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A NUMERICAL METHOD FOR THE DESIGN OF CAMBER SURFACES
OF SUPERSONIC WINGS WITH ARBITRARY PLANFORMS

By Harry W. Carlson and Wilbur D. Middleton
Langley Research Center

SUMMARY

This report presents a numerical method based on linearized theory which
allows the determination of camber surfaces corresponding to certain specified
load distributions for wings of arbltrary planform, and shows how these results
may be combined with existing methods of selecting optimum combinations of
loadings. To illustrate the application of the method and to point out certain
features of wings with curved or cranked leading edges, a set of examples is
presented. The principal checks on the precision of the method are made through
comparisons with results for arrow- or delta-wing planforms by using established
methods.

INTRODUCTION

For highly swept wings of arrow planform, theoretical studies such as that
of reference 1 have indicated large potential performance benefits resulting
from warping of the wing surface to produce an optimum or near-optimum load
distribution and thus reduce the drag at a specified 1lift coefficient. Descrip-
tion of the camber surface necessary to support specified loadings for arrow
wings may be obtained by using methods reported in the literature, for example,
that of reference 2. Optimum combinations of component loadings designed to
minimize drag at a given total 1lift ccefficient may be found in the manner
described in reference 3. Experimental investigations (refs. 4 and 5) of wings
designed by using these theoretical concepts have shown that substantial por-
tions of the theoretical benefits may indeed be achieved in practice, provided
that realistic restraints are placed on the severity of camber surface slopes
and on allowable local pressures.

Linearized theory integral equations for calculating the streamwise gra-
dients of a wing camber surface for a given load distribution (ref. 6) are not
restricted in application to the arrow planforms previously discussed, and with
the development of high-speed electronic computing machines, it is possible to
devise design methods for wings of rather arbitrary planform which may employ
curved leading and trailing edges. This report presents a numerical method
which allows the determination of camber surfaces corresponding to certain
specified load distributions for wings of arbltrary planform, and shows how



these results may be combined with existing methods of selecting optimum com-
binations of loadings. To illustrate the application of the method and to point
out certain features of wings with curved or cranked leading edges, a set of
examples are presented. The principal checks on the validity of the method are
made through comparisons with results for arrow- or delta-wing planforms using
the established methods of reference 2.

SYMBOLS
Ag load strength factor
A(L,N), A(L*,N*) leading-edge grid element weighting factor
(see eqs. (6) and (12).)
b wing span

B(L*,N%) trailing-edge grid element weighting factor (See eq. (12).)

e local wing chord
cg section drag coefficient
Cm section moment coefficient
¢y section 1lift coefficient
Cp drag coefficient
CD,i drag coefficient of ith loading, %CD,ii
Cp,1ij drag coefficient of interference between ith and jth component
loadings
CD/BQL2 drag-due-to-1ift factor
Cr, 1ift coefficient
Cr, 3 1lift coefficient of ith loading
L,1
Cn moment coefficient about x = 0 1line referenced to wing length
Cp pressure coefficient
ACP lifting pressure coefficient



ACp’i lifting pressure coefficient of ith loading

k constant

1 overall length of wing measured in streamwise direction

L,N designation of influencing grid elements (See fig. 2.)

L*,n* designation of field-point grid elements (See fig. 2.)

M Mach number

R influence function (See eq. (3).)

R average value of influence function within a grid element
(See eq. (8).)

S wing area

X,Y,Z Cartesian coordinate system, X-axis streamwise

X,¥,%2 distance along X-, Y-, and Z-axes, respectively

x! distance from wing leading edge measured in x-direction

Za camber surface ordinate

B=yM2 -1

A Lagrange multiplier

E,n dummy variables of integration for x and ¥y, respectively

T designates a region of integration bounded by the wing planform and

the fore Mach cone from the point X,y

Subscripts:

1,2,3 designates constants corresponding to specific loadings
i, ith and jth component loadings

min minimum

max maximum

n number of component loadings

le value of quantity along wing leading edge

te value of quantity along wing trailing edge



NUMERICAL CALCULATION METHOD

Camber Surface for a Given Loading

A typical wing planform described by a rectangular Cartesian coordinate
system is illustrated in figure 1. For a wing of zero thickness lying essen-
tially in the 2z =0 plane, linearized theory for supersonic flow defines the
wing surface shape necessary to support a specified 1lift distribution by the
integral equation

- &) ACp(E,n) @
%% (x,y) = L acy(x,y) + ui J[ dg j[ - B plem dn (1)
8 T (y - W3(x - )2 - BBy - n)2

which is a slightly modified form of equation (77a) of reference 6. The region
of integration T extends over the wing planform within the fore Mach cone
from the field point x,y as shown by the shaded area in figure 1. The inte-
gral on the right-hand side of equation (1) gives the appearance of being
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Figure 1l.- Cartesian coordinate system.

improper and divergent because of the singularity at 1 =y within the region
of integration. This integrand is, however, the limiting form in the z =0
plane of a more general integrand that arises from lifting surface theory and
does not have a singularity at 7 =y when =z % 0. Consequently, the integral




can be treated according to the concept of the generalization of the Cauchy
principal value, which is discussed and explained in section 5 of reference 7
and also in reference 6. The integral is thus generally found to be convergent
at points x,y on a wing surface, although regions of nonconvergence exist if
there are values of y for which the spanwise derivative of the chordwise
integral

5 LEBly-nl (x - 8) Acp(g,m)

9o dg
N Ve, V(x - )2 - B3y - )2

is not single valued at 1 = y. These regions of nonconvergence, however, do
not invalidate results over the remainder of the wing surface.

For the purposes of this study, equation (1) will be rewritten in the form

oz -B B
Z2x,y) = Loogy) ¢ far f rGenyon acplen) ag (@)

where the function R is defined as

R(x-&,y-1) = X - §2 - (3)
B2y - MA(x - ©)2 - By - m)2
and may be thought of as an influence function relating the local loading at

point £, to its influence in determining the necessary slope at downstream
point x,y.

In order to replace the indicated integration in equation (2) by a numer-
ical summation, it is first necessary to introduce a grid system superimposed
over the Carteslan coordinate system used in describing the wing planform as
shown in figure 2. (This sketch is illustrative only; in application many more
grid elements would be employed.) The numbers assigned to L and N identify
the spaces in the grid which replace the element of integration dé¢,dpn. The
starred values of L and N identify the space or element associated with and
immediately ahead of the field point x,y; L* is numerically equal to x and

is numerically equal to By, where x and By take on only integer values.
The region of integration, originally bounded by the wing leading edge and the
Mach lines, now consist of a set of grid elements approximating that region as
shown by the shaded area in the example of figure 2.

The contribution of each element of the wing L,N +to the local slope at
X,By may be written as:

—2x,¥) = & R(*-1,0%-N) A(L,N) ACp(L,N) (k)
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Figure 2.- Grid coordinate system.

with the factor R representing an average value within the element of the
function R(x-g,y—n). The value of this factor may be found from the integral

€s Bng
R(L*-L,N*-N) = —= j[ at j[ (x - &) - - dpn  (5)
AL ABN J g By B2y - m3(x - 6)2 - gy - )2

in which the integration extends over one grid element. Since it has been
observed that the integ;and is relatively insensitive to variations in £, as
an approximation the R function may be written as

Bnp

R(L*-L,N*-N) = < (L* - L +0.5)

d L apn  (6)
BB Jgn, By - M)AY(I* - L +0.5)2 - p(y - 1)



with (L* - L + 0.5) representing the value of x - £ at the midpoint of the
element. On integration the expression takes the form

Bng

R(L*-,w-x) = LT -+ 0.5)(1* - L +0.5)2 - gy - n)2 N

and with By = N, By =N - 0.5, and Bm, =N + 0.5

ence factor R becomes

R(e*-n,wom) = Y -

(¥ - L + 0.5)%8(y -

)

BT]]_

(see fig. 2), the influ-

L

+ 0.5)2 - (N* -

N

- 0.5)2

ax

(¥

L+ 0.5)(N - N

0.5)

- L+ 0.52 - (N

N + 0.5)° (8)

(z*

- L + 0.5)(n* -

+ 0.5)

A graphical representation of this factor is shown in figure 3. Note the rather
small variations of the factor in the x- or L-direction contrasted with the

N

Figure 3.~ Distribution of R function.
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drastic variations in the y- or N-direction. For a given L*¥ - L set of ele-
ments, the sum of the R values is zero, the 51ngle negative value at
N* - N =0 balancing all the others. At L¥ - L = O where there is only one
element in the summation region, the R value of the element is zero.

The A(L,N) term in equation (4) is a weighting factor which eliminates
the necessity of acecepting or rejecting complete block elements and thus per-
mits a better definition of the wing leading-edge shape, which has been found
to be extremely critical. The factor A(L,N) takes on values from O to 1

given by

A(L,N) =0 (L - %, S o)
A(L,N) =L - x5, (0<L - xe<1) (9)
A(L,N) =1 (L - %3¢ 2 1)

Desired values of lifting pressure coefficient ACP(L,N) are assigned to

each space or element of the grid. The pressure may vary from element to ele-
ment, but is assumed to be constant within a given element. Values of ACP(L,N)

may be tabulated for each of the elements or more conveniently may be expressed
in equation form.

The wing surface slope at a point represented by L* and N*¥ may now be
found by a summation of the contributions of each of the elements within the
influencing region which is expressed as:

N=Npax L=L*-|N*-N]|

%——(L* N*) = -8 ACP(L* N*) + IF_ S Y R(L*-L,N*-N) A(L,N) ACLH(L,N)
NMuin L=l+[xy]

(10)

The vertical lines as used in 'N* - Nl deslignate the absolute value of the
enclosed quantity and the brackets in Exzé] designate the whole number part of

the quantity. The initial summation with respect to L 1is made only when
[ - w21+

The z-ordinate of the wing surface at station x = L* for a given semispan

station y = Ei may be found by a chordwise summation of the local slopes

B
given by




L¥=x 5
ZC(X)Y) = E A(L*JN*) S}ZC—C(L*JN*)

L*=1+ [xz é]

where x takes on only integer values. Fquation (11) gives a zero camber

(11)

ordinate along the wing leading edge. In reference 2 it is pointed out that
such an arbitrary choice of the leading-edge z.-value does not influence the

theoretical wing characteristics.

Section 1ift, drag, and pitching-moment coefficients at semispan station

y = %; may be evaluated by the following summations:
L*=1+ Xiel
¢y =% ACH(L¥,N¥) A(L*,N%) B(L¥,N*)
L*=1+Exhg
L*=l+[xte:|
cq =L § OZ(1x N¥) AC,(T*, %) A(L*,N*) B(L,N%)
c ox
T¥=1+ [X?,e:'
L¥=1+ xte]
ey = —12- (L* - 0.5) ACp(L¥,N*), A(L*,N¥) B(L*,N*)

(64

L*=l+[?1é]

where

M 3
A(L*, %) =0 (1* - x, S 0)
A(L*,N*) = L* - x4 (0 <T¥ - x4 < 1)
A(L*,W*) =1 (1* - %3¢ 2 1)
B(L*,N*) =0 (L* - X 2 l) >
B(L, M) =1 - (L* - xge) (0 <T* - xpe <1)
B(L*,N*) =1 (L* - x4 S0)

(12)

(13)

(1)

(15)



Wing total 1ift, drag, and pitching-moment coefficients are obtained by
spanwise summations of the section data.

N*=Nmax

ek ) e (16)
N*=Nhin
NN

D = [—31-5 cge (17)
— on
N = max

- L 2

Cn 251 CpC (18)

N*=Npin

The wing area used in the expressions for the aerodynamic coefficients may be
found through a summation

N* =N o, LX=L+ [*te)

g =1 AL, N*) B(L*,N*) (19)
N =Npin L¥=1+ BN

Optimum Combination of Loadings

Lagrange's method of undetermined multipliers has been applied in refer-
ence 3 to the problem of selecting & combination of component loadings yielding
a minimum drag for a given lift. The method may be used for wings of any plan-
form, provided that the interference drag coefficients are first determined.

By using the nomenclature of the present report, the drag coefficlent of the
interference between any two loadings 1i,j may be expressed as:

10



N* Npax L¥=1+ Xtg)
©p,15 = D,51 ég Acp 5 (L7, N%) (%i)_(L*,N*) A(L*,N) B(L*,N%)
N*=Npip L¥=1+[x1g J

N*=Npay L*=1+[%t¢)
* ég' j> :> ACp, 5(1%, W) (%ﬁ) (L*,N%) a(L*,¥) B(L*,N%)
N*<Npin L¥=1+[x1]

1

(20)

and may be evaluated as an extension of the present numerical system.

The set of equations whlch establish the relative strength of each loading

is

<N
Cp,11A1 *+ Cp,1282 + Cp,13A3 + . . . + Cp,1nfin + ACp,;3 =0
CD,glAl + CD’22A2 + CD,23A3 + . . .+ CD,EnAn + ')\CL,2 =0
CD,BlAl + CD’32A2 + CD:53A3 + . . .+ CD,BnAn + 7\CL,3 =0

& (21)

Cp,nifL * Cp,noho + Cp,n3hs + - - - + Cp,nnfy + A, p =0
CL,lAl + CL,2A2 + CL:3A5 + . . . + CL,D.A'I] = CL )

Machine computing technigues allow the evaluation of the weighting factors Aj

and thus the camber surface for an optimum combination of preselected loadings
may be determined

zo(x,¥) = zc’l(x,y) A+ zc’g(x,y) Ay + zc,B(x,y) Az . . . * zc,n(x,y) A, (22)

The corresponding drag coefficient is

11



1 2
Cp = §(CD,11A1 + Cp,10M1Ap + Cp 33MAz + . - . + Cpipfyhy

2
+ CD,Z.AQA]_ + CD,22A2 + CD’25A2A3 + . . .+ CD,2HA2AI'1
2
+ CD,}lABAl + CD,32A3A2 + CD’BBA + . . .+ CD,BnABAn + . . .
3
2
+ Cp,n18AnA1 + Cp,nofphp + Cp nzhphs + . . . + CD,nnAn) (23)

Illustrative Examples

For a series of examples, the numerical method has been applied in
obtaining camber surfaces for wings. of various planforms and loadings. These
results are useful in establishing the validity and accuracy of the method and
in pointing out certain features of wings with curved or cranked leading edges.

The first example treats a delta-wing planform and an imposed pressure dis-
tribution identical with that of example II of reference 2. Thus, for the lim-
iting case of straight-line leading and tralling edges, a comparison may be
made of the results of the present numerical method and a more rigorous method.
Figure 4 shows the wing planform and the imposed pressure distribution. Fig-
ure 5 shows the resultant camber surface shape as evaluated by & digital computer

Y

z, ° 6 g b/2
BCLf 4 T\
-1k 2 \
-2F [¢] \
_3 1 1 i 1 I
(o] 2 4 6 8 10

X

z, 2 4 .
BC_! // T8
-1 10 4
T

-2

_3 ' 1 1 |

0 2 4 6 8 10
Y
b/2

Figure 4.~ Planform and pressure Figure 5.- Camber surface for wing of
distribution for wing of example 1. example 1. Camber ordinates adjusted

to give a wing leading edge coinci-
dent with that for example II of
reference 2.

12



program utilizing equations (8), (9), (10), and (11). The numerical method
presented herein does not evaluate the upwash field ahead of the wing leading
edge as does the method of reference 2. Thus to make these results directly
comparable with the results of reference 2, the ordinates of figure 5 were mod-
ified through the addition of a set of incremental =z, values to make the
leading edges coincident. Camber surface ordinates as in figure 5 may be shown
in parametric form, since 2z, is directly proportional to the wing length, the
1lift coefficient, and the Mach number term . These results apply for a range
of Mach numbers and planforms, provided that yje and yte are proportional
to l/B. Note in figure 6 that near the midspan the wing camber surface takes
on increasingly large negative values. This condition occurs because at y =0
the integral of equation (1) is not convergent. This singularity at y =0
does not invalidate the results for the major outboard area of the wing span.

A comparison of the wing trailing-edge ordinates defined by the numerical
method (modified to give leading-edge coincidence) with the results of
example II of reference 2 is made
in figure 6. Generally good agree-
———  Reference 2, example I ment is shown, and a well-pronounced
tendency toward better agreement as
the number of wing elements 1is
increased may be observed. The
wing planform as used in the pro-
gram had a semispan of 40 units
and a length of 50 units. Com-
puting time with a Langley Research
Center computer program averages
less than 5 minutes for wings
using this number of elements.

o) Present method

r An optimum combination of

0 : loadings for an "Ogee" type plan-
form is treated in the second
example. The wing planform and
three selected componént loadings
are illustrated in figure 7. Cam-

ber surfaces corresponding to each

of the loadings are shown in fig-

J[‘ ures 8, 9, and 10. In the vicinity

- of y =0 +the same type of singu-

larity appears as in the first

example. Loadings- a and c¢

give a negative singularity, and

loading b with ACP proportional

qux =20

to |y| gives a positive singu-
larity.

Figure 6.- Trailing-edge camber line for wing of
example 1 compared with results for example II
of reference 2.
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Figure 7.- Planform and component loadings

for wing of example 2.
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Figure 9.~ Camber surface for wing
of example 2 with component
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Figure 8.- Camber surface for wing
of example 2 with component
loading (=), ACp 1 =K.
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Figure 10.- Camber surface for
wing of example 2 with compo-
nent loading (c), ACp 3 = kax'.
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The drag coefficients of the interference between pairs of loadings com-
puted through use of equation (19) are as follows:

c C C
D,l]z. - 0.556 D712 = O.J-"O6 &é— = 0.700
By 2 BCr,,101,,2 RCr,,1%,3

2
c Cp, 2 c
D,2§ - 0.801 - D,(EJB = 0.254 ﬂ% = 1.100
BCr,2 "1,2%,5 PCL, 3

Solution of equation (20) yields the following values of the loading factors

1.6 -0.06 -0.630
Ay = 1-697 Ay = =0.067 A, = =0-650
Cr,1 Cp,2 CL,3

which define an optimum pressure distribution derived from the three-component
loadings which may be expressed as

Cp _1.697 - 0.188¥L _ 2.0y X"
Cy, b/2 .

The camber surface corresponding to this optimum loading was determined through
a repetition of the basic program. This resultant wing whose camber surface is
shown in figure 11 has a drag-due-to-1ift factor CD/BCL2 of 0.238. Since
drag-due-to-1ift characteristics for an uncambered wing of this planform are
not known, the drag reduction due to camber can not be evaluated. However, it
may be seen that this relatively low drag is due to camber rather than to plan-
form, since an optimum camber delta wing of the same aspect ratio would have a
drag-due-to-1ift factor of about 0.22 compared to about 0.32 for the corre-
sponding flat-plate delta wing. A Langley Research Center computér program
which determines an optimum combination of three loadings and computes the
resultant wing shape required about 25 minutes for the solution of the problem.

The final set of examples 1llustrates the strong influence of leading-edge
planform shape on the camber surface required to support specified loading dis-
tributions. The reference arrow wing (example 3) and its restricted optimum
loading distribution described in some detail in reference 4% is shown in fig-
ure 12. The camber surface, resulting from the machine computation is shown in
figure 15. A numerical integration of the imposed loading over this surface
yields a drag-due-to-lift factor CD/BCL2 of 0.169, about 4 percent less than

that of the analytic solution following the method of reference 2. This dis-
crepancy is due in large part to the fact that the numerical solution gives
finite values of the surface gradients at the root chord rather than the infin-
ities of the analytic solution. An enlarged grid system would provide better
correlation. The drag-due-to-1ift factor for the corresponding flat-plate
arrow wing without leading-edge suction is 0.288.

15
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Figure 11.- Camber surface for Figure 12.- Planform and pressure
wing of example 2 with optimum distribution for wing of
combination of component example 3.
loadings.

Y
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bz

Figure lk.- Planform and pressure
distribution for wing of

Figure 13.- Camber surface for
example k.

wing of example 3.
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Figure 17.- Camber surface for
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Figure 16.- Planform and pressure
dlstribution for wing of
example 5.

In figure 14 is shown the planform of an
M wing (example 4) which has the same spanwise
chord distribution as the arrow wing. The
pressure distribution is similar to that of
the arrow wing in that the spanwise load dis-
tribution is preserved. The resultant surface
shape (fig. 15) for this planform and load
distribution requires large local angles of
attack directly behind the leading-edge break

at Y- = 0.2. The drag-due-to-1lift factor

b/2

for the wing is 0.228.

A curved-leading-edge wing (example 5)
with its load distribution is shown in fig-
ure 16. Again the spanwise chord distribu-
tion and the spanwise loading distribution
are preserved. As shown in figure 17, the
rounded apex of this wing planform combined
with the chosen pressure distribution results
in finite values of z. at y = 0. The drag-
due-to-1ift factor of 0.195 is 15 percent
higher than that for the warped arrow wing;
however, since severe camber is not required,
that value may be more easily attainable in
practice.

17



CONCLUDING REMARKS

A numerical design method which allows the determination of camber surfaces
corresponding to certain specified load distributions on wings of arbitrary
planform has been presented. It has been illustrated how these results may be
combined with existing methods of selecting optimum combinations of loadings.
Application of the method was illustrated in a series of examples which served
to establish its precision and also served to point out certain features of

-wings with curved or cranked leading edges.

A

Langley Research Center,
National Aeronautics and Space Administration,
Langley Station, Hampton, Va., March 13, 196L.
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important, complete, and a lasting contribution to existing knowledge.

TECHNICAL NOTES: Information less broad in scope but nevertheless
of importance as a contribution to existing knowledge.

TECHNICAL MEMORANDUMS: Information receiving limited distri-
bution because of preliminary data, security classification, or other reasons.

CONTRACTOR REPORTS: Technical information generated in con-
nection with a NASA contract or grant and released under NASA auspices.

TECHNICAL TRANSLATIONS: Information published in a foreign
language considered to merit NASA distribution in English.

TECHNICAL REPRINTS: Information derived from NASA activities
and initially published in the form of journal articles.

SPECIAL PUBLICATIONS: Information derived from or of value to
NASA activities but not necessarily reporting the results of individual
NASA-programmed scientific efforts, Publications include conference
proceedings, monographs, data compilations, handbooks, sourcebooks,
and special bibliographies.

Details on the availability of these publications may be obtained from:

SCIENTIFIC AND TECHNICAL INFORMATION DIVISION
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
Washington, D.C. 20546
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