

COMPUTER PROGRAM FOR CALCULATING FLOW FIELDS IN SUPERSONIC INLETS

by Virginia L. Sorensen
Ames Research Center
Moffett Field, Calif.

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION • WASHINGTON, D. C. • JULY 1965

By Virginia L. Sorensen

Ames Research Center Moffett Field, Calif.

IN SUPERSONIC INLETS
By Virginia L. Sorensen Ames Research Center

SUMMARY

29295

A Fortran IV computer program for calculating the flow fields in threedimensional axisymmetric or two-dimensional inlets has been written. The program has been written to handle inlets designed with smooth compression surfaces and for which the attached bow shock falls outside the cowl lip. The method of characteristics has been used to calculate a uniform field of points and at each of these points the total pressure, Mach number, local flow angle, and static pressure ratio are printed. The numerical procedures used are fully described and a test case is presented.

INTRODUCTION

The mathematical tools for calculating flow fields in supersonic inlets have been available for many years. The complexity of the mathematical procedures, however, has been a major obstacle in effectively and rapidly designing inlets other than those with simple two-dimensional compression surfaces. A Fortran IV computer program employing the method of characteristics for a perfect gas has therefore been written to assist in the design of three-dimensional axisymmetric or two-dimensional inlets. The program is limited in application to designs in which the bow shock wave does not intersect the cowl so that internal shock wave intersections do not occur (see fig. l). In addition, no viscous effects are considered. Within these limitations the flow fields of inlets with theoretical efficiencies up to 100 percent (100-percent totalpressure recovery) can be described.

This program has been made available to a number of organizations and the purpose of this report is to aid those organizations and any others using this program. The basic equations are presented and the program is described fully in this report. This description includes the program listing, program usage, flow charts, and a sample case.

The input to the program consists of the surface contours, the free-stream Mach number, and other pertinent parameters which are described in appendix A. The output consists of a uniform field of points, at each of which the total pressure, Mach number, local flow angle, and static pressure ratio are printed.

This program will be distributed in card form by the Ames Research Center upon written request. This distribution also includes complete sample cases, program listings, and a complete set of output.

	. . * SYMBOLS	
		Program label
a	speed of sound	--*
$\frac{c}{r}$	dimensionless incremental distance along a characteristic	CゆRI, CфR2
M	Mach number	EM, EMIN
P	pressure	Pl, P ' $, \mathrm{P} 3, \mathrm{P} 4$
r	radial distance	R
S	entropy divided by universal gas constant	S
V	velocity	---
W	ratio of local velocity to stagnation speed of sound, v / a_{t}	W
X	axial distance	X
γ	ratio of speciric heats	GAMMA
δ	stream angle, radians	DEL, DELTA
μ	Mach angle, radiars	U
θ	shock-wave angle, radians	THETA
	Subscripts	
1	calculation along a first-family characteristic line	
2	calculation along a second-family characteristic line	
2	local conditions	
t	stagnation conditions	
u	upstream conditions for a shock wave	
∞	free-stream conditions	

PROGRAM DESCRIPTION

The method of characteristics is a standard procedure used in the study of stpersonic flow fields. It is fully described in references 1 and 2. The basic equations used here are essentially those developed in reference 3, but with modifications made by Mr. Leroy Presley of Ames Research Center. The numerical techniques used in this program are described below. Appendix A contains the program usage, a description of the required input, a list of error messages, the program listing, and a test case. Because flow diagrams are often helpful in remedying program difficulties, a complete set of diagrams is presented in appendix B.

Basic Equations

The basic equation used in the program is the compatibility equation

$$
\begin{equation*}
\mathrm{d} \delta= \pm \mathrm{A} d \mathrm{~W} \mp \mathrm{C} \pm \mathrm{D} \mathrm{dS} \tag{la}
\end{equation*}
$$

where

$$
\begin{aligned}
& W=\frac{V}{a_{t}} \\
& A=\frac{1}{W} \cot \mu \\
& C=\frac{c}{r} \sin \mu \sin \delta \\
& D=\frac{I}{2 \gamma} \sin 2 \mu
\end{aligned}
$$

The upper signs in equation (la) are used along the first-family characteristic lines defined by equation (lb). The lower signs in equation (la) are used along the second-family characteristic lines defined by equation (lc).

$$
\begin{align*}
& \frac{d r}{d x}=\tan (\mu+\delta) \tag{lb}\\
& \frac{d r}{d x}=-\tan (\mu-\delta) \tag{lc}
\end{align*}
$$

The equation for the two-dimensional characteristics program is obtained by setting the term C equal to zero.

In order to facilitate the computation, the flow field behind the bow shock wave is broken into several regions bounded by shock waves as shown in figure l. A second-family region exists behind a down-shock (regions 2 and 4 in fig. 1) and a first-family region behind an up-shock (regions 1 and 3 in fig. I). If the signs in equation (1) are reversed, the same computation schemes may be used for both the first-and second-family regions. Thus, in the equations to follow, a double sign implies that the upper sign is to be used in first-family regions and the lower sign in second-family regions.

In each region successive rays are computed from a surface to a shock wave until the shock wave intersects a surface or falls outside the cowl lip, as in the case of the first region. As soon as the intersection occurs a new region is started and the previous region continued only in the area in which it is needed, thereby eliminating unnecessary calculations. This is described more fully in the section on Shock Point Calculation.

A numbering scheme has been set up such that each point in the flow field is defined uniquely by a region number, i, a ray number, j, and a point number, k. (See fig. 2.) In this figure, $j^{\prime}=j-l$, where j is the current ray number, and j^{\prime} is the previous ray number. The subscript k is the current point number in the current ray. The subscript $k^{t}=k-l$ if j is odd and $k^{\prime}=k$ if j is even. In a first-family region, k^{\prime} is a firstfamily point; that is, it is located on the first-family characteristic to the point k, and $k^{\prime}+l$ is located on the second-family characteristic. In a second-family region the k^{\prime} and $k^{\prime}+1$ points are interchanged. Each oddnumbered ray contains a body point. Each ray contains a shock point until such time as a body-shock or cowl-shock intersection occurs in the region. Three adjacent vertical computation rays are shown in figure I with their connecting characteristic lines.

Field Point Calculation

In computing a flow-field point, the geometrical location of the point is at the intersection of the first- and second-family characteristic lines. The x coordinate is found from equation (2):

$$
\begin{equation*}
\mathrm{x}_{\mathrm{k}}=\frac{\mathrm{r}_{\mathrm{k}^{\prime}+1}-r_{k^{\prime}} \pm\left[\mathrm{x}_{\mathrm{k}^{\prime}} \tan (\mu \pm \delta)_{k^{\prime}}+\mathrm{x}_{k^{\prime}+1} \tan (\mu \mp \delta)_{k^{\prime}+1}\right]}{ \pm\left[\tan (\mu \pm \delta)_{k^{\prime}}+\tan (\mu \bar{\mp} \delta)_{k^{\prime}+1}\right]} \tag{2}
\end{equation*}
$$

The r coordinate is found by equation (3):

$$
\begin{equation*}
r_{k}=r_{k^{\prime}} \pm\left(x_{k}-x_{k^{\prime}}\right) \tan (\mu \pm \delta)_{k^{\prime}} \tag{3}
\end{equation*}
$$

The distance along the characteristic lines is found from equations (4):

$$
\left.\begin{array}{c}
\left(\frac{c}{r}\right)_{1}=\left(\frac{c}{r}\right)_{k^{\prime} \rightarrow k}=\left|\frac{r_{k}-r_{k^{\prime}}}{r_{k^{\prime}} \sin (\mu \pm \delta)_{k^{\prime}}}\right| \\
\left(\frac{c}{r}\right)_{2}=\left(\frac{c}{r}\right)_{k^{\prime}+1 \rightarrow k}=\left|\frac{r_{k}-r_{k^{\prime}+1}}{r_{k^{\prime}+1} \sin (\mu \overline{+} \delta)_{k^{\prime}+1}}\right| \tag{4}
\end{array}\right\}
$$

In order to find the stream angle, entropy, and velocity, the compatibility equation, equation (1), is put into finite difference form, equations (5):

$$
\left.\begin{array}{l}
\delta_{\mathrm{k}}-\delta_{\mathrm{k}^{\prime}}= \pm \mathrm{A}_{\mathrm{k}}{ }^{\prime}\left(W_{\mathrm{k}}-W_{\mathrm{k}^{\prime}}\right) \mp \mathrm{C}_{\mathrm{k}^{\prime}} \pm \mathrm{D}_{\mathrm{k}^{\prime}}\left(\mathrm{S}_{\mathrm{k}}-\mathrm{S}_{\mathrm{k}^{\prime}}\right) \\
\delta_{\mathrm{k}}-\delta_{\mathrm{k}^{\prime}+1}=\mp \mathrm{A}_{\mathrm{k}^{\prime}+1}\left(W_{\mathrm{k}}-W_{\mathrm{k}^{\prime}+1}\right) \pm \mathrm{C}_{\mathrm{k}^{\prime}+1} \mp \mathrm{D}_{\mathrm{k}^{\prime}+1}\left(\mathrm{~S}_{\mathrm{k}}-\mathrm{S}_{\mathrm{k}^{\prime}+1}\right) \tag{5}
\end{array}\right\}
$$

This set of two equations in three unknowns may be solved for δ_{k} in terms of S_{k}, equation (6):

$$
\delta_{k}=\frac{\left(\frac{\delta}{A}\right)_{k^{\prime}}+\left(\frac{\delta}{A}\right)_{K^{\prime}+1} \mp W_{k^{\prime}} \pm W_{K^{\prime}+1} \mp\left(\frac{C}{A}\right)_{k^{\prime}} \pm\left(\frac{C}{A}\right)_{k^{\prime}+1} \pm\left(\frac{D}{A}\right)_{k^{\prime}}\left(S_{k}-S_{k^{\prime}}\right) \mp\left(\frac{D}{A}\right)_{k^{\prime}+1}\left(S_{k}-S_{k^{\prime}+1}\right)}{\frac{1}{A_{k^{\prime}}}+\frac{1}{A_{k^{\prime}+1}}}
$$

By assuming a linear variation in entropy along a normal to the streamline through the point k, we may obtain an additional equation. Equations (7) are derived geometrically and are shown schematically in figure 3.

$$
\left.\begin{array}{rl}
S_{k} & =S_{k}{ }^{\prime}+\frac{a}{a+b}\left(S_{k^{\prime}+1}-S_{k^{\prime}}\right) \\
a & =\left(\frac{c}{r}\right)_{1} \sin \left[(\mu \pm \delta)_{k^{\prime}} \mp \delta_{k}\right] \tag{7}\\
b & =\left(\frac{c}{r}\right)_{2} \sin \left[(\mu \mp \delta)_{k^{\prime}+1} \pm \delta_{k}\right]
\end{array}\right\}
$$

An initial value of δ may be computed by assuming no entropy loss along the characteristic lines; that is, the terms ($S_{k}-S_{k}$) and ($S_{k}-S_{k}{ }^{\prime}+1$) in.equation (6) are zero. Equations (6) and (7) are then solved iteratively until successive values of δ converge. The velocity W_{k} may be obtained from equations (5). The remaining properties are then computed from standard relationships found in reference 4 and are presented in equations (8) through (13).

$$
\begin{align*}
& M_{k}=\sqrt{\frac{W_{k}^{2}}{1-\frac{1}{2}(\gamma-1) W_{k}^{2}}} \tag{8}\\
& \mu_{k}=\sin ^{-1}\left(\frac{1}{M_{k}}\right) \tag{9}\\
& \frac{P_{t_{k}}}{P_{t_{\infty}}}=e^{-\left(S_{k}-S_{\infty}\right)} \tag{10}\\
& \frac{P_{k}}{P_{t_{k}}}=\left[1-\frac{1}{2}(\gamma-1){W_{k}}^{2}\right]^{\gamma /(\gamma-1)} \\
& \frac{P_{t_{\infty}}}{P_{\infty}}=\left[1+\frac{1}{2}(\gamma-1) M_{\infty}^{2}\right]^{\gamma /(\gamma-1)} \tag{12}\\
& \frac{P_{k}}{P_{\infty}}=\left(\frac{P_{k}}{P_{t_{k}}}\right)\left(\frac{P_{t_{k}}}{P_{t_{\infty}}}\right)\left(\frac{P_{t_{\infty}}}{P_{\infty}}\right)^{2} \tag{13}
\end{align*}
$$

Shock Point Calculation

In computing a shock point, the point \bar{k} is first located geometrically on the shock wave, as in figure 4. In a region in which the upstream conditions are free stream, this point is found simply by adding a constant to the x coordinate of the previous shock point. In a region of variable upstream properties the shock point is located geometrically at the intersection of the shock wave and the opposite family characteristic line in the upstream region. The upstream properties are then found simply by linear interpolation. It should be noted that characteristics in the upstream region are dropped when they are no longor required in the solution (such as line AB in fig. 4). Some computing time is thereby saved.

In order to find the properties of the shock point, \bar{k}, another point k is computed as the intersection of the shock wave and the characteristic line from the point $k-1$ (see fig. 5). This intersection point is determined by
substituting the shock-wave angle θ for μ and the upstream region stream angle $\cdot \delta_{u}$ for δ in equations (2) and (3). For very weak shock waves, the angle $\mu \pm \delta$ is almost the same as the shock-wave angle and an intersection point k can occur upstream of the previous shock point or extremely far downstream. In this case the shock point properties at \bar{k} are set equal to the upstream properties of the point. A regular shock-wave point will be computed if the intersection point occurs downstream of the previous shock wave.

The next step in the procedure for computing the shock point normally is to find a new point $\overline{\mathrm{k}}^{\prime}$. A line is constructed parallel to the first-family Mach line through the points k and $k-l$. The line passes through the point \bar{k}. The point of intersection of this line with the second-family Mach line through the points $k^{\prime}+1$ and $k-1$ is the new k^{\prime} point for the shock calculation and is designated by \bar{k} ' in figure 5 . The properties at the point \bar{k}^{\prime} are formed by linear interpolation between the points $\mathrm{k}^{1}+1$ and $\mathrm{k}-1$.

The computation for the shock-wave point then proceeds by an iterative solution. The equations involved are equations (14) through (16) which were obtained from reference (4), and equation (17).

$$
\left.\begin{array}{c}
\sin ^{6} \theta+b \sin ^{4} \theta+c \sin ^{2} \theta+d=0 \\
b=-\frac{M_{u}^{2}+2}{M_{u}^{2}}-\gamma \sin ^{2} \delta \\
c=\frac{2 M_{u}{ }^{2}+1}{M_{u}^{4}}+\left[\frac{(\gamma+1)^{2}}{4}+\frac{\gamma-1}{M_{u}^{2}}\right] \sin ^{2} \delta \\
d=-\frac{\cos ^{2} \delta}{M_{u}^{4}}
\end{array}\right\}
$$

As a first approximation to δ_{k}, equation (17) is computed assuming the terms involving W and S are zero. A value of $\sin ^{2} \theta$ is then obtained from equations (14) by solving the cubic by a trigonometric method. This trigonometric method is described in reference 5. Of the three roots obtained, the middfe root is the desired weak shock solution. Equations (15) and (16) are then used to compute new values for S_{k} and $W k$. With these values a new value of δ_{k} may be obtained from equation (17). If this value of δ_{k} agrees well with the previous δ_{k} computed the iteration is terminated. If it does not, the new value of δ_{k} is averaged with the previous δ_{k} and the iteration continues by recomputing $\sin ^{2} \theta, S_{k}$, and W_{k} as before.

Body Point Calculation

The first step in computing a body point is to locate it geometrically as the intersection of a characteristic line and the body. The body may be either the centerbody or the cowl. If the body is supplied in tabular form a search is performed in the table and the location is found by the simultaneous solution of two linear equations in x and r and the stream angle δ_{k} is obtained from the table. When the body is supplied in the form of a function, the location of the point is found by combining the equation for the body, equation (18), and the characteristic line equation, equation (19), to form equation (20):

$$
\begin{align*}
r_{k} & =f\left(x_{k}\right) \tag{18}\\
r_{k} & =r_{k^{\prime}+1} \mp\left(x_{k}-x_{k^{\prime}+1}\right) \tan (\mu \mp \delta)_{k^{\prime}+1} \tag{19}\\
g\left(x_{k}\right) & =f\left(x_{k}\right)-r_{k^{\prime}+1} \pm\left(x_{k}-x_{k^{\prime}+1}\right) \tan (\mu \mp \delta)_{k^{\prime}+1}=0 \tag{20}
\end{align*}
$$

Equation (19) may then be solved for x_{k} by means of the Newton-Raphson technique (ref. 6). The stream angle δ_{k} is set equal to the arc-tangent of the slope of the body at the intersection point.

The remaining properties are easily found since the entropy S_{k} remains constant on the surface between shock wave impingements. Thus, given δ_{k} and S_{k}, W_{k} may be found from the compatibility equation, equations (5). Equations (8) through (13) furnish the remainder of the calculation.

Starting the Solution

Ihc calculation may be initiated in two ways. The first method is to approximate a conical flow at the nose. The second method is to use some other procedure to calculate several points along a vertical input ray.

In the first case, the stream angle and the Mach number on the body and at the shock must be supplied to the program. From these quantities the remaining properties may be found. As few as two points may be used to start the flow field. However, three points are better when the Mach number is low (below Mach 2) or the centerbody angle is small (e.g., $\theta_{c}=5^{\circ}$). The third point is the average of the first two.

In the latter case, any method may be used to compute a vertical ray consisting of a number of points at any station on the centerbody ahead of the cowl lip. The quantities, entropy, S_{k}, velocity, W_{k}, and stream angle, ε_{k}, at each point are the required input parameters.

Starting a New Region

A new region is started after a shock wave has impinged on a body or after the flow field in the initial region has intersected the cowl lip. A twodimensional flow is assumed in the immediate area of the intersection for the purpose of computing the starting ray. The initial ray has two points, a shock point and a body point both with the same x coordinate. The x coordinate is determined by adding a constant to the x coordinate of the intersection point. This constant is determined by taking a percentage of the constant used in starting the previous region. The r coordinate at the body is determined from the body equation or table, as is the slope of the body. The slope of the body determines the stream angle at both points. The shock wave angle is computed by equations (14). The entropy and the velocity may then be computed from equations (15) and (16). The r coordinate of the shock point is then computcd using the shock-wave anyle.

A means of controlling accuracy in the program is by modifying the distance from the cowl lip to the initial ray in the second region. This distance is computed as a percentage of the bow shock wave spacing. The percentage used is an input quantity. However, if none is provided, a value of 0.50 is used. The accuracy of the solution has been improved by use of a spacing compatible with the local mesh size.

Control of the Mesh Size

Control of the mesh spacing has been found to be desirable in order to maintain a good distribution of output at the throat of the inlet. The characteristic mesh size in the initial region is controlled by the spacing on the input line and by spacing the shock points evenly along the bow shock wave. The latter technique is employed to limit spreading of the mesh. The spacing along the bow shock wave is controlled by an input quantity. The horizontal distance along the shock wave is computed as the product of this input quantity and the distance from the nose of the centerbody to the initial point on the input ray.

The characteristic mesh in subsequent regions is controlled by the way in which the shock wave points are computed. The points are located geometrically
as the point of intersection of a characteristic line in the upstream region and the shock wave. The mesh size is thus controlled by the mesh size of the previous region.

A means has been provided for discarding intermediate points in a vertical ray when it is desired to expand the mesh rapidly. This expanding provides for increasing the accuracy in the nose region without substantially decreasing the speed of the solution. The discarding of points is under the control of the user by input quantities.

Refining the Nolution

When the distance between points along a characteristic line exceeds a value spccified by the user, a means has been provided for improving the accuracy of the solution as in reference 3 without increasing the number of points in the mesh. The values of x, r, S, W, and δ at the points k and k^{\prime} are averaged together and the k^{\prime} point is replaced by the averaged values. The samo is done with the $k^{\prime}+l$ point. The k point is then recomputed. If the new value of W_{k} agrees closely with the previous value of W_{k} the iteration is complete. If not, the points are again averaged and the point k recomputed. This is done until the value of W_{k} does not change appreciably.

Coalescence

The coalescence of characteristic lines to form a shock wave is a serious prowlom, for it indicates that the inlet design is not a very good one. The uscr must then redesign the body contours and recalculate the flow field until the coalescence has been avoided.

When two characteristic lines coalesce, the user is notified and a test is made in the program to determine whether or not the two lines have actually crosscd. If they have, the downstream characteristic line is dropped, a messace is printed, and the flow-field calculation continues. The user can then detormine if the shock wave is in fact building up or if the coalescence occurred because of inaccuracies arising from some of the approximations used in the program.

When two characteristic lines become arbitrarily close to each other, the accuracy of the solution tends to decrease. There is a significant loss in the number of digits of accuracy. To avoid this problem, it is assumed, in this case that coalescence has actually occurred and the downstream characteristic line is dropped.

CONCLUDING REMARKS

A Fortran IV computer program to calculate the flow fields in threedimensional axisymnetric or two-dimensional inlets has been written.

In writing the program, every effort has been made to keep the computation as rapid as possible. The calculation of the upstream and downstream
regions has been carried on concurrently to avoid the computation of extra-neous"flow-ficld points and the necessity of saving all the points in the upstream region. In this way the use of external storage devices has been avoided. Extensive search techniques and elaborate curve-fitting schemes have been avoided as well as high-order interpolation formulas. As a further aid, several cases may be stacked to be run at the same time.

The program is flexible since the flow field may be initiated in two ways and the surface input may be tabular or analytical. When tabular input is used the compression surfaces can be defined by both coordinates and local surface angles. The input of surface angles is redundant; however, coordinates alone cannot usually be calculated for input accurately enough or smoothly enough to give a uniform mesh of characteristics. It is suggested that the surface angles be plotted and faired before they are used as input.

The rapidity with which a case may be computed (from 0.5 to 2.0 minutes per case) has been an advantage in designing inlets, since a trial and error design procedure involving many cases is often necessary.

The suitability and accuracy of the program for the design of supersonic inlets is illustrated by the inlet design shown in figure 6. The input and output for this case are presented in appendix A. This particular case was computed in less than one minute on an IBM 7094 computer.

Ames Research Venter
National Aeronautics and Space Administration
Moffett Field, Calif., Mar. 25, 1965

In this appendix, the program usage is detailed. An attempt has been made to keep the usage of the program simple. The program itself is listed in figure 7. A sample case is listed as figure 8. The input cards used to obtain the data in figure 8 are listed in figure 9. Figure 10 contains a listing of a sample plotting program and figure ll contains listings of sample body contour programs.

DECK MAKE-UP

Deck
label
EF3131
EF3132
EF3133
EF 3134

EF3135
EF3136

EF3137

Subroutine name
(main)
BODY
FLOW
JUGGLE

PUNT
CBODY

ABODY

Description
Control program.
Computes a body point.
Computes a flow-field point.
Refines solution when mesh size is large, by averaging upstream points.

Output subroutine.
Dummy subroutine. If the centerbody ordinates are given in analytic form, this program should be replaced by a subprogram that computes the function and its first derivative. The function should be in the form, $r=f(x)$, where r is the distance along a line perpendicular to the body axis and x is the distance along the body axis. The CALL statement is "CALL CBODY ($I, X, R, D R$)" where $X=X$, $R=r$, and $D R=d r / d x$. At the beginning of the control program an entry is made to this subprogram with the control word $I=1$ to allow for the initialization of the subprogram. For all other entries $I=2$. On the initial entry X should be set equal to the last value of X on the centerbody.

Dummy subroutine. If the cowl is given by an analytic expression, this program should be replaced by a subprogram that computes the function as indicated under CBODY. In this case the CALL statement is "CALI ABODY (I,X,R,DR)." On the initial entry, when $I=1$, the cowl lip ordinates should be returned in X and R.

Deck label.	Subroutine \qquad	Description
$\text { EF } 3138$	SHOCK	Computes a shock point.
EF3139	CONIC	Sets. up a conical input ray.
EF3140	ERROR	When an error condition is encountered, this subprogram prints an error code which may be used to determine the type of failure. The next case is then read in under most circumstances. If the error is irrevocable, EXIT is usually called.
EF3141	ENDFIL	This subroutine is entered when the last stacked case has been completed. This condition is signalled by the input card with the word "DONE" in columns l-4.
EF3I42	FLINT	Computes with the point of intersection of the flow field with the cowl lip.
EF3143	SPLOT	Dummy subroutine. To be used if plotting is not wanted. (See EF3150.)
EF3144	ACRAY	Computes a two-dimensional input ray.
EF3145	CUBIC	Finds roots of a cubic and selects proper root for the shock angle equation.
EF3146	UPSC	Computes the upstream conditions for a shock point.
EF3147	BSINT	Computes the intersection of a shock wave with either the centerbody or cowl.
EF3148	CBODY	Sample subroutine for computing the centerbody analytically.
EF3149	ABODY	Sample subroutine for computing the cowl analytically.
EF3150	SPLOT	Constructs arrays for plotting. The user must supply a program that writes the plot tape.
EF3152	PAGE, TITLE	Controls page numbering and headings.

Iogical tape no.	Usage
5	INPUT
6	OUTPUT
7	PLOMTING OUTPUT (Optional)

INPUT CARDS

All input is in 1 loating-point form, 7 values per card, 10 columns per value, except for the irst card. (Sce fig. S for a sample case.)

Cara no. Colume
$1-72$
1-10

11-20
$21-30$
$31-40$
4.1-50

51-60

1-10 FiII, $H_{\infty}=$ I'ce-stream lach number.
1l-20 GAMI, $y=$ Irce-stream ratio of specific heats.
21-30 SING, $S_{0}=$ free-stream entropy, dimensionless.

31-40 THETA, $\theta_{\text {SH }}=$ shock wave angle (in degrees
1-10
TEST, convergence test for iterations ($10^{-\epsilon}$ gives good results).

11-20 CRMAX, maximum distance between mesh points. If this is exceeded, a refinement is attempted.

COALT, coalescence is said to occur if the increments in x and r are both less than this test quantity.

31-40 SPACE, controls spacing on the shock wave (in the x direction), as a percentage of the distance from the nose to the initial input ray.

41-50 SPACC, controls distance from the cowl lip to the initial ray in the second region as a percentage of the bow shock spacing. If no value is given SPACC is assumed to be 0.50 .
(Optional - include if body is defined in tabular fashion.) x ordinates - NOB values on the centerbody.
$5 b$ (Optional - may be included or not if centerbody is defined by an analytic function.)
User's format - Constants used in centerbody program.
6 (Optional - include if body is defined in tabular fashion.) r ordinates - NOB values on the centerbody.
(Optional - include if body is defined in tabular fashion.) δ angle (in degrees) that the line segment joining adjacent table values makes with the body center line. NB = NOB-l values should be specified.
(Optional - include if body is defined in tabular fashion.) x ordinates - NOA values on the cowl.
(Optional - may be included or not if cowl is defined by an analytic function.)
User's format - Constants used in cowl program.
(Optional - include if body is defined in tabular fashion.) r ordinates - NOA values on the cowl.
(Optional - include if body is defined in tabular fashion.) δ angle (in degrees) that the line segment joining adjacent table values makes with the body center line. NA = NOA-I values should be specified.
(Optional - include if program is to compute the initial conical input ray, that is, $N=0$.)
l-l $X B, x_{0}$, initial x ralue on the body at which the mesh is to start.

11-20 $R B$, r_{0}, initial r value on the body.

31-40 EMBODY, $M_{\text {BODY }}$, Mach number on the body.
41-50 DELSH, $\delta_{\text {SHOCK }}$ (in degrees).
51-60 DELBD, $\delta_{B O D Y}$ (in degrees).
61-70 NOPIN, number of points in initial conical input ray.
11 (Optional - include N of these cards if the initial ray is to be read in, instead of being computed by the conical input subroutine.)

1-10	$x_{j, k}$, local x
11-20	$r_{j, k}$, local r
21-30	$\delta_{j, k}$, local δ (in degrees)
$31-40$	$W_{j, k}$, local W
$41-50$	$S_{j, k}$, local S

12 I-4 The word "DONE." Any number of cases may be stacked before this card. This card is needed on the last case in order to complete the plotting arrays and terminate properly.

INPUT FOR PLOTTING

These cards may be in any format the user chooses. The sample program included uses a 7 F10. 6 format and is set to read 5 cards placed after card no. I and before card no. 2. These cards contain the origin of the plot, the scale factors, the maximum value for each variabre, and the minimum value of the ordinate. The Mach number and pressure distribution along both bodies are plotted versus x. The mesh is also plotted.

When an error occurs during the computation of a case, an error message is usually printed and the program goes on to the next case.

The following is a list of error messages that may appear:

			Error Conditions
$\begin{aligned} & \text { Deck } \\ & \text { name } \end{aligned}$	Subroutine \qquad	Error code	Probable cause of error
EF3131	(main)	1	The number of points in a ray exceeds MN (an input quantity ≤ 50) or 50 if MAXNP is ≤ 0.
EF3132	BODY	2	The iteration scheme for finding the intersection of a Mach line and the body is not working. The subroutine for computing the function and its derivative may be incorrect.
EF3132	BODY	3	The local stream angle, δ, is greater than $\pi / 2$.
EF3132	BODY	4	The iteration for a body point is not converging.
EF3133	FLOW	5	The iteration for the local stream angle, δ, is not converging.
EF3135	PUNT	6	There is an error in the computation of the local Mach number.
EF3135	PUNT	7	The recovery, $\mathrm{P}_{\mathrm{t}} / \mathrm{P}_{\mathrm{t}_{\infty}}$, is greater than 1.0.
EF3138	SHOCK	8	There is an error in computing local entropy, S.
EF3138	SHOCK	9	There is an error in computing local velocity, W.
EF3138	SHOCK	10	There is an error in computing the shock wave angle, θ.
EF3139	CONIC	11	There is an error in computing the entropy, S .
EF3142	FLIN'	12	The shock wave has fallen inside the lip.
EF3144	ACRAY	13	There is an error in computing the local entropy, S.

Deck name	Subroutine name	Error code	Probable cause of error
EF3144	ACRAY	14	There is an error in computing local velocity, W.
EF3144	ACRAY	15	There is an error in the shock wave angle, θ, or the Mach number, M, in the computation of a new region. The upstream Mach number is less than the local Mach number or the local Mach number is subsonic.
EF3146	UPSC	16	There are too few points in the upstream region.
EF3146	UPSC	17	There is an error in the computation of the upstream Mach number.
EF3147	BSINT	18	There is an error in finding the point of intersection of the body and the shock wave.

APPENDIX B

FLOW DIAGRAMS

A complete set of flow diagrams is included in figure 12 as a means of assisting the program user. These diagrams were drawn to conform to standard flowcharting techniques (ref. 7). Each diagram has been identified by the corresponding subroutine name and associated deck name.

1. Ferri, Antonio: The Method of Characteristics. General Theory of High Speed Aerodynamics. Vol. VI of High Speed Aerodynamics and Jet Propulsion, sec. G, W. R. Sears, ed., Princeton Univ. Press, 2954, pp. 583-668.
2. Liepmann, H. W.; and Roshko, A.: Elements of Gas Dynamics. John Wiley and Sons, Inc., 1957.
3. Presiey, Leroy L.; and Mossman, Eumet A.E A Btuay of Several Thoorctical Methods for Computing the Zero-Lift Wave Drag of a Family of Open-Nosed. Bodies of Revolution in the Mach Number Range of 2.0 to 4.0. NACA TN 4368, 1958.
4. Ames Research Staff: Equations, Tables, and Charts for Compressible Flow. NACA Rep. 1135 , 1953.
5. Birkhoff, G.; and Mac Lane, S.: A Survey of Modern Algebra. Second ed., The MacMillan Co., 1953.
6. Nielsen, K. L.: Methods in Numerical Analysis. Second ed., The MacMillan Co., 1964.
7. Flowcharting Techniques. Form C20-8152, International Business Machines Corp.

Figure l.- Typical flow field.

Figure 2.- Location of a flow-field point at the intersection of two characteristic lines.

Figure 3.- Normals to the stream line used for the entropy calculation.

Figure 4.- Location of shock points in regions other than the first.

Figure 5.- Location of field point used in the shock point computation.

EF3131
EXTERNAL

Figure 7.- Continued.

S9/ZT/EO
$\begin{array}{lll}\infty & a & \cdots \\ \cdots & \underset{\sim}{n} & \cdots \\ - & - & 0\end{array}$
\square
\vdots

source statement
EF3131
EXTERNAL FORMULA NUMBER -
JMBER(S)
.148

,213,214

UMBER(S)

N~O. ニNNNNNNNNNNNNNNNNNNNNNNNNNNN

EF3131
SOURCE STATEMENT - INTERNAL FORMULA NUMBER(S)

Figure 7.- Continued.

Figure 7.- Continued.
0
0
0

EF3132
EXTERNAL FO
 (Ki.EQ. 1) GO TO 25 IFAM-1) 28,28,29
(1)

ำヘN゚~~~N

IOOLFL.SIN
$\operatorname{TAN}(X)=S I N(X) / \operatorname{COS}(X)$
$\operatorname{CFUN}(Q 003 F L, Q 004 F L ; Q 005 F L)=Q 003 F L * S I N(Q 004 F L)=S I N(L 005 F L)$
RAFUN(Q006FL,Q007FL)=Q006FL*TAN(Q007FL)
DFUN(QOOBFL)=SIN(2.0*QOOBFL)/2.0/GAMMA

DO 30 ITER=1,25
GO TO(4,5), IFAM
F3133 NODECK
SUBROUTINE FOR A FLOW FIELD POINT.
NASA, AMES RESEARCH CENTER, MOFFETT FIELD, CALIF.
SUBROUTINE FLOW
OMMON /DIM/IDIM
IMENSION ICON(2, 9), IRR($91, \operatorname{NOP(2,4)}$
OIMENSION ICON $(2,9)$, IRRI 9$), \operatorname{NOP}(2,4)$
DIMENSION ATAB $(3,50), \operatorname{CTAB}(3,50)$
DIMENSION ATAB $(3,50), C T A B(3,50)$
DIMENSION $x(2,4,50), R(2,4,50)$, DE

:
SPACE
4). IF

COMMON COALT: LAST XIN: THETB
${ }_{c}$ IBFTC

Figure 7.- Continued.

0030 ITER $=1,25$
TO $(4,5)$, IFAM
$=1.0$
IO 6
$C 2=0.0$
$\operatorname{COR} 2=\operatorname{CRFUN}(R(I, J, K), R(I, J P, K P+1), A 2)$
$G O T O(26,26,25), \operatorname{IDIM}$
(T2*)

T1*T $1 /$

TANAZ $=T A N(A 2)$
$T 1=X(I, J P, K P)=T A N A 1+X(I, J P, K P+1) * T A N A Z$
$A 1=U(I, J P, K P)+$
$A Z=U(I, J P, K P+1)-$
$T A N A I=T A N(A 1)$
$\rightarrow+\ln 0$

$$
\begin{aligned}
& \text { DEL }(I, J P, K P) * T \\
& \text { DEL }(I, J P, K P+I) * T
\end{aligned}
$$

$X(I, J, K)=(R(I, J P, K P+1)-R(I, J P, K P)+$
$T I=(X(I, J, K)-X(I ; J P, K P))=T A N A I$
$T 1=(X(I, J, K)-X(I, J P, K P))=T A N A 1$
$R(I, J, K)=R(I, J P, K P)+$
25 C2=CFUN(COR2,U(I,JP,KP+1),DEL(I,JP,KP+1))
N N

EXTERNAL FORMULA NUMBER - SOURCE STATEMENT - INTERNAL FORMULA NUMBER(S)
EXTERNAL FORMULA NUMBER

Figure 7. - Continued.

[^0]

?
?
03/12/65
$3 / 12 / 65$
AL FORMULA NUMBER(S)

Continued.
INJwIIVIS ヨכynos
J,K)

EXTERNAL FORMULA

n
∞
\[

$$
\begin{aligned}
& \text { EF3135 } \\
& \text { EXTERNAL FORMULA NUMBER - SOURCE STATEMENT }
\end{aligned}
$$
\]

EF3135
EXIERNAL
$03 / 12 / 65$
INTERNAL FORMULA NUMBER(S)

Figure 7.- Continued.

Figure 7.- Continued.
EF3138
EXTERNAL

$\stackrel{\infty}{\sim} \quad \stackrel{n}{\square}$!

number(S)

source statement -
EF3138
EXTERNAL FORMULA NUMBER
IF (IREG .LE. I) GO TO 9
$X(I, J, K)=X B$
$R(I, J, K)=R B$
$S(I, J, K)=S U P$
- interna
03/12/65
INTERNA

N

EF3138
EXTERNAL F
EXTERNAL $I, J P, K P)=D E L(I, J P, K M)+R L *(D E L(I, J, K-I)-D E L(I, J P, K M I)$
DEL (I,JP,KP) $=\operatorname{DEL}(I, J P, K M)+R L *(D E L(I, J, K-1)-D E L(I, J P, K M))$
$W(I, J P, K P)=W(I, J P, K M)+R L *(W(I, J, K-1)-W(I, J P, K M))$ $W(I, J P, K P)=W(I, J P, K M)+R L *(W(I, J, K-1)-W(I, J P, K M))$
$S(I, J P, K P)=S(I, J P, K M)+R L *(S(I, J, K-1)-S(I, J P, K M))$
$U(I, J P, K P)=U(I, J P, K M)+K L *(U(I, J, K-I)-U(I, J P, K M))$
$G O I O(7,3,7), I D I M$
$C O R 1=0.0$
$C 1=0.0$
GO TO 25
COR $1=(K(I, J, K)-R(I, J P, K P)) / R(I, J P, K P) / S I N(A 1)$
CORI = ABS (COR1)
$C I=C O R I * S I N(U(I, J P, K P)) * S I N(D E L(I, J P, K P))$
$R A 1=W(I, J P, K P)=T A N(U(I ; J P, K P))$
$D I=0.5 * S I N(2 . O * U(I, J P, K P)) / G A M M A$
$D E L I, J, K)=D E L(I, J P, K P)-C I * I$
$\underset{\sim}{n} \infty$

DO $99 I T=1,50$
DELTA=DUP-DEL (I, J, K)
SOS=SIN(DELTA)
$\operatorname{CO}(4)=1.0$
CO (3) $=-63-$ GAMMA $=$ SDS
$C O(1)=(S D S-1.0) / G 2$
$C O(2)=G 4+G 54 S D S$
$C O(2)=G 4+G 5 * S D S$
$C A L L ~ C U B I C ~(C U, 2)$
$12 \begin{aligned} & \text { T } 1=(2.0 * G A M M A * G 1 * Z-G A M M A+1.0) /(G A M M A+1.0) \\ & \text { IF (Ti) } 13,13.14\end{aligned}$
IF (T1) $13,13,14$
CALL ERROR (8)
RETURN
$14 \begin{aligned} & \text { RETURN } \\ & \mathrm{T} 2=((G A M M A+1.0) * G 1 * Z) /((G A M M A-1.0) * G 1 * 2+2.0)\end{aligned}$
If (T2) $13,13,16$ (T2))/(GAMMA
$16 S(I, J, K)=\operatorname{SUP}+(A L O G(T 1)-G A M M A * A L O G(T 2)) /(G A M M A-1.0)$
$T 1=1,0-4.0,18,18$
IF (T1) $17,18,18$
CALL ERROR(9)
RETURN
W (I, J,K
DOLD=DE

Figure 7.- Continued.
u
\pm

?
03/12/65
N

 int
EF3142
EXTERNAL FORMULA NUMBER
SOURCE STATEMENT
ielo.

03/12/65	
INTERNAL FORMULA	NUMBER(S)
FLINT084	,77
FLINT085	,78
FLINT086	. 79
FLINT087	, 80
FLINT088	181
FLINT089	. 82
FLINTO90	, 83
Flintogl	184
flintoge	, 85
FLINT093	, 86

Figure 7.- Continued.

ACRAYOO1
$\stackrel{\downarrow}{*}$

$\stackrel{m}{n}$
ก

NUMBER(S)
0

Figure '7.- Continued.

$03 / 12 / 65$
internal formula

source statement
EF3146
EXTERINAL FORMULA NUMBER
$T 1=R C-K(1, J, K)-E M 3=X C$
$X B=(r 1+E M 2 * X(1, J, K) 1 /(E M 2-E M 3)$
$I F(X B-X(1, J N, K K)) 18,18,19$
$B=(r 1+E M(X N, K K))$
$F(X B-X(1, J N$,
$F(I N-\bar{C}) \quad i 6,26,20$
$J=J$
$\stackrel{n}{n}$
03/12/65
AL FORMULA NUMBER(S)
UPSC0085 ,08
1
EF3147

Figure 7.- Continued

$\begin{aligned} & N M 4100 \\ & \hat{0} 3080 \end{aligned}$			
山以山以山边吅	，		
$4{ }^{3} 4840$			
aca＠a	aュaロaュa		

$\hat{m}_{m}^{\infty} \underset{m}{a}$	O－${ }^{\text {¢ }}$					
OOO	000	+5す	がすきす	nin	$\begin{aligned} & \sin \operatorname{con}^{18} 0 \end{aligned}$	
			山山山山			
B		或发		岁	名 0	宸
a）a		aca	casa	¢ ${ }_{\text {a }}$	くなく	

03／12／65

：

EF3152 ASSEMBLED TEXT．

$\begin{array}{lllll}00036 & 0560 & 00 & 0 & 06000 \\ 00037 & 4763 & 00 & 0 & 00014 \\ 00040 & 0602 & 00 & 0 & 00000 \\ 00041 & 0 & 00022 & 7 & 00106 \\ 000420 & 00 & 0 & 00140 \\ 00043 & 4763 & 00 & 0 & 00014 \\ 0767 & 076 & 00 & 0 & 00006\end{array}$

ARO

 BINARY
BINARY

N
U
a

bci

EF315208
$03 / 12 / 65$
$S T A R T=0, L E N G T H=101, T Y P E=7094$, CMPLX $=5$ LOC $=0$, LENGTH $=101$
LOC $=0$, LENG TH $=0$
LOC $=2$, LENGTH $=0$
LOC $=31$, LENGTH=0
SECT. 5, CALL
SECT. 6
SECT. 7
SECT. 8
SECT. 9

$\stackrel{a}{0}$
$\stackrel{N}{n}$
$\underset{\sim}{u}$

EF3152
CONTROL DICTIONARY
SCDICT EF3152

(NOT PUNCHED)

	PREFACE
EF3152	dECK
VTITLE REAL	
TITLE REAL	
PAGE REAL	
.FHRD. VIRTUAL	
SYSDAT VIRTUAL	
.UNOG. VIRTUAL	
-FCNV. VIRTUAL	
.FFIL. VIRTUAL	

SOKEND EF3152
NO MESSAGES FOR THIS ASSEMBLY

REFERENCES TO DEFINED SYMBOLS.

REFERENCES TO VIRTUAL SYMBOLS. 5
0
-1 - in Nin in
value
 LCTR
QUAL
LCTR

[^1]| w | ш | |
| :---: | :---: | :---: |
| \％ | U | 世 |
| | 世 | \sum_{1} |
| U | U | － |
| H | 世 | ก |
| $\stackrel{\rightharpoonup}{\mathrm{a}}$ | 豆 | $\stackrel{\rightharpoonup}{\text { a }}$ |

－		
こofotooniommumot		
$\dot{0} 00^{\circ} 0^{\circ} 0^{\circ}$	－0000000：	

$\stackrel{1}{2}$		
		$\stackrel{M}{\approx}$

(

DEL DELTA(DEG)
5.591093

$$
\alpha
$$

0
8
30
00
-r-1
[-1

$\underset{\sim}{\underset{\sim}{u}}$

$$
M=3.00
$$

ব

COALESCENCE
PT/PTINF
0.993490
0.993133
0.993032
0.993132
0.993298
0.993515
0.993568
0.993485
0.993661

${ }_{n}^{n}$	$\underset{\sim}{\infty}$
N	-
	5

$$
\begin{aligned}
& \text { PT/PTINF } \\
& 0
\end{aligned}
$$

$\underset{\sim}{\underset{\sim}{*}}$

$$
\begin{aligned}
& \text { P/PINF } \\
& .573780 \\
& 1.547177
\end{aligned}
$$


```
2
```


$\underset{\sim}{\underset{\alpha}{u}}$

のア~N	

CASE 2

 -

\＃minmorio	
のおのうご	
$00^{\circ 0}$	
20000	

$$
\therefore 0
$$

 $=0$
0
0
0
0
0
0
0
0
0
0

PT/PTINF

	3

 かんN下Nす $\infty^{\infty} \infty^{\infty} \infty^{\infty}$ －••••

 	へ 	
いけへmめ		
 	に○○mm＊ 	Niñang
rNMNN0000		
$\stackrel{\square}{\square}$		べへべべ，

[^2]
CUALESCENSE
CUALESCENEE

zininincon	
ざいいいNの	
	m

$\underset{2}{2}$

$\underset{\sim}{\underset{\sim}{*}}$

P/PINF DELTA(DEG)

[^3] $\underset{\sim}{x}$

CASE 14A 12.5 DEGREE CONE $M=3.00$									
REG	RAY	POINT	X	R	P/PINF	DELTA OEG)	MACH NU.	PT/PTINF	
2	39	13	3.256120	0.730247	3.160973	3.781765	2.239262	0.978462	
3	2	2	3.251966	0.731988	5.151339	12.190910	1.918609	0.967111	
3	3	1	3.266260	0.722559	5.064955	12.500000	1.928721	0.965893 0.966361	
3	3	2	3.259250	0.729449	5.146537	12.240396	2.104578	0.987855	
2	40	1	3.196605	0.976691	3.939777	-2.982135	2.104578	0.987279	
2	40	2	3.196878	0.952685	3.940370	-2.742042	2.126404	0.986622	
2	40	3	3.199402	0.929067	3.802903	-1.879505	2.145249	0.985897	
2	40	4	3.204472	0.906032	3.689764 3.577095	-1.095776 -0.289150	2.145249 2.164561	0.985103	
2	40	5	3.210864	0.883054	3.577095 3.487076	-0.289150	2.180305	0.984262	
2	40	6	3.218400	0.860072	3.487076 3.397078	0.433209 1.174722	2.196471	0.983426	
2	40	7	3.229129	0.838129	3.397078 3.306113	1.940952	2.213271	0.982592	
2	40	8	3.243289	0.817450	3.306113 3.235974		2.226394	0.981704	
2	40	9	3.258663	0.796936	3.235974 3.230998	2.620002 2.987251	2.226711	0.980682	
2	40	10	3.270185	0.777366 0.750834	3.230998	3.365771	2.227004	0.979520	
2	40	11	3.283170	0.750834 0.739366	3.225693 3.193225	3.365771 3.573670	2.233089	0.978940	
2 3	40	12	3.271722	0.739366 0.742134	3.193225 5.187274	11.937198	1.914598	0.967835	
3 3	3	3	3.265224 3.269674	0.742134 0.725825	5.187274 5.122699	11.937198 12.251738	1.921491	0.966034	
3 3	4	1	3.269674 3.270560	0.740239	5.183944	11.972726	1.914752	0.967444	
3	4	2	3.270560 3.196605	0.740239	3.939777	-2.982135	2.104578	0.987855	
<	40	1	3.196605 3.196878	0.952685	3.940370	-2.742042	2.104108	0.987279	
2	40 40	2	3.199402	0.929067	3.802903	-1.879505	2.126404	0.986622	
2	40	4	3.204472	0.906032	3.689764	-1.095776	2.145249	0.985897	
2	40	5	3.210864	0.883054	3.577095	-0.289150	2.164561	0.985103	
2	40	6	3.218400	0.860072	3.487076	0.433209	2.180305	0.984262	
2	40	7	3.229129	0.838129	3.397078	1.174722	2.196471	0.983592	
2	40	8	3.243289	0.817450	3.3061113	1.940952	2.213271	0.981704	
2	40	9	3.258663	0.796936	3.235974	2.6207251	2.226711	0.980682	
2	40	10	3.270185	0.773760	3.230998	3.365771	2.227004	0.979520	
2	40	11	3.283170	0.750834	3.225693 5.221716	+1.689152	1.910768	0.968508	
3	4	3	3.279025	0.752631 0.724289	5.221716 5.181279	12.500000	1.914047	0.965893	
3	5	1	3.274105	0.724289 0.736560	5.181279 5.160447	11.982349	1.917299	0.966861	
3	5	2	3.280942	0.736560 0.751424	5.160447				Coalescence
3	5	3	3.282365	0.751424 0.735041	5.219326	12.227958	1.909816	0.966641	
3	6	1	3.285241	0.735041 0.747688	5.196608	11.718637	1.913365	0.967730	
3	6	2	3.292702	0.747688 0.987355	4.139135	-3.800000	2.073145	0.988128	
2	41	1	3.219076	0.987355 0.963189	3.975960	-2.863006	2.098533	0.987557	
2	41	2	3.218768	0.963189 0.938982	3.975960 3.976267	-2.622760	2.098074	0.986925	
2	41	3	3.219577	0.938982 0.915408	$\begin{aligned} & 3.976267 \\ & 3.837397 \end{aligned}$	-2.751838	2.120362	0.986212	
2	41	4	3.223124	0.915408	3.837397				

P/PINF
.722749
.608500

5.230602
4.177662
4.012104

+10
$0-1$
N
N
N
$0-\infty$

 \(0 N\)
 N
N
N
N
0
0
0
$-\infty$
$=0$
0
0
t
0
0
0

n
0
0
0
0
m
m
mi

0
0
0
0
0
0
0
0
0
N
N
0

4
S
0
0
0
N
0
0
M
0
0
0
0
0
0
0
0
0
$o n$
on
on
on
0
0
0
0
n
n
n
\sim
N
N

\vdots
\vdots

083763
-
ACTERISTICS. INTERNAL CASE.
CASE $14 \mathrm{~A} \quad 12.5$ DEGREE CUNE $\mathrm{M}=3.00$


```
~
```


$$
\begin{gathered}
R \\
0.764992 \\
0.79425
\end{gathered}
$$

들
을
勺MmNNNNNNNNNMMMMMNNNNNNNNNMMmMMNNNNNNNNMM
$\underset{\sim}{\underset{\alpha}{*}}$
COALESCENCE

$$
\begin{aligned}
& 0 \\
& 4 \\
& 0 \\
& 0
\end{aligned} 0
$$

$$
\begin{gathered}
\text { P/PINF } \\
5.110177 \\
5.428191 \\
5.859145
\end{gathered}
$$

[^4]

~
~

COALESCENCE

$\underset{3}{2}$

[^5]

[^6]

ーかののさー～のO

977806

COALESCENCE
CO

DELTA(OEG)

[^7]

\[

$$
\begin{aligned}
& L \varepsilon 9 \varepsilon 96^{\circ} \mathrm{L-} \\
& 000000^{\circ} \mathbf{B}_{-}
\end{aligned}
$$
\]

$$
\begin{aligned}
& -8.000000 \\
& -7.963637 \\
& -8.367246
\end{aligned}
$$

∞

$$
\begin{aligned}
& N \\
& 4 \\
& 4 \\
& 4 \\
& 4 \\
& 4 \\
& N
\end{aligned}
$$

$$
000000 \cdot 8 \text { - }
$$

COALESCENCE
COALESCENCE
MACH NO.
1.348066
1.323965
1.279411
1.273614
1.305115
1.383880
1.377244

	\bigcirc	∞
		Moornooncoin
のago		
-00000		$\bigcirc 0.00 .0000000$

REG	RAY	POINT	X	R	P/PINF	DELTA(DEG)	MACH NO.	PT/PTINF 0.973385	
${ }_{4}$	28	POT	3.770933	0.872289	12.330022	-7.236413	1.333272 1.306778	0.973385 0.968138	
4	28	4	3.757661	0.823014	11.707419	-9.916294	1.306778	0.966414	
4	28	5	3.754766	0.807965	11.740205	-10.072920 -4.708846	1.363489 1.161072	0.966414 0.965182	
5	6	3	3.749968	0.815382	15.374716 13.893775	-4.808800	1.234468	0.959732	
5	7	1	3.748421	0.768221	13.893775 13.482991	-7.190704	1.258489	0.961624	
j	7	2	3.753174	0.784760	13.482991 15.373264	-4.732876	1.160754	0.964699	
5	7	3	3.751927	0.811335 0.911683	15.373264 14.059879	-8.000000	1.239575	0.977806	
4	29	1	3.772025	0.911683 0.908633	13.333202	-6.767345	1.278608	0.977075	
4	29	2	3.777436	0.908633 0.882726	12.756898	-7.836993	1.309346	0.974584	
4	29	3	3.782789	0.846368	11.383900	-9.011247	1.388947	0.971019	
4	29	4	3.788530	0.846368 0.814397	11.3832555	-9.962644	1.364610	0.967292	
4 5	29	5	3.763270	0.814397 0.823137	15.335810	-4.616782	1.163889	0.966220	
5	7	4	3.757585	0.823137 0.777776	15.335810 13.873735	-6.678994	1.236477	0.960904	
5	8	1	3.757237	0.777776	13.873735 13.468711	-7.089352	1.260081	0.962654	
5	8	2	3.760950	0.792653	13.468711	-7.08935			COALESCENCE
5	8	3	3.758684	0.820898		-8.000000	1.283865	0.959732	
5	9	1	3.763655	0.766361	13.004963	-6.576898	1.238242	0.961946	
5	9	2	3.764842	0.786016	13.856329 13.450755	-6.984899	1.261886	0.963698	
5	9	3	3.768695	0.800516		-8.000000	1.239575	0.977806	
4	29	1	3.772025	0.911683	14.059879 13.333202	-6.767345	1.278668	0.977075	
4	29	2	3.777436	0.908633	12.756898	-7.836993	1.309346	0.974584	
4	29	3	3.782789	0.882726	11.383900	-9.011247	1.388947	0.971019	
4 5	29	4	3.788530	0.846368 0.851248	11.559885	-8.677085	1.378322	0.971464	
5	9	4	3.785217	0.851248 0.773912	12.994433	-7.894368	1.285209	0.960700	
5	10	1	3.771707	0.773912 0.794220	13.835146	-6.471833	1.240226	0.963009	
5 5	10	2	3.772417	0.794220 0.831340	13.103816	-6.176576	1.285170	0.968735	
5 4	10	3	3.799058	0.831340 0.906195	13.103816	-6.176576			COALESCENCE
4	30	1	3.774970	0.906195 0.910535	14.175045	-8.000000	1.233421	0.977806	
4	31	1	3.779359	0.9189304 0.888904	12.755718	-7.772669	1.309942	0.975287	
4	31	2	3.789660	0.888904 0.855201	11.785251	-9.615476	1.364958	0.972108	
4	31	3	3.800235	0.855201 0.862371	12.035689	-9.152184	1.350294	0.972752	
5	10	4	3.795690	0.862371 0.764673	12.981228	-8.000000	1.285216	0.959732	
5	11	1	3.777263	0.7846745	12.980312	-7.785573	1.286763	0.961676	
5	11	2	3.779731	0.781445 0.826454	13.464397	-5.661477	1.264510	0.968075	
5 5	11	3	3.802199	0.826454 0.841518	13.567745	-6.797392	1.260462	0.970228	
5 4	11.	4	3.809267	0.841518 0.889586	13.567745				coalescevie
4	32	1	3.790418	0.889586 0.905957	13.007786	-8.000000	1.297470	0.977806	
4	33	1	3.808606	0.905957	11.788544	-9.545720	1.365260	0.972787	
4	33	2	3.807537	0.860803	11.788544	-9.017184	1.348580	0.973532	
5	11	5	3.802208	0.869180	12.073973				

山
\％
山
¢
W
炭
－

hi/ptine

[^8]PT／PIINF
0.968399
0.968432
0.963514
0.967996
0.975979
0.971256
0.969397
0.969437
0.962058
0.965967

MACH NO．
1.232999
1.223267
1.230523
1.223097
1.281705
1.236375
1.234034
1.224358
1.221965
1.212508

$$
\stackrel{\circ}{\mathrm{m}}
$$

EF3150
EXTERNAL FORMULA NUMBER

Figure 10. - Sample plot program.
RETURN
CALL PLOTWSIORGX(1), ORGY(1), SFX(1), SFY(1), X,Y,I,NTAPE, $17, N$)
$\mathrm{I}=0$
RETUR

$\begin{array}{ll} & X C(I C)=X X \\ & I F(X X-S Z X(2)) \\ 38 & X C(I C)=S Z X(2) \\ 33 & Y M C I I C)=Y Y \\ & I F(Y Y-S Z Y(2)) \\ 40 & Y M C(I C)=S Z Y(2) \\ & G O T O \\ 7 & Y P C(I C)=Y Y \\ & I F(Y Y-S Z Y(3)) \\ 41 & Y P C(I C)=S Z Y(3) \\ 39 & I F(I C-500) \\ & \end{array}$
-ponuţuos - •ot əunster
EF3150
EXTERNAL F

EF3148
EXTERNAL
$03 / 12 / 65$
INTERNAL FORMULA NUMBER(S)

-
\oplus

03/12/65
INTERNAL FORMULA

$03 / 22 / 65$
INTERNAL FORMULA NUMBER(S)
$\because N G$.

- INJWヨIVIS JJynos

Figure 11. - Concluded.

Process information or compute

Decision and branch

Connector

Terminator

(a) Symbols used in flow charts.

Figure 12.- Flow charts.

(b) Deck EF3131 main program.

Figure 12.- Continued.

(c) Deck EF3132 subroutine BODY.

Figure 12.- Continued.

(d) Deck EF3133 subroutine FLOW.

Figure 12.- Continued.

(e) Deck EF3134 subroutine JUGGIE.

Figure l2.- Continued.

(f) Deck EF3l35 subroutine PUNT.

Figure 12.- Continued.

(g) Deck EF3l38 subroutine SHOCK.

(h) Deck EF3139 subroutine CONIC.

Figure 12.- Continued

(k) Deck EF3142 subroutine FLINT.

Figure 12. Continued.

(m) Deck EF3I45 subroutine CUBIC.

Figure 12.- Continued.

(n) Deck EF3146 subroutine UPSC.

Figure 12.- Continued.

(o) Deck EF3147 subroutine BSINT.

Figure 12.- Continued.

(p) Deck EF3150 subroutine SPLOT.

Figure 12.- Concluded.

[^0]: $\underset{\text { EXTERNAL }}{\text { EF } 3133}$
 OR2－CRMAX）17，17，18 k）

 こニゴ～～

[^1]: FCNV.
 FFIL.
 FWRD.
 UNO6.
 SYSDAT

[^2]:

[^3]: MNNNNNNNNNNNNMMMNNNNN:NNNNNNNNNNNVNNNNNNN

[^4]:

[^5]: $\underset{\sim}{\underset{\sim}{*}}$

[^6]:

 $\boldsymbol{\alpha}$

[^7]:
 2

[^8]: ヨコNココロヨาจロコ | N |
 | :--- |
 | |
 | + |
 | \vdots |
 | 0 |

