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A NUMERICAL METHOD FOR CALCULATING TKF: 

FLAT-PLATE PRESSURE DISTRIBUTIONS ON SUPERSONIC WINGS 

OF ARBITRARY PLANFORM 

By Wilbur D. Middleton and Harry W. Carlson 

SUMMARY 

This reps& describes a numerical method based on l inear ized  theory f o r  
calculat icg the  f l a t - p l a t e  l i f t ing-pressure d is t r ibu t ions  on supersonic wings of 
a rb i t r a ry  planform, and presents examples i l l u s t r a t i n g  i t s  usage. The precision 
of t he  method i s  shown by comparisons of pressure d is t r ibu t ions  and force coef- 
f i c i e n t s  calculated from the  numerical method with those obtained from estab- 
l ished ana ly t ica l  solutions f o r  s t ra ight - l ine  leading- and trail ing-edge wings. 
Several examples of the use of t he  numerical method t o  estimate the  aerodynamic 
charac te r i s t ics  of curved o r  cranked leading-edge wings a re  presented t o  i l l u s -  
t r a t e  t he  f l e x i b i l i t y  of the  method. 

INTROIXJCTION 

A numerical method based on l i n e a r  theory which allows the determination 
of camber surfaces corresponding t o  specif ied load d is t r ibu t ions  on supersonic 
wings of a rb i t r a ry  planform ( r e s t r i c t e d  only t o  supersonic t r a i l i n g  edges) has 
been presented i n  reference 1. The method subs t i tu tes  approximate summations 
f o r  l inear-theory in t eg ra l  equations and replaces the  wing w i t h  a mosaic of 
r ec t i l i nea r  elements closely approximating the  wing planform. These subst i tu-  
t ions  allow great f l e x i b i l i t y  i n  defining both the  planform shape and in t e rva l  
of integrat ion f o r  a rb i t r a ry  wing planforms. The speed of present-day d i g i t a l  
computers makes the  solution p rac t i ca l .  

An extension of t he  numerical method of reference 1 allows the  calculation 
of t he  theore t ica l  l i f t ing-pressure  d is t r ibu t ions  on f l a t  wings of a rb i t r a ry  
planform ( r e s t r i c t e d  t o  supersonic t r a i l i n g  edges). This report  describes such 
a method and presents examples i l l u s t r a t i n g  i t s  use. The precision of the  method 
i s  shown by comparisons of pressure d is t r ibu t ions  and force coeff ic ients  calcu- 
l a t e d  from the  numerical method with those determined from established ana ly t ica l  
solutions f o r  s t ra ight - l ine  leading- and trail ing-edge wings. 

The fur ther  extension of t he  numerical method t o  the  case of cambered wings 
i s  indicated.  
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SYMBOLS 

A; A(L,N) ;  A(L*,N*) 

PR aspect ratio, b2/S 

b wing span 

B; B(L*,p) trailing-edge grid-element length 

C mean aerodynamic chord 

c; c(L*,N*) grid-element width 

CD drag coefficient 

CL lift coefficient 

leading-edge grid-element weighting factor 

- 

slope of lift curve per degree angle of attack CLa 

Cm 

CP 

"in 

pitching-moment coefficient about x = 0 

pressure coefficient 

lifting-pressure coefficient, Cp,lower - Cp,upper 

average value of lifting-pressure coefficient over a 
grid element (see eq. (7)) 

smoothed value of lifting-pressure coefficient obtained 
from averaged coefficients (see eq. (8)) 

notch ratio 

a constant (see figs. 16 and17) 

overall length of wing, measured in streamwise direction 

designation of influencing grid elements (see fig. 2) 

designation of field-point grid elements (see fig. 2) 

free-stream Mach number 

value of N at right-hand wing tip 

value of N at left-hand wing tip 
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influence function (see eq. ( 2 ) )  R 

w 

A 

T 

Subscripts: 

L* ,N* 

l e  

t e  

m 

average value of influence function over a gr id  element 
(see eq. ( 5 ) )  

wing area 

Cartesian coordinate system, X - a x i s  streamwise 

distance from wing apex t o  center of pressure 

apex spanwise posi t ion of M wing (see f i g .  14) 

camber surface ordinate 

wing angle of a t tack,  deg 

Tip chord 
Root chord 

wing taper  r a t i o ,  

wing leading-edge sweepback angle 

dummy variables  of integrat ion for x and y, 
re spec t i ve l y  

denotes a region of integrat ion bounded by wing planform 
and Mach forecone from point (x,y) 

indicates  value associated with element r o w  
(see eq. ( 1 4 ) )  

value of a quantity along wing leading edge a t  py  = N 

value of a quantity along wing t r a i l i n g  edge a t  py = N 

corresponds t o  case of two-dimensional wing 

NUMERICAL CALCULATION METHOD 

The numerical method f o r  calculat ing the  theore t ica l  l i f t i n g  pressure 
d is t r ibu t ions  on supersonic wings employs a basic equation of l i nea r  theory 
(eq. (77a) of ref. 2) which relates t h e  l o c a l  surface slope of a point on a 
l i f t i n g  surface t o  the  pressure coeff ic ient  a t  t h e  point,  t h e  influence of 
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pressures upstream of t h e  specif ied point 
being taken in to  account. 
employed herein ac tua l ly  i s  an extension of 
the  numerical method of reference 1, i n  
which t h e  wing surface shape necessary t o  
support a specif ied l i f t  d l s t r ibu t ion  i s  
calculated.  

The method 

A typ ica l  wing planform of a rb i t r a ry  
shape, defined by a rectangular Cartesian 
coordinate system, i s  shown i n  f igure  1. 
I n  accordance with the  concepts of l i nea r -  
ized  theory, the  wing i s  assumed t o  have 
negligible thickness and i s  assumed t o  l i e  
approximately i n  the  z = 0 plane. The wing 
surface i s  f l a t  and a t  a slight incidence 
t o  the  l o c a l  flow. The t r a i l i n g  edge of 
t he  wing i s  supersonic. 

BY. B 1  

Figure 1.- Cartesian coordinate 
system. 

Equation (2 )  of 
pressure coeff ic ient  

Kp(X,Y) = - 

reference 1 may be rearranged t o  solve f o r  the  l i f t i n g -  
a t  the  f i e l d  point (x,y) a s  

where values of E p ( 5 , ~ )  
E p ( x , y )  a s  discussed subsequently. The region of integrat ion T extends over 
the  wing planform within the  Mach forecone from point (x ,y) ,  as shown by the  

shaded region of f igure  1. The wing streamwise slope function -(x,y) i s  a 

constant f o r  t he  f l a t  p l a t e  a t  incidence (s) and i s  equal t o  the  tangent of 

t he  wing angle of a t tack .  

i n  the  integrand a re  previously determined values of 

a Z C  

dX 

of equation (1) denotes t h a t  only the  gen- 

e ra l ized  pr inc ipa l  pa r t  (see r e f s .  2 and 3) of t he  in t eg ra l  i s  of i n t e re s t ,  
which permits an evaluation of the  in t eg ra l  across the  s ingular i ty  a t  
The numerical method subs t i tu tes  a summation f o r  t he  in t eg ra l  of equation (l), 
consisting of t he  sum of an average pressure coeff ic ient  times the  in t eg ra l  of 
t he  R function over the gr id  elements within T .  The R function, which may 
be thought of a s  an influence fac tor  r e l a t ing  the  upstream pressures t o  the  
l i f t i n g  pressure a t  point (x,y),  i s  defined as 

s The special  i n t eg ra l  sign 

y = 7. 
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I n  in tegra t ing  t h e  R function over t h e  individual  elements, the  i n t e g r a l  
i s  regular except fo r  t h e  elements containing y = 7, which require t h e  def ini-  
t i o n  of t he  generalized pr inc ipa l  pa r t .  The i n t e g r a l  of t he  R function f o r  
these elements i s  more readi ly  evaluated i f  the  q l i m i t s  a re  chosen as 7 - 6 
and q + 6. With the  g r id  system oriented t o  provide t h i s  choice of limits, 
the  in t eg ra l  of t he  R function over t he  elements containing y = ‘1 becomes 
the  de f in i t e  i n t eg ra l  of t h e  function with t h e  i n f i n i t e  portion discarded. 
(See r e f .  2 or 3 . )  

A s  i n  reference 1, the  gr id  system of t h e  numerical method i s  superimposed 
upon the  wing planform as shown i n  f igure  2, with gr id  elements i den t i f i ed  by 
L and N replacing t h e  i n t e g r a l  elements dg and dpq. Along the  wing 
leading and t r a i l i n g  edges, p a r t i a l  g r i d  elements are used t o  improve t h e  plan- 
form defini t ion.  Values of L* and N* i den t i fy  the  g r id  element associated 
with and immediately forward of t he  
f i e l d  point (x,y).  The gr id  element 
L* i s  numerically equal t o  x and 
the  gr id  element i s  numerically 
equal t o  py, where x and py take 
on only integer  values. The area of 
integrat ion of the  numerical method 
consis ts  of a group of g r id  elements 
approximating T as shown by the  
shaded region of f igure 2. The gr id  
element system i l l u s t r a t e d  i n  f i g -  
ure 2 i s  ra ther  coarse; i n  pract ice ,  
many more elements a re  employed. 

Lx, L 
I 2 3 4 5 6 7 8 9 1 0  

The numerical summation treats 
the  integrat ion in t e rva l  element by 
element, with the  average l i f t i n g -  

I ,  , I  I I I I  I I I  
0 1 2 3 4 5 6 7 6 9 1 0  

x , c  

pressure coeff ic ient  L Y l p ( ~ , ~ )  over Figure 2. -  Grid system used in numerical 
t h e  element being mult ipl ied by 
the  average value of the  influence 
function over t h& same g r id  element. 
(L,N) t o  t he  l i f t ing-pressure coeff ic ient  a t  point (x,y) may be expressed by 

solution. E, 

The contribution of an individual element 

1 rc ?~(L*-L,N*-N) A(L,N)  E p ( ~ , ~ )  ( 3 )  

The weighting f ac to r  A(L,N)  
leading edges as follows: 

accounts f o r  f r ac t iona l  elements along t h e  wing 

A(L,N) = o 
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where L l e  i s  numerically equal t o  the  whole number pa r t  of the sum xle + 1, 

or  1 + pie]. The bracket notation i s  used t o  s ignify tha t  only the whole 

number pa r t  of the number i s  retained. 

Since it has been observed tha t  an integrat ion of equation (2) i s  rela- 
t i v e l y  insensi t ive t o  small var ia t ions i n  E,  the  in t eg ra l  of the function R 
over an individual element may be approximately evaluated with the value 
equal t o  i t s  average value 
sion f o r  the average influence fac tor  R is:  

x - 5 
The resul t ing expres- L* - L + 0.3. - (See r e f .  1.) 

- -  

d ( L * - L + 0 . 5 ) 2  - ( N * - N - 0 . 5 ) 2  ( ( L * - L + 0 . 5 ) 2  - ( p - N - k O . 5 )  2 - - - ~- - 
I 

R( L * - L , ~ - N )  = 
(L* -L+O.?)(N)C - N  -0.5) (L* - L  +0.5) (P  - N  + 0 . 5 )  

A graphical representation of t h i s  fac tor  i s  shown i n  f igure 3 .  The values of 
R 
t o  zero, the posi t ive values canceling the single negative - value a t  fl = N.  A t  
L* = L, where the forecone includes only one element, 

- 
between the limits of t he  Mach forecone a t  a constant (L* - L) s ta t ion  sum 

R i s  zero. 

2 

I 

0 

-I  
R 

-2 

-3 

-4 

Figure 3.- Distribution of function. 

With the in t eg ra l  of equation (1) replaced by the  combined contribution of 
a l l  elements within T, the  l i f t ing-pressure coeff ic ient  a t  element (L*,N*) i s  

6 



The v e r t i c a l  l i nes  used i n  IN* - N I  designate the  absolute value of the 
enclosed quantity. The limits on L i n  the summation are those of the wing 
leading edge and the Mach forecone a t  a selected N value. 

The calculation of nCp(L*,N") requires the pr ior  determination of a l l  

values of E p ( L , N )  within the region of integrat ion where Ep i s  an average 

value of pressure coeff ic ient  over a g r id  element obtained from nCp, a s  dis- 

cussed subsequently). The order of calculation of E p ( L * , f l )  i s  from apex a f t  
(i. e. ,  increasing values of 
Mach forecone from any element have been previously obtained and no unknown 
pressure coeff ic ients  a r i s e  i n  the  summation. Since the value of E(L*,N") i s  
zero, Ep(L*,N*) i n  the  summation i s  not required. 

( 

L") ; thus, a l l  pressure coeff ic ients  within the 

- 

Theoretically, Ep(L*,N*) defined by equation (6) i s  the presswoe coeff i -  

over the element a s  i s  the value 
cient  a t  the a f t  midpoint of the L*,N* element. This value, however, i s  not 
a s  representative of the average value of 
of E p  a t  the center of the element. A n  approximate average value, 
Ep(L*,N)c),  i s  obtained by l inear ly  interpolat ing along 
coeff ic ient  a t  the midpoint of L*,N* 
E p ( L * , e )  and the previously averaged value of E p ( L * - l , p )  of the gr id  
element immediately forward of L*,@: 

LCp 

fo r  the pressure 
and i s  based on the calculated value of 

2 
3 3 

E,(L*,N*) = - ~ c ~ ( L * , N * )  + E ~ ( L * - ~ , N * )  (L* > ~ 1 ~ )  (7a) 

When L* i s  the  leading-edge block of e, the  value of E p ( L * , @ )  i s  con- 
sidered equal t o  the calculated value of Ep(L*,N*);  t h a t  is ,  

I n  the development of the numerical method described i n  t h i s  report ,  it was 
found t h a t  
c ien ts  and center-of-pressure locations i n  good agreement with those obtained 
from established ana ly t ica l  solutions.  However, comparisons between the detai led 
pressure d is t r ibu t ions  determined by the numerical method and those obtained from 
the  ana ly t ica l  solution were poor ( f o r  most wing planforms); especial ly  f o r  
sweptback subsonic leading-edge wings, where theore t ica l ly  an i n f i n i t e  pressure 
coeff ic ient  i s  obtained a t  the  leading edge, the numerical-method pressure dis- 
t r ibu t ions  fluctuated considerably about an approximate mean defined by the  
ana ly t ica l  solution. 

Ep, when integrated over the wing planform, produced l i f t  coeff i -  

7 
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I n  order t o  reduce l o c a l  o sc i l l a t ions  i n  pressure from element t o  element 
and t o  permit c r i t i c a l  comparisons between pressure d is t r ibu t ions  obtained from 
t h e  numerical method and those obtained from t h e  ana ly t ica l  solutions,  a 
"smoothing" operation w a s  performed upon the  Ep values. For use i n  t h i s  
operation a number of experimental-data smoothing techniques w e r e  t r i e d ,  i n  
which a weighted mean of a group of values i s  calculated.  The equation selected 
w a s  a nine-point smoothing formula operating along a constant p value: 

Ep(L*-4,N*) + 0.4A(L"-j,fl) Ep(L*-3,fl) + 0.6~(~*-2,fl) 
zp(L*-l,N*) + A(L*,N*) zp(L*,N*) + O.~p(L*+l,N*) 

- 
+ 0.Gp(L*+3,N*) + O.Ep(L*+k,N*) 

O.U\(L*-k,fl) + O.kA(L*-j,N*) + 0.6A(Lx-2,N*) + 0.8A(L*-l,N*) + A(L*,p) + 2.0 
Ep,a(L*,N*) = 

where the  A value i s  the  grid-element fac tor  as defined i n  equation (4)  (with 
A = 1 f o r  L* > Lie). 

The nine-point smoothing formula w a s  found superior t o  techniques which 
employed both spanwise and chordwise smoothing, t o  techniques which u t i l i z e d  
addi t ional  averaging terms i n  the  calculat ion of Ep( L*,N*) , and t o  techniques 

which used d i f fe ren t  sets of g r id  elements along The important feature  of 
the  smoothing technique was the  inclusion of a su f f i c i en t  number of chordwise 
g r id  elements t o  approach s a t i s f a c t o r i l y  a l o c a l  mean value. The smoothing 
equation i s  not used i n  the  calculat ion of t h e  wing pressure coef f ic ien ts  
(eq.  ( 6 ) ) ,  but i s  employed after Ep(L*,N*) has been computed f o r  t h e  e n t i r e  
wing planform. However, since the  nine-point formula requires  four g r id  elements 
a f t  of element ( L * , p ) ,  the  wing planform i s  extended four elements a f t  of the  
ac tua l  wing t r a i l i n g  edge. This s tep  i s  permissible since the  wing t r a i l i n g  
edge i s  required t o  be supersonic. 

@. 

Since the  smoothing i s  applied only along constant s ta t ions ,  e r r a t i c  
behavior of t he  pressure coef f ic ien ts  might be expected i n  cross p l o t s  a t  con- 
s t a n t  L* s ta t ions .  
l imi t ing  condition of a sonic leading edge, which o f fe r s  no d i f f i c u l t y  i f  the  
leading edge i s  only s l i g h t l y  supersonic or s l i g h t l y  subsonic. 

Such i s  not the  case, as shown subsequently, except i n  the  

The general e f f ec t  of t he  nine-point smoothing technique, as ide from the  
improvement i n  de ta i led  pressure d is t r ibu t ions ,  i s  a s l i g h t  resu l tan t  decrease 
i n  the  integrated wing force coeff ic ients .  The percentage decrease i s  a func- 
t i o n  of the s i z e  of t he  wing (number of gr id  elements used) and the  degree of 
leading-edge sweepback. For t yp ica l  wings of i n t e r e s t ,  the  decrease averages 
approximately 2 t o  4 percent f o r  the  l i f t ,  drag, and pitching-moment coeff i -  
c ien ts ,  with l i t t l e  e f f ec t  on the  center of pressure. 

8 



Calculations of t he  wing force coef f ic ien ts  require appropriate area and 
l i f t ing-pressure summations, which are l imited t o  the  right-hand wing panel 
because of symmetry. Since only the  smoothed pressure d is t r ibu t ions  a re  of 
i n t e r e s t ,  force coeff ic ients  based on E p , a  a re  calculated.  

The wing area m a y  be found through a summation a s  follows: 

where 

h e  leading-edge gr id  element, 1 + pld 
Lte trail ing-edge g r id  element, 1 + PtJ 
A,B,C leading-edge, trail ing-edge, and center- l ine or wing-tip grid-element 

f rac t ions ,  respectively 

The leading-edge grid-element f rac t ion  i s  defined by equation (4), the  t r a i l i n g -  
edge grid-element length i s  defined by 

and the  center- l ine o r  wing-tip grid-element width i s  defined by 

c = 0.5 

The l i f t  coeff ic ient  may be obtained from the  following summation: 

N * =NmX L * = h e  

CL = 1 ILYp,a(L*,N*) A(L*,N*) B(L*,N*) C(L*,N*) (11) 
* PS 

N*=O L =Lie 

9 



The 

2 Cm = - 
psc' 

The 

pitching-moment coeff ic ient  about 

- 0 5 ) N p  ,a( L*,N*) 

x = O  i s  

A(L*,N*) B(L*,N*) c(L*,N*) (12) 

drag coef f ic ien t  may be expressed as follows: 

This re la t ionship does not consider any contribution of t he  theo re t i ca l  
"leading-edge-suction" force and accounts only f o r  t he  inc l ina t ion  of t he  nor- 
m a l  force t o  the  r e l a t i v e  wind. 

The d i s t r ibu t ion  of wing l i f t  i n  the  streamwise and spanwise direct ion may 
be obtained from summations, taken row by row, of gr id  element forces i n  the  L- 
and N-direction, respectively.  
as f rac t ions  of t o t a l  wing l i f t  as follows: 

These d is t r ibu t ions  are conveniently expressed 

For the  streamwise l i f t  d i s t r ibu t ion ,  

2 kLCp,a(L*,N*) A(L*,N*) B(L*,N*) C(L*,N*) 

(14a) L i f t L *  - N*=O - 
Total  l i f t  PCLS 

and f o r  t he  spanwise l i f t  d i s t r ibu t ion ,  a t  a selected 
hand wing panel only, 

N* value on the  right- 

EXTENSION OF NUMERICAL CALCULATION METHOD 

The method f o r  calculat ing the  l i f t ing-pressure  coef f ic ien ts  on supersonic 
wings outlined i n  the  preceding sect ion has been r e s t r i c t e d  t o  the  case of f l a t  

10 



8% 
ax wings by r e s t r i c t i n g  the  wing streamwise slope function 

(equal t o  the tangent of the wing angle of a t tack) .  
could be extended t o  the case of wings having cambered surfaces by considering 

- t o  be a function of the  x and y planform coordinates. This extension 

would require only the addition of a sui table  method f o r  providing the variable 
slope term t o  be used with the  grid-element system, t h a t  is ,  supplying an appro- 

p r i a t e  function -( L*,N*) . 

-(x,y) t o  a constant 

The same calculation method 

3% 
ax 

a% 
ax 

COMPARISONS AND EXAMPLES 

Several comparisons of l i f t ing-pressure dis t r ibut ions and wing force coef- 
f i c i e n t s  calculated from the  numerical method with those obtained from estab- 
l ished ana ly t ica l  solutions a re  presented i n  t h i s  section t o  i l l u s t r a t e  the  pre- 
c is ion of the numerical method. A l s o ,  several  examples of the use of the numeri- 
c a l  method t o  estimate the aerodynamic charac te r i s t ics  of curved o r  cranked 
leading-edge wings a re  presented t o  i l l u s t r a t e  the  f l e x i b i l i t y  of the  method. 

The data obtained from the numerical method were calculated on a d i g i t a l  
computer, programed t o  employ the  equations presented i n  the  section e n t i t l e d  
"Numerical Calculation Method." 
d i s t r ibu t ion  comparisons, the numerical-method pressure coeff ic ients  a re  the  
smoothed values. 

I n  the  figures presenting the  pressure- 

Comparison of Numerical Method With Analytical Solutions 

Several comparisons between the numerical-method solutions and established 
ana ly t ica l  solutions may be made f o r  delta-wing planforms, with various orienta- 
t ions  between the  wing apex half-angle and the apex Mach l ine .  
the l i f t -curve  slope and streamwise center-of-pressure location f o r  a delta-wing 
planform a s  a function of the leading-edge sweepback parameter p cot A. 

Figure 4 shows 

The numerical-method data agree qui te  well with the  theore t ica l  solution 

The sonic leading-edge wing i s  a l imit ing condition f o r  the 
of reference 4, with the  exception of the  sonic leading-edge wing 
( p  c o t A  = 1.0).  
numerical method, as discussed subsequently, although only s l igh t ly  subsonic o r  
s l i gh t ly  supersonic leading-edge wings of fe r  no d i f f i cu l ty .  A tendency of the 
numerical method t o  give s l i g h t l y  lower l i f t -curve  slopes than those obtained 
from the  theory of reference 4 may be observed f o r  the subsonic leading-edge 
condition. This e f f ec t  i s  primarily a t t r i bu ted  t o  a f l a t t en ing  of the leading- 
edge pressure peaks ( theore t ica l ly  i n f i n i t e )  caused by the  averaging techniques. 

The force data from the  numerical method a re  affected,  t o  some extent,  by 
the number of gr id  elements chosen t o  represent the  wing. 
semispan, i n  py gr id  elements, f o r  most of the  delta-planform se r i e s  w a s  

The width of the  wing 

11 



Nmax = 50, which defined i n  t u rn  the  wing length. 
p cot A, t h a t  i s ,  0.20 o r  0.40, a r e  very long ( i n  
50-unit semispan; therefore ,  i n  calculat ing t h e  data  for these wings, semispan 
widths of 10 and 20 un i t s ,  respectively,  w e r e  used. 

Wings with small values of 
L u n i t s )  i f  scaled t o  a 

.IO- 

.08 

.06 

. 

- 

- Theory of reference 4 
o Numerical method 

Bc,Qo .02 r. 
OO .4 

0 

p cot A 

r 

I I-. I 1 

1.2 1.6 OO .4 .8 1.2 1.6 

p c o t  A p cot A 

Figure 4.- Aerodynamic characteristics of delta wing. 

The basic consideration i n  scal ing the  wing f o r  t he  computer program i s  
A de l t a  wing with approximately 1200 g r i d  elements repre- calculat ion t i m e .  

senting the  semispan requires  on the  order of 15 minutes calculat ion time on a 
high-speed d i g i t a l  computer. Larger wing areas require proportionately longer 
calculat ion time, although both wing area and average chord length a f f e c t  the  
t i m e  required. 

The e f f ec t  of "ax on the  wing l i f t -curve  slope i s  shown i n  figure 5 f o r  
a representative de l t a  wing with p cot A = 1.60 and p cot  A = 0.80. Only 
very minor changes i n  the  l i f t -curve  slope occur when t h e  number of g r i d  elements  
i s  greater  than "ax x 20. 
p l ica ted  planform shapes of t h i s  report  were scaled t o  a value of on the  
order of 50 un i t s  f o r  t he  computer program. 

On the  bas i s  of t he  data of f igure  5, t h e  more com- 

Comparisons of de ta i led  l i f t i n g  pressure d is t r ibu t ions  between the  numerical 
method and the data of reference 4 f o r  the  de l t a  wing a t  several  values of 
p cot A a re  presented i n  f igures  6 t o  8. 
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Figure 5.- Effect of Nmax on lift-curve slope of 
representative delta wing. 
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Figure 6.- Lifting-pressure distributions at and near sonic 
leading-edge condition for delta wing. x / 1  = 1.0; = 50. 



Lifting-pressure data f o r  a de l t a  wing with a sonic leading-edge condition 

p cot A = 1.01) are presented i n  f igure 6. 
(p  c o t A  = 1.00) and two near-sonic leading-edge conditions ( p  cot A = 0.99 
and 
osc i l l a t ions  of t he  l i f t ing-pressure  data (a t  
so large as t o  inval idate  the  t o t a l  wing force coef f ic ien ts  f o r  t he  sonic 
leading-edge case. 
conditions which are only s l i g h t l y  d i f f e ren t  from t h e  sonic case, so tha t ,  f o r  
p r a c t i c a l  purposes, wing planforms with sonic leading-edge conditions can be 
studied through only s l i g h t  a l t e r a t ion  of t h e  leading-edge sweepback parameter. 

I n  a l l  three cases, spanwise 
x/2 = 1.0) occm and they become 

These osc i l l a t ions  damp out rapidly f o r  leading-edge flow 

The case of a subsonic leading-edge wing (p  cot A = 0.80) i s  i l l u s t r a t e d  
i n  f igure  7. A staggered ordinate scale  i s  used i n  figure 7 (and i n  several  
subsequent f igures)  t o  separate t h e  comparisons f o r  spanwise cuts  a t  several  
x/2 s ta t ions .  I n  general, good agreement i s  obtained between the  numerical 
and ana ly t ica l  solutions,  although some unevenness i s  apparent i n  the  numerical 
data. 
of a much la rger  (longer and wider) wing having the  same sweepback parameter 
but a t  correspondingly reduced values of Enlarging the  wing s i ze  would 
improve the  detailed-pressure-coefficient comparisons a t  a given 
would require longer calculat ion t i m e  without appreciable e f f ec t  on the  i n t e -  
grated wing force coeff ic ients .  

The data of figure 7 could be considered t o  be those of t he  apex region 

x/2. 
x/2, but 

Lifting-pressure d is t r ibu t ions  f o r  a supersonic leading-edge de l ta  wing 
( p  cot A = 1.20) a re  shown i n  f igure  8. Agreement between the  numerical and 
ana ly t ica l  solutions i n  t h i s  case i s  qui te  good, although the  numerical method 
does not exhibi t  t he  sharp break a t  t he  Mach l i n e  charac te r i s t ic  of the  analyt-  
i c a l  solution. The unevenness of t he  pressure coef f ic ien ts  observed i n  the  sub- 
sonic leading-edge case does not occur because of t h e  reduced e f f ec t  of t he  
averaging techniques with the  less severe leading-edge pressures.  

Comparisons between the  numerical method and t h e  theory of reference 5 f o r  
rectangular wings i s  presented i n  f igures  9 and 10. 

Lifting-pressure d is t r ibu t ions  f o r  a rectangular wing of p R  = 1.0 a r e  
presented i n  f igure  9 f o r  cuts  a t  representat ive lengthwise s ta t ions .  
f igure,  t he  pressure coef f ic ien ts  a r e  divided by t h e  two-dimensional values 
act ing on the  forward p a r t  of the  wing within the  leading-edge Mach l ines .  The 
numerical data agree reasonably w e l l  with corresponding data from reference 5 
but exhibi t  some e f f e c t  of t he  number of g r i d  elements used. 

I n  t h i s  

Figure 10 i l lustrates  the  general e f f ec t  of t he  number of spanwise elements 
"ax on rectangular-wing data obtained fo r  a wing of pR = 2.0 having s e m i -  
span widths of 10, 20, and 40 g r id  elements. Since t h e  N p , a  values of t h e  
numerical method occur a t  d i f f e ren t  x/2 s t a t ions  f o r  d i f fe ren t  Nmx values 
(a t  the  midpoint of the  elements), t he  pressure coef f ic ien ts  of f igure 10 w e r e  
in terpolated t o  a common x/2 s t a t ion  ( the  t r a i l i n g  edge). The asymptotic 
approach of the  pressure coeff ic ients ,  l i f t  coef f ic ien t ,  and center-of-pressure 
locat ion t o  the  theo re t i ca l  values from reference 5 with increasing "ax i s  
apparent. 
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Figure 7.- Lifting-pressure distri- 
butions fo r  subsonic leading-edge 
de l ta  wing. N- = 50. 
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Figure 8. - Lifting-pressure dis t r ibut ions 
f o r  supersonic leading-edge de l ta  wing. 
N- = 50. 

I 



Theory of reference 5 
0 Numerical method 

.494 

,744 

.870 

Moch l i n e J  
I 

.494 

.744 

,870 

0 .5 1.0 

Y 
b /2 
- 

Figure 9.- Lifting-pressure distributions for rectangular wing. P A 3  = 1.0; 
N" = 40. 
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Figure 10.- Effect of Nmax on characteristics of rectangular wing. 
PAR = 2.0. 

Lifting-pressure distributions for a more complex planform geometry, the 
double-delta type, are shown in figure 11 where the numerical-method data are 
compared with the theoretical data obtained from the superposition solution of 
reference 6. 
numerical method exhibit approximately the same areas under the lifting-pressure 
curves as the superposition solution, although no sharp peaks occur in the 
numerical method. 
two solutions likewise shows reasonable agreement: 

For both Mach numbers (M = 1.414 and 1.667), the data from the 

A comparison of the wing force coefficients obtained by the 

.. 

- 

Superposition analysis . . . . . 
- -  

Numerical method . . . . . . . . 
given 
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Figure 11.- Lifting-pressure distributions for double-delta wing. Nmax = 50. 

A f i n a l  comparison i l l u s t r a t i n g  the  use of t h e  numerical method t o  estimate 
t h e  l inear-theory charac te r i s t ics  of a wing family i s  presented i n  f igure  12, 
where the  l i f t -curve  slope of a wing series having an unswept midchord and a 
constant taper  r a t i o  of 0.5 i s  shown f o r  a Mach number of 1-33. Reasonable 
agreement between the  numerical method and the  theory of reference 7 w a s  
obtained. ( I n  order t o  l i m i t  ca lculat ion t i m e ,  a value of N m a  of 25 w a s  
used for t he  wing with an aspect r a t i o  of 1.) 
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Figure 12.- Lift-curve slope of wing series 
having unswept midchord. A = 0.5; M = 1.53 

Application of Numerical Method t o  Wings of Arbitrary Planform 

Several examples of t he  use of t he  numerical method t o  estimate the aero- 
dynamic charac te r i s t ics  of wings having cranked or curved leading edges a re  
presented i n  f igures  13 t o  17. 

The charac te r i s t ics  of an M-wing planform having symmetric apexes a t  0.30 
semispan are i l l u s t r a t e d  i n  figure 13. 
equally on e i t h e r  s ide of t he  apexes, and the  t r a i l i n g  edge i s  notched varying 
amounts. 
( f i g .  4), t he  M wing has a generally higher l i f t -curve  slope f o r  
has the  same l i f t -curve  slope f o r  p cot A > 1.0 
of t he  inf in i te -aspec t - ra t io  wing), and has a center-of-pressure locat ion fo r -  
ward of t h a t  of the  de l t a  wing by approximately 2 percent of t he  wing length. 
The e f f ec t  of t he  trail ing-edge notch on t h e  M wing i s  t o  carve out a r e l a t ive ly  
low l i f t  area,  increasing the  l i f t -curve  slope of t he  remaining wing. 

The wing leading edge i s  sweptback 

Compared with a de l t a  wing having the  same sweepback parameter 
p cot A < 1.0, 

(equal t o  t h e  l i f t -curve  slope 

The e f f ec t  of apex posi t ion on the  aerodynamic charac te r i s t ics  of an M-wing 
family i s  shown i n  f igure  14 f o r  

e i t h e r  s ide  of the  apexes as before. Apex posi t ions - of 0 and 0.53 (or  

greater)  correspond t o  a s ingle  and an i so l a t ed  p a i r  of arrow wings, respec- 
t i ve ly .  
not la rge  (approximately 5 percent f o r  the  unnotched planforms) and va r i e s  only 
s l i g h t l y  over a range of apex posi t ions from 0.20 t o  0.40 semispan. The corre- 
sponding s h i f t  i n  center of pressure i s  a l s o  ra ther  s m a l l .  
e s t i ng  e f f e c t  of notching t h e  M-wing planforms may be observed from the  data of 

p c o t A  = 0.80, with symmetric sweepback on 

b/2 

The e f f e c t  of apex posi t ion on the  l i f t - c w e  slope of t he  family i s  

However, an i n t e r -  
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Figure 13.- Characteristics of M-wing 
family with apex at 0.30 semispan. 
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Figure 14.- Effect of apex position on 
characteristics of M-wing family. 
p cot A = 0.80. 

f igures  14  and 13. The notch-ratio data were obtained by removing sections of 
t he  de l t a  type of t r a i l i n g  edge, a process which i s  p a r t i a l l y  inva l id  because 
of the assumption of a supersonic t r a i l i n g  edge. The wing area having inva l id  

pressure dis t r ibut ions i s  
t h a t  shown cross-hatched i n  
the  sketch; t he  corresponding 
aerodynamic charac te r i s t ics  
are indicated by dashed l i n e s  
i n  f igure 14. These data a r e  
included because of t he  
ins ight  offered i n t o  the  
pressure distribut. ions on the  

Mach l i n e  

Sonic t r a i l i n g  edge M-wing planform. 

The M wing with varying apex posit ion may be a l te rna t ive ly  regarded as a 
The cuts  across the  wing of w i n s  of f ixed zpex posi t ion of varying length. 

f igure 15 correspond t o  wings having apex posit ions of 0.53, 0.40, 0.30, 0.25, 
and 0.21 semispan (x/2 = 0.22, 0.38, 0.58, 0.75, and 0.96, respectively).  
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A t  an x/Z of 0.22, the pressure dis t r ibut ion obtained i s  tha t  of the  subsonic 
leading-edge del ta  wing with large pressure coeff ic ients  along the wing leading 
edge. The pressure d is t r ibu t ions  f o r  cuts a t  progressively higher values of 
x/Z 
Mach l i n e  from the opposite apex. The e f fec t  of notching the M wings of i n t e r -  
mediate length (apex a t  approximately 0.30 semispan) i s  t o  remove a portion of 
the highly loaded area near the Mach l i n e  and thereby reduce the l i f t -curve  
slope i n  comparison with t h a t  fo r  notched wings having smaller (or l a rger )  apex 
semispan fract ions.  

a re  characterized addi t ional ly  by a pressure peak i n  the v i c in i ty  of the  

The aerodynamic charac te r i s t ics  of a wing family having an ogive type of 
leading edge a re  shown i n  f igure 16. The leading-edge geometry i s  specified i n  
the equation a t  the top of the figure,  with K = 1 giving a s t ra ight - l ine  
leading edge and K = 2 defining a parabolic leading-edge shape. The wings of 
the family have the same span and the same chord dis t r ibut ion;  they a re  sketched 
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Figure 15.- Pressure dis t r ibu-  
t ions on M-wing planform. 
B cot A = 0.80. 

K 

Figure 16.- Characterist ics of wing 
family having same span and chord 
dis t r ibut ion.  

21 



f o r  representative members having aspect r a t i o s  of 2.24. 
eters are presented, a l l  corresponding t o  a subsonic leading-edge condition f o r  

t h e  arrow wing, a s  shown. The l i f t -  
curve slope of the  parabolic leading- 
edge wing i s  approximately 8 percent 
higher than t h a t  f o r  the  arrow wing, 
with an accompanying la rge  forward 
s h i f t  i n  t h e  streamwise center of 

Three sweepback param- 

I 

Leading-edge equation: p =.6 + .4 - (b$ (L2Y 

A A  A a pressure.  

.04 1 
.8 r n 

.5 
I I 
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Figure 17.- Characteristics of ogee fam- - 
- i l y  having same span and length. 

( p  cot = 0.80. 

A f i n a l  example of t h e  theore t i -  
c a l  aerodynamic charac te r i s t ics  of a 
parametric wing family i s  shown i n  
figure 17, i l l u s t r a t i n g  an ogee 
series having the  same span and 
length and a sweepback parameter of 
p cot A = 0.80 
l i n e  leading-edge wing. The e f f ec t  
of notch r a t i o  i s  a l so  shown. The 
center of pressure moves s t ead i ly  
a f t  with increasing K, primarily 
because of t he  a f t  s h i f t  i n  wing 
area. However, the  wing l i f t -curve  
slope reaches a maximum a t  K = 3 ,  
and t h i s  value i s  approximately 
10 percent higher than t h a t  f o r  t h e  
de l t a  o r  arrow wing of K = 1. A s  
K becomes large,  the  wing takes on 
an increasingly rectangular shape 
with associated theore t ica l  
charac te r i s t ics .  

f o r  the  s t r a igh t -  

CONCLUDING REMARKS 

A numerical method f o r  calculat ing the  theo re t i ca l  f l a t -p l a t e  l i f t i n g -  
pressure d is t r ibu t ions  on supersonic wings of a r b i t r a r y  planform, r e s t r i c t e d  
only t o  a supersonic t r a i l i n g  edge, has been presented. 
method was i l l u s t r a t e d  through comparisons of l i f t ing-pressure d is t r ibu t ions  
and force coeff ic ients  between the  numerical method and established ana ly t ica l  
solutions,  and typ ica l  examples of t he  use of t h e  method t o  estimate the  theo- 
r e t i c a l  aerodynamic charac te r i s t ics  of supersonic wings having curved o r  cranked 
leading edges were presented. The extension of t he  method t o  the  case of cam- 
bered wings was indicated.  

The precision of t he  

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Stat ion,  Hampton, Va., October 8, 1964. 
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