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A NUMERICAL METHOD FOR THE DESIGN O F  CAMBER SURFACES 

O F  SUPERSONIC WINGS WITH ARBITRARY PLANFORMS 

By Harry W. Carlson and Wilbur D. Middleton 
Langley Research Center 

SUMMARY 

This report  presents  a numerical method based on l inear ized  theory which 
allows the  determination of camber surfaces corresponding t o  ce r t a in  specif ied 
load d i s t r ibu t ions  f o r  wings of a r b i t r a r y  planform, and shows how these  r e s u l t s  
may be combined with ex is t ing  methods of se lec t ing  optimum combinations of 
loadings. To i l l u s t r a t e  t h e  appl icat ion of the method and t o  point  out ce r t a in  
fea tures  of wings with curved or cranked leading edges, a set of examples i s  
presented. The pr inc ipa l  checks on t h e  precis ion of the method a r e  made through 
comparisons with r e s u l t s  f o r  arrow- or delta-wing planforms by using establ ished 
methods. 

INTRODUCTION 

For highly swept wings of arrow planform, theo re t i ca l  s tud ies  such as t h a t  
of reference 1 have indicated l a rge  po ten t i a l  performance bene f i t s  r e su l t i ng  
from warping of t he  wing surface t o  produce an optimum or near-optimum load 
d i s t r ibu t ion  and thus reduce t h e  drag a t  a specif ied l i f t  coef f ic ien t .  Descrip- 
t i o n  of the  camber surface necessary t o  support specified loadings f o r  arrow 
wings may be obtained by using methods reported i n  the  l i t e r a t u r e ,  f o r  example, 
t h a t  of reference 2. Optimum combinations of component loadings designed t o  
minimize drag a t  a given t o t a l  l i f t  coef f ic ien t  may be found i n  the  manner 
described i n  reference 3 .  Experimental invest igat ions ( r e f s .  4 and 5)  of wings 
designed by using these theo re t i ca l  concepts have shown t h a t  subs tan t ia l  por- 
t i o n s  of t he  t h e o r e t i c a l  bene f i t s  may indeed be achieved i n  prac t ice ,  provided 
t h a t  r e a l i s t i c  r e s t r a i n t s  a r e  placed on t h e  sever i ty  of camber surface slopes 
and on allowable l o c a l  pressures .  

Linearized theory i n t e g r a l  equations f o r  calculat ing the  streamwise gra- 
d i en t s  of a wing camber surface f o r  a given load d i s t r ibu t ion  ( ref .  6) a re  not 
r e s t r i c t e d  i n  appl icat ion t o  the  arrow planforms previously discussed, and with 
t h e  development of high-speed e lec t ronic  computing machines, it i s  possible  t o  
devise design methods f o r  wings of r a the r  a r b i t r a r y  planform which may employ 
curved leading and t r a i l i n g  edges. This report  presents  a numerical method 
which allows the  determination of camber surfaces corresponding t o  ce r t a in  
specif ied load d i s t r ibu t ions  f o r  wings of a r b i t r a r y  planform, and shows how 
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these r e s u l t s  may be combined with ex is t ing  methods of select ing optimum com- 
binat ions of loadings. To i l l u s t r a t e  t he  appl icat ion of the method and t o  point 
out cer ta in  fea tures  of wings with curved o r  cranked leading edges, a set of 
examples a re  presented. 
made through comparisons with r e s u l t s  f o r  arrow- o r  delta-wing planforms using 
the  established methods of reference 2. 

The pr inc ipa l  checks on the  v a l i d i t y  of the method are 

SYMBOLS 

Ai load s t rength f ac to r  

A(L,N) 9 A(L*,N*) leading-edge gr id  element weighting f ac to r  
(See eqs. (6) and (12) .) 

wing span 

trail ing-edge gr id  element weighting f ac to r  (See eq. (12).)  

l o c a l  wing chord 

section drag coeff ic ient  

section moment coeff ic ient  

sect ion l i f t  coeff ic ient  

drag coef f ic ien t  

drag coeff ic ient  of i t h  loading, '1 gDJii 

drag coeff ic ient  of interference between i t h  and j t h  component 
loadings 

drag-due-to-lift fac tor  

l i f t  coef f ic ien t  

l i f t  coeff ic ient  of i t h  loading 

moment coefficient about x = 0 l i n e  referenced t o  wing length 

pre s sure coeff ic ient  

l i f t i n g  pressure coeff ic ient  
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l i f t i n g  pressure coeff ic ient  of i t h  loading AcP, i 

k constant 

1 

L,N 

L*,fl  

overa l l  length of wing measured i n  streamwise d i rec t ion  

designation of influencing g r id  elements (See f i g .  2.) 

designation of f ie ld-point  gr id  elements (See f i g .  2.) 

M Mach number 

R influence function (See eq. (3) .) 

R average value of influence function within a g r id  element 
- 

(See eq. (8).) 

S wing area 

x,y,z Cartesian coordinate system, X-axis streamwise 

X,Y,Z  distance along X-, Y-, and Z-axes, respectively 

X '  distance from wing leading edge measured i n  x-direction 

ZC camber surface ordinate 

p = / r i  
h Lagrange mul t ip l ie r  

s,rl dummy variables  of integrat ion f o r  x and y, respectively 

7 designates a region of integrat ion bounded by the wing planform and 
the  fore  Mach cone f romthe  point x,y 

Subscripts: 

1,2,3 designates constants corresponding t o  spec i f ic  loadings 

i , j  i t h  and j t h  component loadings 

min minimum 

m a x  maximum 

n number of camp onent loadings 

l e  value of quant i ty  along wing leading edge 

t e  value of quant i ty  along wing t r a i l i n g  edge 
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NUMERICAL CALCULATION METHOD 

Camber Surface f o r  a Given Loading 

A typ ica l  wing planform described by a rectangular Cartesian coordinate 
system i s  i l l u s t r a t e d  i n  f igure  1. 
t i a l l y  i n  t h e  z = 0 plane, l inear ized theory f o r  supersonic flow defines the 
wing surface shape necessary t o  support a specif ied l i f t  d i s t r ibu t ion  by the  
in t eg ra l  equation 

For a wing of zero thickness lying essen- 

which is a s l i g h t l y  modified form of equation (77a) of reference 6 .  
of integrat ion T extends over t he  wing planform within the  fore  Mach cone 
from the  f i e l d  point x,y as shown by the  shaded area  i n  f igure 1. The in te -  
g r a l  on the  right-hand s ide of equation (1) gives t h e  appearance of being 

The region 

BY -. 
z 
t X 

Figure 1.- Cartesian coordinate system. 

improper and divergent because of t h e  s ingular i ty  at  q = y within the region 
of integrat ion.  This integrand i s ,  however, t h e  l imi t ing  form i n  the  z = 0 
plane of a more general integrand t h a t  arises from l i f t i n g  surface %heory and 
does not have a s ingular i ty  a t  q = y when z f 0. Consequently, the in t eg ra l  
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can be t rea ted  according t o  the  concept of the  generalization of t he  Cauchy 
pr inc ipa l  value, which i s  discussed and explained i n  section 3 of reference 7 
and a l so  i n  reference 6. 
a t  points  x,y on a wing surface, although regions of nonconvergence e x i s t  i f  
there  are values of y f o r  which the  spanwise der ivat ive of the  chordwise 
in t eg ra l  

The i n t e g r a l  i s  thus generally found t o  be convergent 

i s  not s ingle  valued at 7 = y. These regions of nonconvergence, however, do 
not inval idate  r e s u l t s  over t h e  remainder of the wing surface. 

For the  purposes of th i s  study, equation (1) w i l l  be rewri t ten i n  the form 

where the  function R i s  defined as 

and may be thought of as an influence function r e l a t ing  the  l o c a l  loading a t  
point C,q t o  i t s  influence i n  determining the  necessary slope a t  downstream 
point x,y. 

I n  order t o  replace t h e  indicated integrat ion i n  equation (2) by a numer- 
i c a l  summation, it i s  f i r s t  necessary t o  introduce a gr id  system superimposed 
over the  Cartesian coordinate system used i n  describing the  wing planform as 
shown i n  f igure  2. (This sketch i s  i l l u s t r a t i v e  only; i n  application many more 
gr id  elements would be employed.) The numbers assigned t o  L and N i den t i fy  
the  spaces i n  the  gr id  which replace t h e  element of integrat ion d5,dpq. The 
s ta r red  values of L and N i den t i fy  the  space o r  element associated with and 
immediately ahead of t he  f i e l d  point x,y; L* i s  numerically equal t o  x and 
fl i s  numerically equal t o  py, where x and By take on only integer  values. 
The region of integrat ion,  o r ig ina l ly  bounded by the  wing leading edge and the  
Mach l ines ,  now consis t  of a set of gr id  elements approximating t h a t  region as 
shown by the  shaded area  i n  the  example of f igure  2. 

The  contribution of each element of the wing L,N t o  the l o c a l  slope at  
x,Py may be wr i t ten  as: 
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Figure 2.- G r i d  coordinate system. 

with the fac tor  representing an average value within the  element of the  
function R(x-E,y-v). "he value of t h i s  fac tor  may be found from the in t eg ra l  

i n  which the  in tegra t ion  extends over one gr id  element. 
observed t h a t  t he  integrand - i s  r e l a t ive ly  insens i t ive  t o  var ia t ions  i n  
an approximation the  R function may be wr i t ten  as 

Since it has been 
5, as 
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with (L* - L + 0.5) representing t h e  value of 
element. On in tegra t ion  the  expression takes the  form 

x - 5 a t  the midpoint of the  

P72 

Pq1 

( 7 )  
(L* - L + 0.5)/(L* - L + 0.5)2 - P2(y - q)2  

(L* - L + 0.5)2P(Y - tl) 
F( L*-L, p-N) = 

and with Py = N*, 
ence fac tor  5 becomes 

f3ql = N - 0.5, and Pq, = N + 0.5 (see f i g .  2),  t he  inf lu-  

/(L* - L + 0.5)2 - (p - N - 0 .5 )2  E(L*-L,@-N) = 
(L* - L + o . 5 ) ( P  - N - 0.5)  

- /(L* - L + 0.5)2 - (p - N + 0.5)2 
(L* - L + o . ~ ) ( N +  - N + 0.5) 

A graphical representation o f  this f a c t o r  i s  shown i n  f igure  3 .  Note the  r a the r  
s m a l l  var ia t ions  of t he  f ac to r  i n  the x- o r  L-direction contrasted with the  

2 

I 

0 

-I 

-2 

-3 

-4 

K 

/ 

Figure 3 . -  Distr ibut ion of E function. 
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d r a s t i c  var ia t ions  i n  the y- o r  N-direction. For a given L* - L set of ele- 
ments, the  sum of the  
fl - N = 0 balancing a l l  the  others .  A t  L* - L = 0 where there  i s  only one 
element i n  the  summation region, the  

E values i s  zero, the s ingle  negative value at  

E value of the element i s  zero. 

The A(L,N) term i n  equation (4) i s  a weighting f ac to r  which eliminates 
t h e  necessity of accepting o r  re jec t ing  complete block elements and thus per- 
m i t s  a b e t t e r  def in i t ion  of the  wing'leading-edge shape, which has been found 
t o  be extremely c r i t i c a l .  The fac tor  A(L,N) takes  on values from 0 t o  1 
given by 

A(L,N) = o (L - XZe 5 0) 1 
} A(L,N) = L - xZe (0 < L - XZe < 1) ( 9 )  

A(L,N) = 1 

Desired values of l i f t i n g  pressure coeff ic ient  A%(L,N) are assigned t o  
The pressure may vary from element t o  ele- each space o r  element of t he  gr id .  

ment, but i s  assumed t o  be constant within a given element. 
may be tabulated f o r  each of t he  elements o r  more conveniently may be expressed 
i n  equation form. 

Values of ACp(L,N) 

The wing surface slope at  a point represented .by L* and N)c may now be 
found by a summation of the  contributions of each of the  elements within the  
influencing region which i s  expressed as: 

The v e r t i c a l  l i n e s  as used i n  - Nl 
enclosed quantity and the  brackets i n  
the  quantity. The i n i t i a l  scmmation with respect t o  L i s  made only when 

designate t h e  absolute value of the 

[xze] designate the  whole number pa r t  of 

The z-ordinate of t he  wing surface a t  s ta t ion  x = L* f o r  a given semispan 

may be found by a chordwise summation of the  loca l  slopes Njc s t a t ion  y = - 
P 

given by 
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where x takes  on only integer  values. Equation (11) gives a zero camber 
ordinate along the wing leading edge. I n  reference 2 it i s  pointed out t h a t  
such an a r b i t r a r y  choice of the  leading-edge z,-value does not influence the  
theo re t i ca l  wing charac te r i s t ics .  

Section lift, drag, and pitching-moment coef f ic ien ts  at semispan s t a t ion  
y = -  may be evaluated by the  following summations:. 

B 

where 

c2 = - 
C L*Fd 

cm = - 1 > 
L*=l+ XIe] c 

(L* - 0 .5 )  AC,(L*,P), A(L*,P) B(L* ,N~)  
C2 

A(L*,N+) = o 

A(L*,@) = L* - X 2 e  

A(L*,N)C) = 1 

B(L*,P) = o 

B(L*,P) = 1 - (L* - qe) 

(L* - XZe -5 D) 

(0 < L* - X I e  < 1) 

(L* - X I e  1 1) 

(L* - X t e  11) 

(0 < L* - %e < 1) 

B(L*,N)C) = 1 
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Wing t o t a l  l i f t ,  drag, and pitching-moment coef f ic ien ts  are  obtained by 
spanwise summations of t he  section data .  

CL 

CD 

c2 

The wing area used i n  the  expressions f o r  the  aerodynamic coef f ic ien ts  may be 
found through a summation 

Optimum Combination of Loadings 

Lagrange's method of undetermined mul t ip l ie rs  has been appJied i n  refer-  
ence 3 t o  the  problem of select ing a combination of component loadings yielding 
a minimum drag f o r  a given l i f t .  The method may be used f o r  wings of any plan- 
form, provided that the  interference drag coef f ic ien ts  a r e  first determined. 
By using the  nomenclature of the present report ,  the  drag coeff ic ient  of the 
interference between any two loadings i , j  may be expressed as: 
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and may be evaluated as an extension of t he  present numerical system. 

The s e t  of equations which e s t ab l i sh  the r e l a t i v e  s t rength of each loading 
i s  

Machine computing techniques allow the  evaluation of the  weighting f ac to r s  A i  
and thus  t h e  camber surface f o r  an optimum combination of preselected loadings 
may be determined 

The corresponding drag coef f ic ien t  i s  

11 
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I l l u s t r a t i v e  Examples 

For a s e r i e s  of examples, the  numerical method has been applied i n  
obtaining camber surfaces f o r  wings-of various planforms and loadings. These 
results a re  useful  i n  es tabl ishing the  v a l i d i t y  and accuracy of the method and 
i n  pointing out cer ta in  features  of wings with curved o r  cranked leading edges. 

The f irst  example treats a delta-wing planform and an imposed pressure dis-  
t r i bu t ion  iden t i ca l  with t h a t  of example I1 of reference 2. Thus, f o r  t he  l i m -  
i t i n g  case of s t ra ight - l ine  leading and t r a i l i n g  edges, a comparison may be 
made of t he  r e su l t s  of the  present numerical method and a more rigorous method. 
Figure 4 shows the  wing planform and the 
ure 5 shows the  resu l tan t  camber surface 

1.0 r / , 
.8 

.6 

.4 

.2 

0 

- BY 
I 

/ 

/’ 

Figure 4.- Planform and pressure 
d is t r ibu t ion  f o r  wing of example 1. 

imposed pressure d is t r ibu t ion .  Fig- 
shape as evaluated by a d i g i t a l  computer 

Y 
L E  

1c 
1 

Figure 5.- Camber surface for wing of 
example 1. Camber ordinates adjusted 
t o  give a wing leading edge coinci- 
dent with t h a t  f o r  example I1 of 
reference 2.  
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program u t i l i z i n g  equations ( 8 ) ,  ( 9 )  , (lo), and (11) . The numerical method 
presented herein does not evaluate the  upwash f i e l d  ahead of t he  wing leading 
edge as does the  method of reference 2. Thus t o  make these r e s u l t s  d i r e c t l y  
comparable with the  r e s u l t s  of reference 2, t he  ordinates  of f igure  5 were mod- 
i f i e d  through the addi t ion of a set of incremental zc values t o  make t h e  
leading edges coincident. Camber surface ordinates  as i n  f igure  5 may be shown 
i n  parametric form, s ince zc i s  d i r e c t l y  proportional t o  the  wing length,  t h e  
l i f t  coef f ic ien t ,  and t h e  Mach number term p .  These results apply f o r  a range 
of Mach numbers and planforms, provided t h a t  yze and y t e  a re  proportional 
t o  l / p .  
on increasingly large negative values. T h i s  condition occurs because a t  y = 0 
t h e  i n t e g r a l  of equation (1) i s  not convergent. This s ingular i ty  a t  y = 0 
does not inva l ida te  t h e  r e s u l t s  f o r  t he  major outboard area of t h e  wing span. 

Note i n  f igu re  6 that near t he  midspan the  wing camber surface takes  

A comparison of t h e  wing t ra i l ing-edge ordinates defined by t h e  numerical 

example I1 of reference 2 i s  made 
i n  f igu re  6 .  Generally good agree- 

tendency toward b e t t e r  agreement as 
t h e  number of wing elements i s  
increased may be observed. The 
wing planform as used i n  t h e  pro- 
gram had a semispan of 40 u n i t s  
and a length of 50 un i t s .  Com- 
puting t i m e  with a Langley Research 

method (modified t o  give leadingledge coincidence) with t h e  r e s u l t s  of 

- Reference 2 ,  example ment i s  shown, and a well-pronounced 
0 Present met hod 

Nmax = IO 
-.2 Center computer program averages 
-. 3 less than 5 minutes f o r  wings 

using t h i s  number of elements. 

An optimum combination of 
loadings f o r  an "Ogee" type plan- 
form i s  t r ea t ed  i n  the  second 
example. The wing planform and 
three  a re  i l l u s t r a t e d  selected componknt i n  f igure  loadings 7. Cam- 

be r  surfaces corresponding t o  each 
of t h e  loadings a re  shown i n  f i g -  
u re s  8, 9 ,  and 10. I n  t h e  v i c i n i t y  
of y = 0 the  s a m e  type of singu- 
l a r i t y  appears as i n  t h e  first 

example. give a negative Loadings, s ingular i ty ,  a and c and 

t o  ly l  gives a pos i t ive  singu- 
l a r i t y  . 

"ax = 2 0  -.2 -.3 -i[/-- 

X l  -_ -![/I 2 "" =40 

I .o A loading b with ACp proportional - .3 0 .2 4 .6 .8 
Y 

b/2 
- 

Figure 6.- Trailing-edge camber line for wing of 
example 1 compared with results f o r  example I1 
of reference 2. 



Loading (01 Loading ( b )  . Looding ( c )  
ACP.1 k l  ACp.2 =kzIyl A C q 3 z k 3 X '  

.2 
.I 

Figure 7.- Planform and component loadings 
f o r  wing of example 2. 

- 

- 1 

z, - _ I  
BC,  1 

-.2 
-.3 
-4 
- .5 I , I  
0 .2 4 .6 .8 1.0 

I 
X - 

BC, I  

-,31 , , 
-4 
-.5 

Troiliyg edg; 

0 .2 4 .6 .8 1.0 

Figure 9.- Camber surface f o r  wing 
of example 2 with component 
loading (b ) ,  N p , 2  = k2JyJ. 

-.2 b h  
-.3 
-4 
-.so .2 I 4 .6 I .8 1.0 I 

1 

-4  -If/-' -.50 

.2 .4 .6 .8 
V 

I 
I .o 

Figure 8.- Camber surface fo r  wing 
of example 2 with component 
loading (a ) ,  NP,l = kl. 

I 1  
"1 , \ 
-.5 0 .2 4 .6 .8 1.0 

X - 
I 

3 r  
I 

Figure 10.- Camber surface for 
wing of example 2 with compo- 
nent loading ( c ) ,  N P , 3  = k3x'. 
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The drag 
puted through 

cD, 11 
2 

PCL, 1 

'D,22 
2 

PCL, 2 

coef f ic ien ts  of t h e  interference between pa i r s  of loadings com- 
use of equation (19) are as follows: 

= 0.406 = 0.700 CD, 12 
= 0.3% 

PCL,lCL,2 PcL,1cL,3 

- -  - 1.100 = 0.821 cD923 = 0.234 cD, 33 
2 

P C L 3  PcL , 2'L , 3 

Solution of equation (20) y ie lds  t h e  following values of t h e  loading fac tors  

-0.067 A3 = -0.630 A2 = 1.697 A 1  = 
C L , ~  CL, 2 CL, 3 

which define an optimum pressure d is t r ibu t ion  derived from the  three-component 
loadings which may be expressed as 

The camber surface corresponding t o  t h i s  optimum loading w a s  determined through 
a repe t i t ion  of the  bas ic  program. This resu l tan t  wing whose camber surface i s  
shown i n  f igure  11 has a drag-due-to-lift f ac to r  C D / P C L ~  of 0.238. Since 
drag-due-to-lift charac te r i s t ics  f o r  an uncambered wing of t h i s  planform are 
not known, t h e  drag reduction due t o  camber can not be evaluated. However, it 
may be seen t h a t  t h i s  r e l a t ive ly  low drag i s  due t o  camber ra ther  than t o  plan- 
form, since an optimum camber d e l t a  wing of the  same aspect r a t i o  would have a 
drag-due-to-lift fac tor  of about 0.22 compared t o  about 0.32 f o r  the  corre- 
sponding f l a t - p l a t e  d e l t a  wing. A Langley Research Center computer program 
which determines an optimum combination of three loadings and computes the  
resu l tan t  wing shape required about 2'3 minutes f o r  t h e  solution of t he  problem. 

The f i n a l  set of examples i l l u s t r a t e s  t he  strong influence of leading-edge 
planform shape on the  camber surface required t o  support specified loading d is -  
t r ibu t ions .  
loading d i s t r ibu t ion  described i n  some d e t a i l  i n  reference 4 i s  shown i n  f ig -  
ure  12. The camber surface, resu l t ing  from the  machine computation i s  shown i n  
f igure  13. A numerical in tegra t ion  of the  imposed loading over this  surface 
y i e lds  a drag-due-to-lift f ac to r  C D / P C L ~  
t h a t  of the  ana ly t ic  solution following the  method of reference 2. This d i s -  
crepancy i s  due i n  la rge  p a r t  t o  t he  f a c t  t h a t  t h e  numerical solution gives 
f i n i t e  values of t h e  surface gradients at t h e  root chord ra ther  than the  inf in-  
i t i e s ' o f  t h e  ana ly t ic  solution. An enlarged gr id  system would provide b e t t e r  
correlat ion.  The drag-due-to-lift f ac to r  f o r  the  corresponding f l a t -p l a t e  
arrow wing without leading-edge suction i s  0.288. 

The reference arrow wing (example 3) and i t s  r e s t r i c t ed  optimum 

of 0.169, about 4 percent less than 
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Figure ll.- Camber surface f o r  
wing of example 2 with optimum 
combination of component 
loadings. 
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Figure 13.- Camber surface f o r  
wing of example 3 .  
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Figure 12.- Planform and pressure 
d is t r ibu t ion  for wing of 
example 3 .  
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Figure 14.- Planform and pressure 
d is t r ibu t ion  f o r  wing of 
example 4. 
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Figure 15.- Camber surface f o r  
wing of example 4. 
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Figure 17. - Camber surf ace for 
wing of example 5 .  
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Figure 16.- Planform and pressure 
d is t r ibu t ion  for wing of 
example 5 .  

I n  f igure 14 i s  shown the  planform of an 
M wing (example 4) which has the s a m e  spanwise 
chord d is t r ibu t ion  as t h e  arrow wing. The 
pressure d is t r ibu t ion  i s  similar t o  t h a t  of 
t he  arrow wing i n  t h a t  t h e  spanwise load dis-  
t r i bu t ion  i s  preserved. The resu l tan t  surf ace 
shape ( f i g .  15) f o r  t h i s  planform and load 
d is t r ibu t ion  requires large loca l  angles of 
a t tack  d i r ec t ly  behind the leading-edge break 
a t  = 0.2. The drag-due-to-lift fac tor  

f o r  the  wing i s  0.228. 
b/2 

A curved-leading-edge wing (example 5 )  
with i t s  load d i s t r ibu t ion  i s  shown i n  f ig -  
ure 16. Again the spanwise chord d is t r ibu-  
t i o n  and the  spanwise loading d is t r ibu t ion  
are preserved. A s  shown i n  f igure 17, the 
rounded apex of t h i s  wing planform combined 
with the  chosen pressure d is t r ibu t ion  r e s u l t s  
i n  f i n i t e  values of zc at y = 0. The drag- 
due-to- l i f t  fac tor  of 0.195 i s  15 percent 
higher than t h a t  f o r  the  warped arrow wing; 
however, since severe camber i s  not required, 
t h a t  value may be more e a s i l y  a t ta inable  i n  
pract ice .  
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CONCLUDING RFSIARKS 

A numerical design method which allows the determination of camber surfaces 
corresponding t o  cer ta in  specified load dis t r ibu t ions  on wings of a rb i t r a ry  
planform has been presented. It has been i l l u s t r a t e d  how these results may be 
combined with ex is t ing  methods of select ing optimum combinations of loadings. 
Application of t h e  method w a s  i l l u s t r a t e d  i n  a se r i e s  of examples which served 
t o  e s t ab l i sh  i t s  precision and a l so  served t o  point out cer ta in  features  of 

-wings with curved or  cranked leading edges. 

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Stat ion,  Hampton, Va.,  March 13, 1964. 
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