102) to obtain the
second derivatives of Wy and W,. The second derivetives of h and

p are obtained from equations (9) and (123) as

21 1 d2y2

BCPZ 2r2 BCPZ

= —15 (128)

1 3% 1n o 1 3%n 1 3%
= ~ = 12
r2 Bcp2 abr? BCPZ 2 BCPZ (129)

Similar formulas can be obtained for higher-order derivatives. At
a fixed value of r and 2z, the velocity components, h, and p at a
.short angular distance away from the mean stream surface 8y can then
‘be obtained by a Taylor series:

P- cp )2 P-p )3
(P = ale,) + @-x,) a' (@) + —— ( Q" @g) + i—g— Q") + . . .

(1.30)

An alternative wey to obtain density is to use equation (145) (to be
given subsequently) after the other fluid properties are determined.
Obviously, the preceding equations are most useful when the flow is
isentropic with vorticity equal to zero. Otherwise, the variation of
vorticity along the mean stream surface has to be determined first.

At present no such method is available. It appears, however, that the
method of Squire and Winter (reference 37) and Hawthorne (reference 38)
may be generalized to compressible flow for the variation of vorticity
.a:long a mean stream surface in turbomachines.
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STEPS FOR CQMFLETE SOLUTIONS OF THREE-DIMENSIONAL
DIRECT AND INVERSE PROBLEMS

In general, the solution of the three-dimensional direct and inverse
problem involves the use of both 87 and Sz surfaces. In the direct

problem, starting with assumed flow surface, the solution is obtained
through the successive (alternate) use of the two kinds of flow sur-

face, although a satlsfactory approximate solution mey be obtained in

one or two complete cycles. The use of an approximate method of solu-
tion to get a good starting value on each surface will shorten the length
of computation. For inverse problems, the process is usually shorter.

The calculation will start on the 832,y surface on which elther a con-
dition on the fluid velocity or the sﬁape itself is prescribed and an
estimated value of B <for a desirable blade thickness distribution is
used. After the solution on the 5z surface and its shape are obtained,
the blade coordinates are obtained by extending the solution circumferen-
tially either by the series method or by the method given in reference 35
using the variation of the distances between the streamline obtalned in the
S2,m surface. Because it 1s Important only to obtain the right order of
magnitude and the right kind of variation (three-dimensionally) of the
blade thickness, the first solution may give satisfactory results. The
velocity distribution on the blade surface is controlled directly by the
one relation specified on the Sz’m surface and the variation of B.

Suitable procedure is subsequently suggested for the solutions of
direct and inverse problems with either irrotational or rotational inlet
absolute motion, at design or off-design flow conditions, for turbo-
machines having various wall configurations (fig. 6).

Direct Problem

Axial turbomachines with nontapered straight walls. - In this type
of machine, it is desirable to start the computation on S surfaces,

because with short axial blade length, the total deviation of the S;

surface from the cylindrical surface 1s relatively small, especially
along the hub and casing walls.

The foliowing steps are therefore suggested:

(2) In the initial calculation, the flow surfaces are assumed to be
cylindrical end the set of equations (60) to (65) derived for cylindrical
flow or the approximate method given in reference 39 can also be used to
obtain the streamlines and circumferential variation of fluid state on
81 surfaces gt three or more radii. .
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(b) From the data obtained in step (a), an Sz stream surface about
midway between two blades is constructed by connecting the streamlines
which divide mass flow on the S7 surfaces in the same percentages. The
direction numbers of the surface and the Wy and W, at the surface
obtained in step (a) give the starting value of VW, by use of equa-
tion (31). The factor B is evaluated either directly from the angular
distances between streamlines obtained in (a) or according to equa-
tion (100a) with C evalusted from the information obtained in (a). Its
value at other radii is obtained by interpolation or by proportioning
according to the channel-width ratio. Calculation of the flow on this
surface is then made by the use of equations (91) to (115). For subsonic
flow with irrotational inlet flow, the solution obtained on the Sz p
surface is easily extended circumferentially by series expansion using
eduations (117) to (130). The values obtained can be further adjusted
to fit the given blade (reference 39) and can be used in a more accurate
second calculation on 87 surfaces in the next step. For subsonic flow
with large rotationality at the inlet and supersonic flow with signifi-
cant check caused by the blade entrance angle, it is more desirable to
obtain the information on circumferential variations by the use of two
or more Sy -surfaces at or near the two blade surfaces.

(c) The radial variation of fluid state computed from the solution
obtained in step (b) or the variation of the radial distance between
streamlines is used to determine the factor b and used in the principal
equation (48) for a more accurate determination of 57 surfaces and the
flows thereon. The general equations (32) to (51) should now be used
for the S; surfaces located between hub and casing, if not at or near
these walls.

(d8) The calculation of 8z surfaces can again be repested and so
forth.

If the inlet flow is guite rotational, so that the S surfaces
along the walls and the Sy surface near the blades may turn around the
corners, these surfaces should be chosen at a short distance from these
boundary wells as shown in figure 3. By the use of these two kinds of
surface, the secondary flow caused by a rotational inlet profile or by
the turning of the blades is included in the complete solution.

Axial turbomachines with tapered or curved walls. - The steps
involved here are quite similar to those of the preceding case , except
that for the initial calculation of S surfaces along or near the
tapered or curved wall, either equations (52) to (59) are to be used, or
equations (13') to (23') given in reference (35) can be used in the
menner given in reference (39).
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Radial- and mixed-flow type turbomachines with curved walls. - In
this type of machine it is not desirable to start the computation on the
S1 surfaces because the flow surfaces near the walls may deviate con-
siderably from surfaces of revolution because of the long flow path. On
the other hand, the solidity of the blade is very high and the Dblade
section is uniformly thin. As a result, the shapes of the 8Sp surfaces
are closely related to the blade shape and the factor B can be esti-
mated relatively accurately from the blade thickness distribution. The
following steps are therefore suggested:

(a) The computation is begun on the Sz,m surface. For subsonic
irrotational inlet flow, computation need be made only on a mean 8o
surface and the solution can be extended out circumferentially by equa-
tions (117) to (130). The approximate method given in reference 40 can
also be used in the initial calculation. For subsonic flow with rota-
tional inlet profile and for supersonic flow 1t may again be more
desirable to compute two or more Sp surfaces between the blades.

(b) The data obtained in step (a) may be used to make calculations
for three or more ©S7 surfaces between hub and casing walls.

(c) The processes (a) and (b) can be repeated until the desired
accuracy 1s reached.

Inverse Problem

Conditions prescribed on mean stream surface. - In the inverse or
design problem it is most convenient to consider a mean stream surface
of the 82 kind about midway between two neighboring blades to be
designed (figs. 3 to 5). From the results developed previously for
such surfaces, it is seen that in addition to the factor B, the
designer can specify only one relation among the fluid properties on
that surface, which can be either a velocity component, a relation
between two velocity components, or one other reasonable condition.

The factor B essentially controls the blade thickness distribution,
whereas the relation specified on the surface essentially controls the
mean camber surface of the blade. From a consideration of strength and
Mach number in general, and the requirement of coolant passage in the
case of cooled turbine blades, the designer always has a very good idea
of what kind of blede-thickness distribution he wants. With this thick-
ness distribution, the ratio of pitch minus circumferential thickness
of blade to pitch can be obtained. After correcting this ratio with
some known relations between this ratio and B (such as those given in
references 29, 30, and 35), especially near the leading and trailing
edges, it can be taken as the factor B in equation (101). Then from
the type of velocity diagram or a certain feature of blade shape
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desired, a relation along the mean stream surface Sy  can be pre-
scribed and coordinates of the mean surface end the flow on that surface
can be solved at the same time by equations (101) to (115). It may be
noted that in this process, the designer still has, in general, a little
freedom in choosing the value of 2zo in equation (115c¢). For a rota-
ting blade, zo 1is ususlly taken somewhere near the center of gravity
of the blade section, whereas for the stationary blade, the position of
Zo can be utilized to control the magnitude and distribution of F.

in ‘the most favorable manner.

Boundary conditions for mean stream surface. - In the solution of
this S2,m surface, the boundary conditions are a little different for
subsonic and supersonic flow. For subsonic flow, not only the varia-
tions of the stream function at stations far upstream and downstream
are given, the meridional contours of the hub and casing wells are also
given (these contours can be determined by approximate calculations
fram blade row to blade row such as given in references 17 and 41). For
supersonic flow, the variation of the streem function and its normgl
derivative is prescribed on an Initial curve, which is not a character-
istic curve. Then either the hub and casing contours are prescribed,
or only the casing contour but with one more velocity component along
the casing is prescribed. In the second case, the flow is extended
toward the axis of the machine and the hub contour is determined by the
shape of the last streamline for the required mess flow.

Determination of blade shape. - For subsonic irrotational flow,
the solution obtained on the mean stream surface can be extended out
circumferentially by using equations (117) to (130). The blade sur-
face can be then determined as follows:

(a) The position of the mean streem surface is first determined
by solving the circumferential coordinate as a function of the axial
coordinate at several radii. With the circumferential coordinate
measured from the radial element of the surface chosen at 2o, equa-

tion (116) gives, at a constant r:

o - (.rcpm) z=zo = Z: G{')m dx (131)

(b) The blade coordinates (r,®) will first be chosen at one
station 2z, as follows (see fig. 9): The mass flow passing through
the z5 Dplane between the mean stream surface and the tentative suction

or pressure surface is computed as follows:
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Ps Te .
Mg = P \frh p Wyr dr d® (132)

q’13"/11'0 :
Mp = W, r dr a9 ‘ 133
P o rhp z (133)

Because of the inaccuracy in B for the blade-thickness effect, the
mass Fflow obtained will be a little different from that required. The
blade coordinates ®g and Pp as functions of 2z, and r are modi-
fied until the mass flow checks. It is not important that Mg and Mp
are a little different from one-half the required mass flow as long as
their sum is equal to the total mass flow, but once the division is
chosen, it should be maintained at other z-stations.

(¢) The blade coordinates cobtained at z = z, are extended

upstream and downstream according to the velocity components evaluated
at the surface. For example, for a short distance =z - zy away, the

changes in the blade surface coordinates r and ® are

revo () (o) (130)
® =@+ @%)o (z - z, (135)

After r and ® are thus obtained, the total mass flow may be checked
again by equations (132) and (133).

When the blade coordinates are obtained close to the leading and
trailing edges, they can be faired in according to some standard shapes.
A Dblade shape is therefore obtained in which the three-dimensional flow
of the fluid is considered. The right kind of three-dimensional blade-
thickness distribution is obtained and a good knowledge about the flow
on the blade surface is also ayaileble at the same time. The data
obtained in the solution can also be used directly for a more accurate
and detailed determination of the velocity variation around the nose of
the blade, for a relatively quick check of the series approximatidn, or
for improvement, if necessary, of the inverse solution throughout by
the method given earlier for solving the direct problem. Thls process
seems to be the quickest way of establishing some standard three-
dimensional flow variations for typical designs of blades from which a
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good approximate method for routine design calculations can be estab-
lished and of providing a basis on which the viscous flow along the
blade surfaces and hub and casing wells can be analyzed. The results
given in references 29 and 35 indicate that for blades of high
solidity, three terms in the series give sufficiently accurate
results.

For subsonic flow with vorticity, the circumferential extension
cannot be accurately made at the present because of lack of adequate
methods for the determination of vorticity variation along the mean
stream surface (Sz ). An estimate of this variation can be made,
however, and the solution can be checked later. An alternative method
is to use the shapes of the streamlines and the distances between them
obtained in the S5z p solution and to dedign the blades with the
assumption that the flow surfaces are surfaces of revolution by the
method given in reference 35. Inasmuch as the rotationality of inlet
flow is usually serious only in later stages of a multistage campressor
where the hub-tip radius ratio is high, this assumption is reasonably
good.

For supersonic flow, the flow in the mean stream surface Sz p is
also determined first. If the shock due to the entrance wedge angle
is small, an approximate solution of the blade shape can also be
obtained by the series method neglecting the finite jump across the
shock or using an estimated value. The Improvement of the flow varia-
tion for the resultant blade is then more important than that in the
subsonic case. ILocal modification of the blade shape can also be made
if the velocity distribution on the blade obtained is unsatisfactory.
A better method is to use the shape of the streamlines and the dis-
tances between them obtained in the S3 ; solution and to design the
blades assuming flow surfaces of revolubtion according to the method
given in reference 30.

The proceéses described here for the three-dimensional solution
have been and are now being used to analyze the compressible flow
through a number of campressors and turbines. Some of the results
obtained are given in reference 42.

GENERATL, METHODS OF SOLVING PRINCIPAL EQUATION

In the solution of the 51 surface for the direct problem and of
the B8S2 surface for both the direct and inverse problems, the main

calculation is the solution of the principal equation, which is a
second-order, nonlinear partial differentisl equation in two independent
variables. The case when the principal equation is elliptic will be
considered first.
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Elliptic Case

A common form of the principal equation is written as follows:

3—12-11\1‘1+5§—‘5+J—1+Kﬁ I:Teg% (—3——3?>+Mlbél+

Mp(bp)2 = 0 ‘ {136)

In equation (136), ¢ and b are used for both S and Sy surfaces;
1 denotes ® for the 53 surface and r for the Sz surface;
{ denotes z or r for the Sy surface, and 2z for the S2 Bur-

face. The values of 17, {, J, and K for each individual case are given
in the following table:

Case Surface Coordinates | J K L Equation
1 €
Dy
1 81 (general) (V) z o) f—'z— T (48a)
2
2 |81 (surface of P zZ % L +2}\ 0 (59a)
revolution) r
3 |81 (cylindrical P z | 0 —1§ 0 (652)
surface) r
4 |87 (general) P r o} -—J-‘-z- 0 (75a)
T
-2
5 |81 (surface of o) T %— = +)2\ 0 (812)
revolution) r
6 |57 (radial ® r| 2] X 0 (86a)
plane) r
7 |Sg (Vyr given) T zZ o 1 -% (1072)
8 |8 T ecified T z o|1+g2 1428 (1142)
2 Wy P & r "8 % &
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The equation is nonlinear even in the case of incompressible flow. In
the numerical computation, it is convenient to rewrite the equation in

the following form:

—ﬁa§2+Jiag+K—i+LB—‘4‘- N (137)
Where
2
_ . 21nbp3ay 3 1nbp oy _ _ Ma(bp)
N=K o 3n + ot 5t Mybp 5 (138)
an

and is evaluated from any approximate soclution at the start of the cal-
culation and from the values of ¥ and p obtained in the previous
cycle during the calculation. For simple boundary shapes for an Sg
surface and simple functions of J, K, and 1L, it is possible to find
a Green's function G(7n,-{, X, y) with its proper characteristics so
that the solution of the problem can be written in the following form
(for example, see reference 10):

¥ (leg) = ffG' (T]; £, x, y) N (X: y) dx dy (139)

If the boundary wall is arbitrarily curved, it is necessary in this
method to use the technique of conformal transformation to render the
given boundary into a simpler one, such as cylindrical. Because this
process will involve a numerical solution of the Laplace equation with
the given boundary shape, it may be better to solve the given equa-
tion (137) directly with the given shape by the numerical method.
Furthermore, this method will be the only choice in the general case
where J and K are complicated functions, which makes the task of
obtaining the proper Green's function very difficult if not impossible.

Finite-difference form of principal equation. - In order to solve
the given equation (137) directly, the general humerical differentiation
formula for first and second derivatives with the function value given at
unequally spaced grid points using second- and higher-degree polynomial
representation as given by reference 26 is used to give the finite-~
difference expressions conveniently and accurately at the grid point
near the curved boundary. If the value of any quantity q on the
stream surface under investigation corresponding to a number of values
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of one of the independent varisbles x not equally spaced, denoted by

x0, x1, .. .x, ... %% is given, the m"h derivative of q (om
the surface) with respect to x when x = x% may be written

- i3 i
(0%) _3= >, I;Bj ¢’ + 7R (140)
J=0 )

The differentiation coefficients B and the coefficients of the deriva-
tives in the first or second remainder term have been explicitly
expressed in reference 26 in terms of the spacinés between the successive
grid points by using polynomials of the second, third, and fourth degree
for general nonuniform spacing throughout and for the special case near
a tapered or curved boundary where only the first or last spacing.is
different from the others. For the special case, these coefficients
have also been computed for different ratios of the distance between the
boundary and the nearest point and the other spacing, from 0.1 to 1.29
in intervals of 0.0l, and are given in reference 26. For spacing ratios
lying between these tabulated intervels, B can be obtained from the
values tabulated by applying interpolation formules given in refer-

ence 43, or by the direct use of the formulas. Differentiation-coeffi-
cients B for equal intervals using various degrees of polynamials are
glven earlier by Bickley in reference 44.

In the present fluid-flow problems, a large region must be covered
in order to get to the boundaery conditions which are always given at
stations far upstream and downstream of the blade row. In order to
reduce the labor of computation, it is desirable to attempt to reduce
the number of grid points required for a given accuracy by using a
degree of polynomial higher than the customary second. A study of the
expression of the remainder terms (see reference 26) and actual experi-
ence in the present problem show that, in most cases, the use of the
fourth-order polynomial will reduce the necessary number of grid points
to less than one-fourth that required by the second-order polynomial.
Near the leading and trailing edges of the flow on surfaces of the 853

kind, the veriation of V¥ d1is such that accuracy is obtained most
effectively by using small spacing there. 1In such case, the grid
pattern should be chosen at these regions first, and either be kept
constant or be continuously increased toward the inlet and exit stations.

With the grid pattern and the order of polynomial representation
selected, the coefficients B at each point can be obtained from refer-
ences 44 and 26 for equally and unequally spaced points. Then the dif-
ferential equation (137) at any grid point whose ¥ value is YL is
replaced by the following algebraic equation:
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n n
Soo(ot2al 4 gt al) W+ D (3l + i) ¢k - §i =0 (141)
i3 nj nJ =5 Bd B

where Yt and wk denote the values of ¥ on the surface considered
corresponding to the grid points along constant € and constant 1
lines, respectively. (See figs. 10 and 11.) It should be noted that,
in accordance with the definition of the special partial derivatives,
¥ values are those on the surface §S; whereas the grid spacings
involved are just the distances along the 1~ and {-coordinates.

Boundary conditions. - In flow on surfaces of the first kind, the
flow picture is as shown in figure 9. Arbitrarily assigning a value
¥y on the suction surface, the value VY1 on the pressure surface of

the next blade is determined from the mass flow passing between them.
These two values are used as the end values in eguation (141) for grid
points next to the boundary. Outside the blade region, however, the
position of the dividing streamline is not known. Instead, there is
the condition that the flow repeats itself or the WJ-value increases
by ¥yr-¥p when @ increases by an amount equal to the pitch angle

(2 divided by number of blades). It is then convenient to draw any
two parallel lines up to the leading and trailing edges of the blade and
consider only the grid points lying between the two reference lines.

For the ®-derivative at a point VC, for example, the required b
value is obtained from VYf, which is a pitch angle away from wb

(fig. 10), as

¥ =¥ - (v - ¥) (142)

This relation is used between the Inlet station 1-1 and the leading edge
of the blade and between the exit station 2-2 and the trailing edge of
the blade when the §S7 surfaces are assumed to be surfaces of revolu~
tion. For the general §$7 surface where its deviation from the surface

of revolution is considered, modification has to be made in places such
as shown in the exit portion of figure 9. Because of the twist of the
flow surface, the dividing line from station 1-1 to the leading edge of
the blade becomes two separate lines from the trailing edge of the blade
to the exit station 2-2, accompanied by trailing vortices. Alithough the
flow still repeats itself circumferentially every pitch angle, the use
of equation (142) for the derivative at a point close to these lines
will give inaccurate results. In these cases, it 1s better to use the
end-point differentiation formulas to evaluate the derivatives,
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At the station 1-1 sufficiently far upstream of the blades, the
flow condition can be taken as uniform and the flow angle, equal to the
given inlet angle. For the point h, the ¢ value at point 1
upstream can be obtained from the given flow angle as follows:

wi=¢g+z—sz—f%%ﬁ(¢h-vg)

K—%t&nai>ﬂrg+(§%tanai>¢h (143)

Thus, the required ¥ value upstream of station 1-1 can be replaced by
the values on that station, and only the V¥ values downstream of
station 1-1 will be involved in the finite-difference expression (141).

An alternative method to take account of the inlet condition is
as follows: If the first station 1-1 is chosen sufficiently far from
the blades, the variation of the stream function upstream of the
station 1-1 is linear in the circumferential direction. The value of
the stream function, however, depends on the inlet angle. If solutions
for a range of inlet angle are desired, they can be cobtained by speci-
fying a& number of sets of linearly varying stream functions upstream of
station 1-1 as fixed boundary values. The slope of the stresmlines
obtained in the solution at the inlet then gives the value of the inlet
angle, If, however, the solution for a certain specific inlet angle
is desired, the streamline obtained in the solution must be adjusted
according to that inlet angle, for example, as Jjk in figure 10 is
adjusted to position gk, thereby obtaining an improved set of boundary
values of the stream functions to be used in the next calculation.
This method is, of course, not so accurate and convenient as the previ-
ous method for obtaining a solution for a given inlet angle, but is
desirable in the matrix solution because the inlet angle is then not
involved in the matrix factorization, thereby making the same matrix
factors usable for a range of inlet angle and Mach number.

At the exit station far downstream of the blade, the same methods
can be applied. TFor a blade having a sharp trailing edge, the Kutta-
Joukowski condition can be used and the correct exit angle far down-
stream is the one that gives the flow at the trailing edge satisfying
that condition. For round trailing edges, either the position of the
stagnation point is assumed or some available empirical rule for the
exit angle is used. If the calculation is made to compare with certain
experimental results, the measured exit angle may be used.
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In flow along surfaces of the second kind, the boundary walls
extend all the way to the inlet and exit stations with the ¥ values
given on the walls (fig. 11). Across the inlet and exit. stations, the
flow is considered to be uniform and parallel to the walls so that the
required V¥ value outside the station can be obtained by an equation
similar to equation (143). For the inlet station where the axial
velocity is radially uniform and there is no radial or tangential
velocity, ¥ varies as the square of the radius. TFor the exit station
with a certain radial gradient in fluid state, the radial variation of
¥ can be determined fraom the corresponding radial variation in axial
velocity and density.

Solution of finite-difference equations. - With the grid system
and the degree of polynomial representation chosen and the boundary
conditions taken into account, the problem remaining is the solution
of the set of linear algebraic equations (141) written for all interior
grid points. TFor a small number of solutions with a given blade, the
best method is the relaxation method (references 25, 33, 45, and 38).

A modification of this method involving the use of higher-order differ-
ences is suggested by Fox (reference 46). Formulas and tables of
coefficients obtained in reference 26 enable the direct use of higher-
degree polynomials for problems with curved boundaries (reference 29).
For the present flow problems, it is necessary to include a large
damain to get to the boundary conditions that are given at places far
from the blades, and the use of higher-degree polynomials whenever it
is applicable greatly reduces the numerical Work:

If a number of cases are 1o be solved for a given geametry (same
blades for S3; surface and same hub and casing shapes for Sp sur-
face), it is advantageous to solve the problem on a large-scale digital
computing machine. If a high-speed digital machine is available, the
© simultaneous equations may be solved by Liebmann's iterative process,

which is the most simple to set up. For quicker results or when only a
relatively slow-~speed machine is available, the matrix process discussed
in reference 26 is most suitable. In a calculation of the 82 p sur-
face for a gas turbine and in a calculation of the 83 surface of
revolution for a centrifugal compressor, the coefficient matrices
(about 400 and 200 interior grid points for the two problems, respec-
tively, and the fourth-degree differentiation formula are used) were
factorized into the lower and upper triangular matrices on an IBM CPEC
and an IBM 604, respectively, in about 60 hours. The determination of
¥ for a given set of values of N +took only 2 hours on the CPEC for
the gas-turbine problem. The gas-turbine problem was also worked out
on an Univac; the factorization took only 11 minutes and the determina-
tion of ¥, 2.5 minutes. The increasing availability of these high-
speed large-scale digital calculating machines will render the suggested.
method of solving the three-dimensional-flow problem a practical one.



RACA TN 2604 65

General table for evaluation of density from ¥Y-derivatives. -
After the V¥ wvalues are obtained at the end of each cycle of calcula-
tion, the velocity components are evaluated from the derivatives of
with respect to the coordinates, after the density is obtained as
follows: From equations (46), (57), (74), (80), (85), (105), and (113),
the relation between h or p and Y-derivatives can be put into a
camon form as

2.2 2 2
h=1 +‘-°—21-‘— -X - %.(bp)'2 ‘:k (% %%) +(% g—‘g>:| (144)

The quantities represented by X, as well as by €, 1, and § <for dif-
ferent cases, are given in the following table:

Case Surface Coordinates k X € | Equation
' 1 g
1 S1 (general) © z 1 %'ﬂrz 1 (48)
2 |81 (surface of P z  |(1 + AZ) o |1 (57)
revolution)
3 | 81 (cylindrical P z 1 0 1
surface)
1
4 S1 (general) W) r 1 T Wz2| 1 (74)
5 81 (surface of P T <} + £%> 0 1 (80)
revolution) A
6 S1 (radial P r 1 0o |1 (85)
plane)
7 |82 (Vur given) r z 1 %Wuz r| (105)
W
8 |8 (ﬁ‘i given) r z |1+ g2 o | r| (113)
z

With the V-derivatives evaluated, if an exact determination of h
or p from the preceding equgtion considering the variation of specific
heat with temperature is desired, the Keenan and Kay gas tables (refer-
ence 47) can be used. With two or three readings of h and »p (or its
reciprocal, specific volume), the correct value of h or p satisfying
equation (144) is found. For most cases where the temperature range
involved is not too large the use of an appropriate average value of 7,
T, may give accurate enough results. With the use of an average Y,
the density at any point in the flow fleld can be related to the inlet
total value by equation (12a) as
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1 2.2 [( ) ( 2NFT
= _* * o°r 1 ay 19y * "
_ _E_ -1 eST’ i-8 _ I+ > X ) ki T aT] + c 'a—g‘ eST’ i-8
Pps \Hi Hy 2(bp)? H;

(145)

In order to make out a general table for the calculation of density from
the Yy-derivatives, the preceding equation is rewritten as

2
2 Y-
5% - ( '%‘)Y 1 (146)
where _ 1
-1
T+la2r® ox \7 7 %ot
o) 2 : T,1
Z = e
(F’T,:I) By

T+l
2 2

1 \ -
-2[1+5 w°r” - X\V 12(8*—9* )
‘: (r an e ag :\(zﬂi) (bog ;) z n > e T,1

The functional relations between & and ® are given in table I for T
equal to 1.4 and 4/3, respectively. From the given inlet condition and
the given X values, the variation of

_rtl
T-1
1 o [T+ ‘1’2; - X
(2 B;) ™ (bpgp 3)°

Hy

ig first coglpélted and plotted as an auxiliary graph or table as a func-
tion of sz - X) A similar suxiliary greph or teble is prepared

for the variastion of

-
Y-1
I+ L (Dz 2 _ X
a2
H;
~ oPr?
as a function of —— - X Anytime during the calculation, from the

2.2
value of ‘”2 - X } at each point (in general, X changes during

successive improvements between S; and 8, surfaces),
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_r
1 aftt %mzrz - T
(ZHi) (pr,i) H

is read from the first graph or table and is combined with

L(zaf (2]

and the entropy factor to obtain ®. The value of ¥ is then read from
tables I or II. After the value of

L
I+%cnzr2 - X v

Hi

is read from the second curve or table, the density ratio is obtained.

Hyperbolic Case

In the hyperbolic case, the main problem is the solution of the
following principal equation, written in a common form for the two kinds
of flow surface:

2%y K 3y L 11{ avy . Nay _
ng*'zvagan o on MT+v3n"o (147)

with the initial condition that ¥ and its normal derivative are given
on a curve which is not a characteristic curve. From equation (147),
the equation of the characteristic curve is -

J(U%E)Z—EK kv%g>+L=o (148)

The slopes of the characteristic curves are

A = Q’%g)l.:%-% K® —~ JL (149a)
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_fp8n) _K_ 1 [2
AZ—Q’%)Z—J+JK—JL (149b)

The coéfficients J, K, L, and yp and the independent variables
n and ¢ for the eight cases considered are given in the table on the
following pege. Using these values of J, K, and L, A; and A, are

also expressed in terms of the velocity components. Except for cases 2,
5, and 8, they can also be expressed in the usual trigonometric form,

tan (X &+ p). The values of X and p are also given.

Changes of V¥-derivatives along characteristic curve. - Vhen the
reference point on the n{-plane moves along the image of the charac-
teristic curve in the 7f-plane corresponding to a smaell change in ¢,

dt, the chenge in 1 is dn = % df. Because of these two small
changes, the change of any quantity g on the surface is (fig. 12)

=39 4r - & aq A
dq—dgdg—agd§+anvd§ (150)
or
dg _989 ,  AD
dg’agJ’va—?{ (151)
Hencealong./\-l
2, A+ A2
d ey _ 2oy A1 say_a%y 7197y
at a a;%‘“\v an at ag2+v3§3n (252)
daxy:aaﬂr,,“‘la@{r_:iziarha_zlk (153)

azq; d 9 Ala
a—gsﬁ=a§£§~vg§§ (15¢)
A A2
] d 1 d 9 1) 3
;§%=az%%-—;d—g%+<v>£% (155)



furface |[Coordi-] J K L A
netes — 4
K=+ -JL tan ()
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Wt 2, Wy, W2 AL | AL+ 280 Hgta AW s
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Substituting equations (154) and (155) into equation (147) gives

- 14 8y 1 8% Ny _
T JA)vdga+(JAl - 2KA + L) 2 +M—§+ 3 = ©

' (158)

By virtue of equations (1492) and (149b), equation (156) becomes

Aeaa M3
R T AR TR T e O (1572)

Similarly, along the second characteristic curve .Az,

a Aldaﬂr M3 N ay _ -
Fatt vdgan‘LJ%J'?T—@T'O (157b)

Starting from two points a &and b a short distance apart on the
initial curve, equations (149a) and (149b) give the tangent to the
characteristic curves at these two points and equations (157a) and
(157b) give the new value of OY/d¢ and JY/dn at the point of inter-
section C of the two tangent lines (fig. 11). The auxiliary equa-
tions corresponding to the particular problem are then used to deter-
mine other pertinent quantities at the point C. This process is to
be carried step-by-step downstream.

Changes of fluid velocity and direction along characteristic
curve. - When the characterist%ic curve hits the boundary wall, it is
more convenient to express equations (157a) and (157b) in terms of the
magnitude of the fluild velocity and the flow direction. In order to
do this, the definitions of VY-derivatives are first put in a common
form for all cases as

g‘% =bp W (158)
g% = - bp Wy € (159)

where € equals 1 and r for the Sy and S; surfaces, respectively.
By the use of equation (45),
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(160)
d ay _ dInb 1 dh ds* dInWe 4 1nr
&fan’bpwﬁr( TR T T ot Tat
(161)
Substituting equations (160) and (161) into equation (156) yields
dlnb , 1 gn ds* dWe @
(e v - ) (S5 ;E&"Et‘)*("ﬁd ‘a)*
dlnr dlnce N M
AngT-Wn—Tg—-+Wg3-Wn-j—0 (162)
Let
W.q-wsinx
(163)
W§=Wcosx
and
2.2 2
B o°rs 1 2 2 r- 1.2 2
h=T+= z(WC + Wy + Wy 5 2(w +W§)
(164)

where Wi is equal to Wy, Wy, O, W,, W;, O, Wy, and W, for cases 1

to 8, respectively. By the use of equations (163), (164), and (144),
equation (162) can be written

1{ w2 )dw cos X + Ap sinX dx 1 4 wlrl Wg2>
== -1 - - -
LW a2 dt 2

al ag A.2 cos X - sin X 4f 2

dIn b 1 dine dlnr\ ds*
at +A2cosX~sinX%inx at— - Az cosX a& )trat

Mgin¥ - N cos X
Ay cosX - sin X 0 (165)

L
T
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A similar expression can be obtained for the change in w and ¥
along Az by replacing Az by Al in the preceding equation. For
cases 1, 3, 4, 6, and 7, A can be written as +tan (X & p), where p is

equal to sin~1 %, through purely trigonometric transformations as
follows:

_,’ ’ 2_g2
A _ g + KZ_J-L _ .WTL"WQ + a \jWwe-a
5 2E W

sin X cos X & sin u cosy _ s8in 2¥ * sin 2p

= cos? X - sin® ~ cos 2X + cos 24

sin (X+u) cos (X -up) cos (X+u) sin (X-p)
= cos (X+u) cos (X-p) T cos (X+u) cos (X-p)

tan (X+p) or tan (X-u)

For these cases, equation (165) can then be written (compare refer-
ence 30):

1w ax 2 14 (p, ofr2 Wx
3 + tan p + tan p[:-a2d§<l+ >— - — )~

a a -
d Inb , ds* 1 . d ln ¢ dlnr
& tTE thcosX - sim x(smx at - Acos X5 )+
1lMsinX - N cos X|{_
J L cosX - sin X ]—O (166)

where the minus and plus signs on the second term and subscripts 2
and 1 for A in the last two terms are used along characteristics Al

and A,, respectively. Equations (165) and (166) are most useful when

the characteristic hits the boundary wall. For a direct problem, the
slope there is known from the giveén blade shape and for an inverse or
design problem, either the desired turning at the boundary or the
velocity on the boundary is prescribed. With either dX or dw kmown,
dw or dX is evaluated from equation (162) or (165) (only one charac-
teristic equation is used at the wall). For convenience of setup in
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calculation, tihis system can also be used for interior points. Except
that more terms are involved in the present problem and that w takes
different meanings in different cases, the procedure of calculation is
very much the same as ordinary two-dimensional flow described in refer-
ences 32 and 30.

CONCLUDING REMARKS

A general theory of steady three-dimensional flow of a nonviscous
fluid in subsonic and supersonic turbomachines having arbitrary hub aund
casing shapes and a finite number of thick blades is presented. The
solution of the three-dimensional direct and inverse problem is
obtained by investigating a combination of flows on relative stream
surfaces whose intersection with a z-plane either upstream of or some-
where inside the blade row form a circular arc or a radial line. The
equations obtained to describe the fluid flow on these stream surfaces
show clearly the several approximations involved in ordinary two-
dimensional treatments. They also lead to a solution of the three-
dimensional problem in ‘a mathematically two-dimensional msnner through
an iterative process. The equation of continuity is combined with the
equation of motion in either the tangential or the radial direction
through the use of a stream function defined on the surface, and the
resulting equation is chosen as the principal equation for such flows.
The character of this equation depends on the relative magnitude of
the local velocity of sound and a certain combination of velocity com-
ponents of the fluid. A general method to solve this equation by both
hand and machine computations when the equation is elliptic or hyper-
bolic is described. The theory is applicable to both irrotational and
rotational absolute flow at the inlet of the blade row and to both
design and off-design operations. .

1
Lewis Flight Propulsion Iaboratory

National Advisory Committee for Aeronautics
Cleveland, Ohio, July 13, 1951
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TABLE I - GENERAL DENBITY TAELE
(a) T =1.4
-2
2 e\ 71
5 -(1 - ) AR
=
5S¢ 3 z 5¢ 3 s Se % T
0,001 }1.0005007 | 0.99949955 0,056 { 1.0303554 | 0.97053890 0.111 | 1.0659554 |0.93812555
.002 |1.0010027 .99899830 057 | 1.0309453 .96998357 .112 | 1.,0666704 .93749672
.003 }1,0015061 .99849616 .058 | 1.0315371 .96942708 .113 | 1.0673882 .93686627
+.004 |1.0020109 99799314 .059 | 1.035213507 .96886954 .114 | 1.0881087 93623430
.005 [1.0025171 99748922 .060 | 1.0327263 96831077 115 | 1,0688320 935560073
0,006 |1.0030246 | 0.99698452 0.061| 1.0333238 | 0.96775086 0.116 ] 1.0695582 |0,93496548
.007 |1.0035335 99647894 .062| 1.0339252 .96718983 2117 11.0702883 93432857
.008 |1,0040438 .99597249 063 | 1.0345246 .96662757 .118 | 1.0710192 .933%69008
.009 |1.0045555 +99546516 .064 | 1.0351279 .96606419 119 | 1.0717540 93504993
.010 | 1.0050687 .99495686 .065| 1.0357532 96549961 .120 | 1.0724918 93240806
0.011 |1.0055833 0.99444770 0.066 | 1.0563404 .96493392 0.121 ]1.0732326 0.93176447
.012 | 1.0060993 .99393768 067 | 1.0369496 96436702 2122 j1.0739763 93111924
.013 | 1.0066168 .99342669 .068 | 1.0375609 .96379885 21235 | 1.0747230 93047232
014 | 1.0071357 .99291486 069 | 1.0381742 .96322948 J124 | 1.0754728 92982361
.015 |1.0076561 99240207 +070| 1.0387895 .96265894 «125 | 1.0762256 92917321
0.016 [1.0081779 0.99188844 0,071 | 1.0394069 0.96208713 0.126 | 1.0769815 0.92852106
.017 |1.0087012 .99137386 .072] 1.0400263 .96151415 127 | 1.0777405 .92786714
.018 | 1.0092260 99085834 073 | 1.0406478 96093991 .128 | 1.0785026 92721149
.019 | 1.0097522 99034199 074 | 1.0412714 96036442 .128 | 1.0792678 .92655410
.020 | 1.0102800 .98982460 .075| 1.0418871 .95978768 150 | 1.0800362 92589489
0,021 |1.0108093 | 0.98930629 0.076 | 1.0425249 | 0.95920970 0,131 | 1.0808079 |[0,92523380
.022 ]1.0113401 .98878706 .077| 1.,0431548 95863049 132 | 1.0815828 92457092
.023 |1.0118724 .98826630 .078 | 1.0437869 95804996 133 | 1.0823610 .92330616
.024 {1,0124063 +98774573 <079 | 1.0444212 .95746812 134 ] 1.0831424 »92323964
.025 | 1.0129417 .98722365 .080 | 1.0450576 .95688506 .135 | 1.0839272 .92257118
0.026 |1.0134786 0.98670066 0.081 | 1.0456962 0.95630069 <136 | 1.0847155 92190089
.027 }1.0140171 .98617666 .082| 1,0463370 95571503 .137 | 1.0855068 .92122868
.028 | 1.0145572 .98565167 .083| 1.0489800 95512808 138 | 1.0863017 .92055458
.029 11.0150989 .98512569 .084| 1.0476253 .95453976 <139 }1.0871000 .91987858
.030 | 1,0156421 .98459881 .085| 1.0482729 .95395006 <140 | 1.0879018 91920061
0.031 | 1.0161869 | 0.98407094 0.086| 1.0489227 | 0.95335910 0,141 |1.,0887071 |0.91852069
.032 |1.0167333 98354210 .087| 1.0495748 95276678 142 | 1.0895160 .91783875
.033 ]1.0172814 .98301217 .088] 1,0502292 95217311 .143 | 1.0903284 91715487
.034 | 1.0178311 .98248128 .089 | 1.0508859 .95157809 o144 | 1.,0911444 .91646898
.035 | 1.0183825 .98194932 +090| 1.0515449 95098174 2145 | 1.0919640 91578111
0.036 | 1.0189354 | 0.98141649 0.091] 1,0522063 0.95038397 0.146 | 1,0927873 |0,91509116
.037 !1.0134900 .98088260 .092] 1.0528701 .94978478 .147 | 1.0936143 .914393816
.038 | 1.0200462 .98034775 .093| 1.0535362 .94918428 .148 | 1.0944450 .913570512
.0339 | 1.0206042 97981176 .094 | 1.0542048 94858229 .149 | 1.0952795 91300896
.040 | 1.0211638 .97927482 .095] 1.0548758 +94797890 .150 | 1.0961178 .91231070
0.041 |1.0217252 0,97873675 0.096| 1.0555492 0.94737413 0.151 | 1.0969599 0.911610%5
042 | 1,0222882 »97819773 .087| 1.0562251 +94676788 2152 | 1.0978058 .91090792
.043 |1.0228530 .97765759 .098| 1.0569034 .94616026 153 | 1..0986557 91020326
044 | 1.0234194 97711652 .099| 1,0575842 .94555119 .154 | 1.0995095 90949646
.045 }1.0239876 97657433 .100| 1.0582675 «94494067 155 ] 1.1003674 .20878757
0.046 | 1.0245575 | 0.97603112 0,101 1.0589534 | 0.944352862) 0.156 | 1.,1012292 ]0,90807618
.047 | 1.0251292 «97548680 J102| 1.0596418 +94371513 157 | 1.1020950 .90738280
.048 | 1.0257027 +97494137 103 | 1.06033527 9431002 158 | 1.1029650 .90664708
.049 | 1.0262780 97439485 »104| 1.0610263 94248371 159 | 1.1038391 .90592913
.050 | 1.0268550 +97384733 .105| 1.0617225 +94186569 160 | 1.1047174 90520888
0.051 | 1.0274338 | 0.97329872 0,106 | 1.0624213 | 0,94124619 0.161 | 1.1055999 |0,90448633
.052 | 1.0280145 .97274893 .107| 1.0631227 +94062520 162 | 1.1064866 .903761.51
.053 | 1.0285970 .97219805 .108| 1.0638268 94000264 63 | 1.1073777 90303426
.054 | 1.0291813 .97164610 .109| 1.06845336 93937852 164 | 1.1082751 .90230468
.055 |1.0297674 .87109308 .110| 1.0652431 93875285 .65 1 1.1091730 90157261
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TABLE I - GENERAL DEXSITY TABIE - Continusd
(&) ¥ = 1.4 - Comcluded
-2
-1 .
#e(-3%) 7 ~EAG
b
S¢ 1 ) 5 1 z 5¢ 3 s
T ® T P
0.166 | 1,1100772 | 0.90083825 0.221 | 1.1683271 | 0.85592468 0.276 | 1.2556050 | 0.79642881
.167 | 1.1109859 .90010143 .222 | 1.1695813 .8550068% .277| 1.2576894 .79510887
.168 | 1.1118991 .89956218 .223 | 1.1708444 85408445 .278| 1.2598004 79377654
+169 { 1.1128170 89862035 .224 |1.1721164 85315759 .279| 1.2619389 . 79243139
»170 | 1.1137394 .89787611 .225 | 1,1733975 .85222612 .280| 1.2641055 .79107321
0.171 | 1.1146665 | 0.89712932 0.226 | 1.1746880 | 0.85128987 0.281| 1.2663012 | 0.78970153
«172 [ 1.1155983 . 89638000 .227 | 1.1759880 .85034881 .282| 1.2685268 .78831602
«173 [ 1.1165348 .89562815 .228 | 1.1772974 .84940305 .283 | 1.2707833 .78691623
o174 | 1.1174762 .89487364 .229 | 1.1786165 . 84845240 .284| 1.2730715 . 78550184
.175 [ 1.1184225 +89411649 .230 | 1.1799455 84749677 .285| 1.2753927 .78407223
0.176 | 1.1193737 | 0.89335670 0.251 | 1.1812846 | 0.846535605 0.286 | 1.2777476 | 0.78262718
«177 | 1.1205238 .89259431 .232 11,1826339 .84557021 .287| 1.2801376 . 78116602
.178 1.1212910 .89182915 .233 | 1.1839935 .84459923 .288| 1.2825638 .77968831
2179 | 1.1222573 .89106126 .234 | 1.1853636 . 84362300 .289 | 1.2850276 . 77819340
.180 | 1.1252287 -83029064 «235 | 1.1867445 .84264136 .290 | 1.2875299 . 77668099
0.181 | 1.1242053 | 0.88951724 0.236 | 1.18813682 | 0.84165435 0.291 | 1.2900725 | 0.77515023
.182 | 1.1251871 -88874108 .257 | 1.18953390 .84066180 .292| 1.2926566 . 77360066
.183 | 1.1261742 -88796209 .238 | 1.1909530 .83966370 .295 | 1.2952840 .77203146
.184 [ 1.1271667 .88718022 .239 | 1.1923785 .83865987 .294 | 1.2979563 . 77044196
.185 | 1.1281647 -88639540 .240 | 1.1938156 .83765030 .295 | 1.3006755 .76883127
0,186 | 1.1291681 | 0.88560773 0.241 | 1.1952645 | 0.83663490 0.296 | 1.3034429 | 0.76719893
.187 | 1.1301771 88481708 .242 | 1.1967255 .83561351 .297 | 1.3062609 . 76554385
.188 | 1.1311917 .88402346 .243 | 1,1981988 .83458605 .298 | 1.3091314 . 76386526
.189 | 1.1322120 .86322682 244 | 1.1996846 .83555242 .299 | 1.3120571 .76216195
+190 | 1.1332381 -88242709 .245 | 1.2011831 .83251255 .300 | 1.3150400 . 76043314
0.191 [ 1.1342699 | 0.88162438 0.246 | 1.2026946 | 0.83146628 0.301 | 1.3180832 | 0.75867745
.192 | 1.1353077 .88081848 .247 | 1.2042193 .83041353 .302| 1.32118%0 .75689398
.193 | 1.1363514 -88000948 .248 [ 1.2057574 .82935423 303 | 1.3243612 . 75508102
.194 | 1.1374012 .87919724 .249 | 1.2073092 82828823 .504 | 1.3276021 |, 75323774
.195 [ 1.1384571 .878381.80 .250 | 1.2088750 .82721539 .305 | 1.3309163 .75136205
0.196 | 1,1395191 | 0.87756318 0.251 | 1.2104551 | 0.82613556 0.306 | 1.3343067 | 0.74945288
«197 | 1.1405875 -87674131 .252 | 1.2120497 .82504868 307 | 1.3577787 . 74750779
.198 | 1.1416619 -87591607 .253 {1.2136591 .82395460 .308 | 1.3415356 . 74552558
.199 | 1.1427429 .87508748 .254 | 1.2152836 .82285320 .309 | 1.3449840 . 74350327
.200 | 1.1438304 .87425548 .255 | 1.2169235 .82174434 +310 | 1,3487277 « 74143951
0.201 | 1.1449245 | 0.87342004 0.256 | 1.2185792 |0.82062783 0.511 | 1.3525748 | 0,73933065
.202 | 1.1460252 .87258116 .257 | 1.2202510 .81950353 .312 | 1.3565299 .73T17505
<203 | 1.1471327 .87173873 .258 | 1.2219392 .81837132 +313 | 1.3606032 . 75496814
+204 | 1.1482470 | -.87089276 .259 | 1.2236442 .81723102 .314 | 1.3648001 . 75270804
.205 | 1.149368Y .87004329 .260 | 1.2253663 .81608251 .315 | 1.3691338 . 73058880
0.206 | 1.1504963 | 0.86919011 0.261 | 1.2271059 |0.81492559 0.316 | 1.3736105 | 0.72800841
+207 [ 1.1516316 -86835324 .262 | 1.2288634 .81376010 317 ] 1.3782479 .72555888
.208 | 1.1527741 « 86747265 .263 | 1.2306393 .81258578 .318 | 1.3830531 . 723503804
«209 | 1,1539238 -86660835 .264 | 1.2324338 .81140261 .319 | 1.3880508 . 72043475
.210 | 1.1550810 .86574015 .265 | 1.2342475 .81021027 .320 | 1.39352489 . 71774684
0.211 { 1.1562457 | 0.86486808 0.266 | 1.2360808 | 0.80900860 0.321 | 1.3986833 | 0,71495813
212 | 1,1574179 .86399217 .267 | 1.2579342 .80779738 322 | 1,4043617 .71206727
.213 | 1.1585978 .86311.229 .268 | 1.2398081 .80657644 «323 | 1.4103403 . 70904873
.214 | 1.1597855 -86222840 .269 | 1.2417032 80534543 .324 | 1.4166227 . 70590426
.215{ 1.1609811 -86134046 .270 | 1.2436198 .80410428 .325 | 1.4233067 .70258926
0.216 ] 1.1621847 | 0.86044843 0.271 | 1.2455586 | 0.80285263 0.326 | 1.4303770 | 0,69911639
-217 | 1.1633964 .85955226 .272 | 1.2475200 80159036 .527 | 1.4380371 .69539235
.218 | 1,1646164 -85865185 <273 | 1.2495048 .80031705 .328 | 1.4461815 .69147614
.219 | 1.1658447 .85774718 274 | 1.2515134 +79903260 .329 | 1.4554567 .68706956
.220 | 1.1670816 .85683812 .275 | 1.2535466 79773660 .330 | 1.4650468 .68257205

- —p—ry
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(b) T =4fs
_ .2
22 ﬂ(l - -q—’z-) I
:
1 1 6 i
69 b z 69 3 Z P T Z
0.001 §1.0005006 0.99949965 0.056 | 1.0303226 0.97056980 0.111 | 1.0657881 0.93827281
.002 ]1.0010026 99899840 .057 | 1.0309112 .97001565 .112 | 1,0664991 93764730
003 | 1.0015060 .99849626 .058 11.0315016 .96946044 «113 | 1.06721.28 «933702025
004 |1.0020107 99799333 .058 | 1.0320939 .96890409 .114 1 1.0679293 93839158
.005 | 1.0025168 99748952 .060 | 1.0326880 .96834868 .115 | 1.0686486 93576130
0.006 | 1.0030242 0.99698492 0,081 | 1.0332840 0.96778814 0.116 | 1.0693706 0.93512951
+007 ) 1.0035330 +99647944 .062 |1.0338819 .96722846 117 | 1.0700954 +9344961.2
.008 | 1.0040432 +.99597308 .063 | 1.0344817 96666766 118 | 1.0708230 +93386115
.009 | 1.,0045548 .99546585 .064 | 1.0350835 «96610563 119 | 1.0715534 93322461
010 | 1.0050678 +99495775 .065 | 1.0356872 .96554249 .120 | 1.0722867 93258641
0,011 {1.0055822 | 0.99444879 0.066 | 1.0562928 0.96497824 0.121 | 1.0730229 0.93194656
.012 | 1.0060980 .99393896 067 | 1.0369003 .96441288 122 | 1.0737620 935130508
013 | 1,0066152 .99342827 .068 | 1.0375099 96384622 123 | 1.0745040 95066196
.014 {1.0071339 99291663 .069 |1.0381215 .96327838 124 §11.0752489 .93001723
.015 | 1.0076541 »99240404 .070 | 1,0387350 96270945 «125 | 1.,0759968 +92937079
0.016 | 1.0081756 0.99183070 0.071 | £.0393506 0,96213924 0.126 { 1.0767477 0.92872267
017 | 1.0086985 +99137651 .072 | 1.0399681 .96156796 .127 | 1.0775017 92807278
.018 | 1,0092230 .99086129 .073 | 1.0405876 +96099550 .128 | 1.0782587 92742122
.019 | 1.0097490 .99034513 .074 | 1.0412093 .96042169 129 | 1.0790187 92676800
.020 | 1,0102764 .98982813 .075 | 1.04183351 .95984664 .130 | 1.,0797818 +92611304
0.021 | 1.0108053 0.98931021 0.076 | 1.0424589 0.95927043 0.131 | 1.0805481 0,92545626
.022 11.0113357 .98879136 .077 | 1.0430867 95869308 .132 | 1,0813175 92479776
0235 |1.0118676 .98827159 .078 | 1.0437167 .95811440 133 | 1.0820901 292413746
.024 | 1.0124010 98775090 .079 | 1.0443488 .957535449 134 }1,0828659 92347538
+025 | 1.0129359 .98722930 .080 | 1.0449830 .95695337 135 | 1,0836449 .92281152
0.026 | 1.0134723 0.98670679 0.081 | 1.0456194 0.95637093 0.136 }1.0844271 0,92214590
.027 | 1.0140104 .98618318 .082 | 1,0462580 .96578720 .137 | 1.0852126 92147843
.028 | 1,0145499 .98565876 .083 | 1,0468987 95520226 .138 | 1,0860015 .92080904
.029 | 1,0150910 985133355 084 | 1.0475416 »95461603 .139 | 1,0867937 .92013783
.030 | 1.0156336 .98460705 .085 | 1.0481868 .95402842 140 | 1.0875893 91946473
0.031 | 1.,0161778 98407975 0.086 | 1.0488341 0,95343963 0.141 | 1,0883882 0,91878982
.032 | 1.0167236 .98355148 +087 | 1.0494837 .95284948 .142 {1,0891906 .916811295
,033 | 1.0172710 .98502222 .088 | 1,0501355 .95225807 .143 | 1.0899965 917435414
.034 | 1.0178200 .98249199 .089 | 1.0507896 .95166530 .144 | 1,0908058 91675347
035 } 1.0183707 98196069 «090 |} 1,0514460 .951071319 .145 }11.0916187 +91607079
0.036 | 1.0189229 0.98142853 0.091 | 1.0521047 0.95047575 0.146 | 1,0924351 0.91538619
+037 | 1.,0194767 .98089539 .092 |1,0527657 .94987897 147 | 1.0932551 .91469960
.038 | 1.0200322 98036121 .093 | 1.0534290 94928087 .148 | 1.0940787 .91401103
.039 | 1.0205894 .97982597 .094 | 1,0540947 .94868137 .149 | 1,0949059 91352050
«040 | 1,0211482 .97928978 .095 [ 1.0547628 94808046 .150 } 1,0957368 91262792
0,041 | 1.0217087 0.97875255 0,096 | 1.0554332 0.9474782S 0.151 | 1,0965714 0.911933352
042 | 1.,0222708 .97821438 097 { 1,0561061 .94687456 .152 | 1.0974098 .91123662
043 | 1.02283546 +97767518 .098 | 1.0567813 .94626958 .153 | 1,0982520 .91055784
044 }1.0234001 «97713494 .099 | 1.0574590 .94566314 .154 | 1,0990979 90983706
.045 | 1.0239673 .97659369 »100 { 1.0581391 94505533 155 | 1.0999477 90913413
0.046 | 1..0245363 0.97605131 0.101 | 1.0588217 0,94444608 0.156 | 1.1008014 0.90842908
047 | 1.0251070 .97550792 .102 | 1.0595068 .94383538 157 | 1.1016591 .907721.82
.048 | 1.0256794 .97496352 103 | 1.0601944 .94322324 .158 ) 1,1025207 90701245
049 | 1.0262536 97441802 <104 | 1.0608846 94260959 159 | 1.1033863 906350090
.050 } 1.0268285 .97387151 105 | 1.,0815773 94199452 160 | 1.1042559 .90558719
0.051 ] 1.0274072 0.97332392 0.106 | 1.0622726 0.9413779S 0,161 | 1,1051296 0.90487125
052 ] 1.0279867 97277523 107 | 1.0629704 94075997 162 | 1.1060074 .904153508
.053 | 1.0285679 .97222556 108 | 1.0636709 94014041 163 | 1.1068894 90343263
+054 | 1.0291510 97167471 +109 | 1.0643740 93951938 164 | 1,1077756 .90270990
<055 |1.0297359 .97112279 110 | 1,0650797 .93889687 .165 j 1.,1086660 .90198491
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TABIE I - GERERAL DERSITY TABLE - Concluded
(6) T =4/5 - Concluded
- 2
2% - (1 - 2) -1
. 52 H"'E!Iig"'rr
6 3 z 6o i z 6 Y z
P T T %
0.166| 1.1095607 | 0.,90125759 0.22) | 1.1669285 | 0.85695068 0.276 | 1.2514571 [0.79906854
.167( 1.1104597 .90052795 .222 | 1.1681568 .85604946 .277 | 1.2534457 .797680081
.168| 1.1113630 89979602 +223 1 1.1693937 85514399 .278 | 1.2554579 « 79652213
.169| 1.1122708 89906163 «224 | 1.1706391 85423424 .279 | 1.2574944 79523217
.170] 1.1131830 89832489 .225 | 1.1718931 .85332015 .280 | 1.2595556 « 793935081
0,171 1.1140997 0,89758574 0.226 | 1.1731558 0.85240170 0.281 | 1.2616424 0.79261762
.172| 1.1150210 .89684410 .227 | 1.1744273 .85147884 .282 | 1,2637555 « 79129230
.173 ) 1.1159468 89610006 «228 | 1.1757079 .85055140 «283 | 1.2658957 « 78995450
174 1.1168773 89535350 .229 | 1.1769977 .84961933 .284 | 1.2680636 .78860398
.175] 1.11781285 «89460442 .250 | 1.1782966 .84868275 »285 | 1.2702602 « 78724028
0.176| 1.1187524 | 0.89385283| [0.231 | 1.1796049 084774148 0.286 | 1.2724861 |0.78586320
177} 1.1196971 89309868 .232 | 1.1809228 84679540 .287 | 1.2747424 78447222
178} 1.1206466 .89234197 .233 | 1.1822504 84584450 .288 | 1,2770299 « 78306702
.1791 1.1216010 .89158266 .234 | 1.1835879 .84488866 .289 | 1.2793498 .78164705
.180| 1.1225603 .89082074 .235 | 1.1849354 .84392786 .290 | 1,2817028 . 78021207
0,181 | 1.1235246 | 0.89005617 0.236 | 1.1862930 0.84296207 0.291 | 1.2840902 |0.77876149
182 1.1244940 .88928887 «237 | 1.1876610 84199111 .292 | 1.2865130 « 77729490
.183| 1.1254685 .88851887 238 1 1..1890394 .84101502 .293 | 1.2889726 .77581168
.184 | 1.1264481 .88774618 .239 | 1.1904285 .84003365 .294 | 1.2914700 . 77431144
.185] 1.1274329 .88697075 .240 { 1.1918285 83904689 .295 | 1.2940068 _ e 77279347
0.186 | 1.1284230 0.88613250 0.241 | 1.1832395 0.83805472 0.296 | 1.,2965843 0.77125722
.187] 1.1294184 88541146 <242 1 1,1946617 . .83705705 «297 | 1.2992041 . 76970200
.188 | 1.,1304192 .88462758 .243 1 1.1960954 .83605371 .298 | 1.3018675 76832732
.189| 1.1314255 .88384078 .244 | 1,1975406 .83504476 +299 | 1.3045765 . 76653228
.190| 1,1324372 88305117 .245 | 1.1989976 +83403003 300 | 1.3073325 « 76491635
0,191 | 1.1334545 0,88225862 0.246 | 1.2004666 0.83300943 0.301 | 1.3101379 0.76327843
.192| 1,1344774 .88146313 «247 | 1,2019479 .83198282 .302 | 1.3129943 .76161793
193] 1,1355061 88066458 .248 | 1.2034416 83095017 +303 1 1.3159043 + 75993368
»194 | 1.1365405 .87986306 «249 | 1.2049480 .82991133 .304 | 1.3188697 . 75822502
.195| 1,1375807 .87905851 .250 | 1.2064673 .82886623 .305 | 1.3218935 « 75649059
0.196| 1.1386269 0.87825081 0.251 | 1.2079997 0.82781478 0.306 | 1.3249779 0.75472957
.197| 1.1336790 87744005 .252 | 1,2095455 .82675683 307 | 1.3281263 . 75294044
.198 | 1.1407372 87662610 .253 | 1.,2111050 .82569224 .308 | 1.3313412 .75112225
199 | 1,1418015 .87580897 .254 1 1,2126783 .82462101 «309 | 1.3346266 + 74927324
.200| 1,1428719 .87498870 .255 | 1,2142658 .82354292 .310 | 1.3379854 74739231
0,201 | 1.1439486 0.87416515 0.256 | 1.2158677 0.82245790 0.311 | 1.3414224 0.74547734
.202| 1.,1450317 87333827 257 | 1.2174844 .82136576 o312 | 1.3449408 « 74352715
.203 | 1.1461212 .87250807 .258 | 1,2191161 .82026642 .313 | 1.3485465 . 74153913
«204 1 1.1472172 .87167452 «259 | 1,2207632 .81915969 «314 | 1.3522432 « 73951195
.205 1,1483197 .87083762 .260 | 1,2224259 .81804549 .315 | 1.3560384 . 73744224
0.206 | 1.1494289 0,.86999727 0,261 | 1.,2241045 0.81692372 0.316 | 1.3599361 0.73532867
.207| 1.1505449 .86915339 .262 | 1,2257994 .81579417 317 | 1.3639457 . 73316702
.208| 1.1516677 .86830602 .263 | 1.2275110 .81465665 .318 | 1.3680720 . 73095568
.209 | 1.1527975 .86745504 .264 | 1,2292396 .81351105 .319 | 1,3723269 . 72868935
.210{ 1,1539342 .86660054 +265 | 1,2309855 .81235725 .320 [ 1.3767161 . 72636617
0,211 | 1.1550780 | 0.86574240| |0.266 | 1.2327492 | 0.81119501 0.321 | 1,3812551 |0.72397923
.212| 1,1562280 .86488057 .267 | 1.2345310 81002421 322 | 1.3859506 . 72152644
.215| 1.1573873 86401501 ,268 | 1.2363314 .80884462 .323 | 1.3908236 »71899844
.214 | 1.1585530 .86314567 .269 | 1.2381508 .80765606 .324 | 1.3958818 .71639304
.215| 1.1597262 .86227249 .270 | 1,2399896 .80645838 .325| 1,4011550 . 71369691
0,216 | 1.1609069 0.86139552 0,271 | 1..2418483 0,.80525133 0,326 | 1.4066513 0,.71030824
.217| 1.,1620953 86051462 L272 | 1.2437273 .80403478 327 | 1.4124156 «»70800691
.218| 1.1632916 85962969 273 | 1.2456273 80280835 +328 | 1.4184546 . 70499260
.219 | 1,1644958 .85874075 .274 | 1,2475485 .80157204 .329 | 1,4248420 70183220
. 1.1657080 .85784776 .275 | 1.2494916 .80032551 +330 ]| 1.4315749 .69853139
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Figure 1. - Relative stream surface 8;.
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Figure 2. - Relative stream surface Ba.

€8



NACA Ty 2604

84

Figure 3. - Intersecting 87 end 85 surfaces in a blade roW.
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Figure 4. - Mean stream surfaces for aexial-flow gas turbine.
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INLET GUIDE VANE ROTOR STATOR

Figure 5. - Mean stream surfaces for inlet stage of axial~flow campressor.
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(c) Beven~stage axial-flow compressor,
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(a) Axial-diacharge (e) Radial-discharge (£) Centrifuga)
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Flgure 6. - Axial~-, radial. s and mixed-flow turbomachines,
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(a) 8; surface with o
independent variables.

and 2z as

(v) 8, surface with r and @ as
independent varisbles.
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{c) 8; surface with r and z as
independent variebles.

Figure 7. -~ Elements of stream sheet
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Figure 8. - Orthogonal coordinates for surface of revolution.
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Figure 9. - Relation between mean stream surface and
blade surfaces.
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Figure 10. - Grid system end boundary conditions. for general Sl surface
(elliptic case).
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Figure 11, - (rid system end boundary conditions for gemeral 8, surfacs (elliptic case}.
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Figure 12. - Characteristic s'ystem for hyperbolic -case,

NACA - Langley Fleld, Va.




