

ff 653 July 65

COMPUTER PROGRAM FOR CALCULATING FLOW FIELDS IN SUPERSONIC INLETS

by Virginia L. Sorensen Ames Research Center Moffett Field, Calif.

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION • WASHINGTON, D. C. • JULY 1965

•~~ *

COMPUTER PROGRAM FOR CALCULATING FLOW FIELDS

.

IN SUPERSONIC INLETS

By Virginia L. Sorensen

Ames Research Center Moffett Field, Calif.

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

For sale by the Clearinghouse for Federal Scientific and Technical Information Springfield, Virginia 22151 – Price \$4.00

COMPUTER PROGRAM FOR CALCULATING FLOW FIELDS

IN SUPERSONIC INLETS

By Virginia L. Sorensen Ames Research Center

SUMMARY

29295

A Fortran IV computer program for calculating the flow fields in threedimensional axisymmetric or two-dimensional inlets has been written. The program has been written to handle inlets designed with smooth compression surfaces and for which the attached bow shock falls outside the cowl lip. The method of characteristics has been used to calculate a uniform field of points and at each of these points the total pressure, Mach number, local flow angle, and static pressure ratio are printed. The numerical procedures used are fully described and a test case is presented.

INTRODUCTION

The mathematical tools for calculating flow fields in supersonic inlets have been available for many years. The complexity of the mathematical procedures, however, has been a major obstacle in effectively and rapidly designing inlets other than those with simple two-dimensional compression surfaces. A Fortran IV computer program employing the method of characteristics for a perfect gas has therefore been written to assist in the design of three-dimensional axisymmetric or two-dimensional inlets. The program is limited in application to designs in which the bow shock wave does not intersect the cowl so that internal shock wave intersections do not occur (see fig. 1). In addition, no viscous effects are considered. Within these limitations the flow fields of inlets with theoretical efficiencies up to 100 percent (100-percent totalpressure recovery) can be described.

This program has been made available to a number of organizations and the purpose of this report is to aid those organizations and any others using this program. The basic equations are presented and the program is described fully in this report. This description includes the program listing, program usage, flow charts, and a sample case.

The input to the program consists of the surface contours, the free-stream Mach number, and other pertinent parameters which are described in appendix A. The output consists of a uniform field of points, at each of which the total pressure, Mach number, local flow angle, and static pressure ratio are printed.

This program will be distributed in card form by the Ames Research Center upon written request. This distribution also includes complete sample cases, program listings, and a complete set of output. SYMBOLS

a	speed of sound	Program label
c r	dimensionless incremental distance along a character- istic	cþrı, cþr2
М	Mach number	EM, EMIN
P	pressure	Pl, P2, P3, P4
r	radial distance	R
S	entropy divided by universal gas constant	S
V	velocity	
W	ratio of local velocity to stagnation speed of sound, V/a _t	W
x	axial distance	x
γ	ratio of specific heats	GAMMA
δ	stream angle, radians	DEL, DELTA
μ	Mach angle, radians	U
θ	shock-wave angle, radians	THETA
	Subscripts	
l	calculation along a first-family characteristic line	

- 2 calculation along a second-family characteristic line
- l local conditions

- t stagnation conditions
- u upstream conditions for a shock wave
- ∞ free-stream conditions

PROGRAM DESCRIPTION

The method of characteristics is a standard procedure used in the study of supersonic flow fields. It is fully described in references 1 and 2. The basic equations used here are essentially those developed in reference 3, but with modifications made by Mr. Leroy Presley of Ames Research Center. The numerical techniques used in this program are described below. Appendix A contains the program usage, a description of the required input, a list of error messages, the program listing, and a test case. Because flow diagrams are often helpful in remedying program difficulties, a complete set of diagrams is presented in appendix B.

Basic Equations

The basic equation used in the program is the compatibility equation

$$d\delta = \pm A \, dW + C \pm D \, dS$$
 (1a)

where

$$W = \frac{V}{a_t}$$
$$A = \frac{1}{W} \cot \mu$$
$$C = \frac{c}{r} \sin \mu \sin \delta$$
$$D = \frac{1}{2\gamma} \sin 2\mu$$

The upper signs in equation (la) are used along the first-family characteristic lines defined by equation (lb). The lower signs in equation (la) are used along the second-family characteristic lines defined by equation (lc).

$$\frac{\mathrm{d}\mathbf{r}}{\mathrm{d}\mathbf{x}} = \tan(\mu + \delta) \tag{1b}$$

$$\frac{\mathrm{d}\mathbf{r}}{\mathrm{d}\mathbf{x}} = -\mathrm{tan}(\mu - \delta) \tag{lc}$$

The equation for the two-dimensional characteristics program is obtained by setting the term C equal to zero.

Basic Computational Techniques

In order to facilitate the computation, the flow field behind the bow shock wave is broken into several regions bounded by shock waves as shown in figure 1. A second-family region exists behind a down-shock (regions 2 and 4 in fig. 1) and a first-family region behind an up-shock (regions 1 and 3 in fig. 1). If the signs in equation (1) are reversed, the same computation schemes may be used for both the first- and second-family regions. Thus, in the equations to follow, a double sign implies that the upper sign is to be used in first-family regions and the lower sign in second-family regions.

In each region successive rays are computed from a surface to a shock wave until the shock wave intersects a surface or falls outside the cowl lip, as in the case of the first region. As soon as the intersection occurs a new region is started and the previous region continued only in the area in which it is needed, thereby eliminating unnecessary calculations. This is described more fully in the section on Shock Point Calculation.

A numbering scheme has been set up such that each point in the flow field is defined uniquely by a region number, i, a ray number, j, and a point number, k. (See fig. 2.) In this figure, j' = j - l, where j is the current ray number, and j' is the previous ray number. The subscript k is the current point number in the current ray. The subscript k' = k - l if j is odd and k' = k if j is even. In a first-family region, k' is a firstfamily point; that is, it is located on the first-family characteristic to the point k, and k' + l is located on the second-family characteristic. In a second-family region the k' and k' + l points are interchanged. Each oddnumbered ray contains a body point. Each ray contains a shock point until such time as a body-shock or cowl-shock intersection occurs in the region. Three adjacent vertical computation rays are shown in figure l with their connecting characteristic lines.

Field Point Calculation

In computing a flow-field point, the geometrical location of the point is at the intersection of the first- and second-family characteristic lines. The x coordinate is found from equation (2):

$$x_{k} = \frac{r_{k'+1} - r_{k'} \pm \left[x_{k'} + \tan(\mu \pm \delta)_{k'} + x_{k'+1} + \tan(\mu \pm \delta)_{k'+1}\right]}{\pm \left[\tan(\mu \pm \delta)_{k'} + \tan(\mu \pm \delta)_{k'+1}\right]}$$
(2)

The r coordinate is found by equation (3):

$$\mathbf{r}_{k} = \mathbf{r}_{k}, \pm (\mathbf{x}_{k} - \mathbf{x}_{k}) \tan(\mu \pm \delta)_{k}, \tag{3}$$

The distance along the characteristic lines is found from equations (4):

*

$$\left(\frac{c}{r} \right)_{1} = \left(\frac{c}{r} \right)_{k' \to k} = \left| \frac{r_{k} - r_{k'}}{r_{k'} \sin(\mu \pm \delta)_{k'}} \right|$$

$$\left(\frac{c}{r} \right)_{2} = \left(\frac{c}{r} \right)_{k'+1 \to k} = \left| \frac{r_{k} - r_{k'+1}}{r_{k'+1} \sin(\mu \mp \delta)_{k'+1}} \right|$$

$$(4)$$

In order to find the stream angle, entropy, and velocity, the compatibility equation, equation (1), is put into finite difference form, equations (5):

$$\delta_{k} - \delta_{k'} = \pm A_{k'} (W_{k} - W_{k'}) + C_{k'} \pm D_{k'} (S_{k} - S_{k'})$$

$$\delta_{k} - \delta_{k'+1} = + A_{k'+1} (W_{k} - W_{k'+1}) \pm C_{k'+1} + D_{k'+1} (S_{k} - S_{k'+1})$$
(5)

This set of two equations in three unknowns may be solved for $\,\delta_k\,$ in terms of $\,S_k\,\textit{,}$ equation (6):

$$\delta_{k} = \frac{\left(\frac{\delta}{A}\right)_{k} + \left(\frac{\delta}{A}\right)_{k} + \frac{1}{4}}{\frac{1}{A_{k}} + \frac{1}{4}} + \frac{1}{A_{k}} + \frac{1}$$

By assuming a linear variation in entropy along a normal to the streamline through the point k, we may obtain an additional equation. Equations (7) are derived geometrically and are shown schematically in figure 3.

$$S_{k} = S_{k'} + \frac{a}{a + b} \left(S_{k'+1} - S_{k'} \right)$$

$$a = \left(\frac{c}{r} \right)_{1} \sin[(\mu \pm \delta)_{k'} + \delta_{k}]$$

$$b = \left(\frac{c}{r} \right)_{2} \sin[(\mu + \delta)_{k'+1} \pm \delta_{k}]$$
(7)

5

An initial value of δ may be computed by assuming no entropy loss along the characteristic lines; that is, the terms $(S_k - S_k)$ and $(S_k - S_k)$ in equation (6) are zero. Equations (6) and (7) are then solved iteratively until successive values of δ converge. The velocity W_k may be obtained from equations (5). The remaining properties are then computed from standard relationships found in reference 4 and are presented in equations (8) through (13).

$$M_{k} = \sqrt{\frac{W_{k}^{2}}{1 - \frac{1}{2} (\gamma - 1)W_{k}^{2}}}$$
(8)

$$\mu_{\rm k} = \sin^{-1} \left(\frac{1}{M_{\rm k}} \right) \tag{9}$$

$$\frac{P_{t_k}}{P_{t_{\infty}}} = e^{-(S_k - S_{\infty})}$$
(10)

$$\frac{P_{k}}{P_{t_{k}}} = \left[1 - \frac{1}{2} (\gamma - 1) W_{k}^{2}\right]^{\gamma/(\gamma-1)}$$
(11)

$$\frac{P_{t_{\infty}}}{P_{\infty}} = \left[1 + \frac{1}{2} (\gamma - 1)M_{\infty}^{2}\right]^{\gamma/(\gamma-1)}$$
(12)

$$\frac{P_{k}}{P_{\infty}} = \left(\frac{P_{k}}{P_{t_{k}}}\right) \left(\frac{P_{t_{k}}}{P_{t_{\infty}}}\right) \left(\frac{P_{t_{\infty}}}{P_{\infty}}\right)$$
(13)

Shock Point Calculation

In computing a shock point, the point \overline{k} is first located geometrically on the shock wave, as in figure 4. In a region in which the upstream conditions are free stream, this point is found simply by adding a constant to the x coordinate of the previous shock point. In a region of variable upstream properties the shock point is located geometrically at the intersection of the shock wave and the opposite family characteristic line in the upstream region. The upstream properties are then found simply by linear interpolation. It should be noted that characteristics in the upstream region are dropped when they are no longer required in the solution (such as line AB in fig. 4). Some computing time is thereby saved.

In order to find the properties of the shock point, \overline{k} , another point k is computed as the intersection of the shock wave and the characteristic line from the point k - l (see fig. 5). This intersection point is determined by

substituting the shock-wave angle θ for μ and the upstream region stream angle δ_u for δ in equations (2) and (3). For very weak shock waves, the angle $\mu \pm \delta$ is almost the same as the shock-wave angle and an intersection point k can occur upstream of the previous shock point or extremely far downstream. In this case the shock point properties at \overline{k} are set equal to the upstream properties of the point. A regular shock-wave point will be computed if the intersection point occurs downstream of the previous shock wave.

The next step in the procedure for computing the shock point normally is to find a new point $\overline{k'}$. A line is constructed parallel to the first-family Mach line through the points k and k - l. The line passes through the point \overline{k} . The point of intersection of this line with the second-family Mach line through the points k' + l and k - l is the new k' point for the shock calculation and is designated by $\overline{k'}$ in figure 5. The properties at the point $\overline{k'}$ are formed by linear interpolation between the points k' + l and k - l.

The computation for the shock-wave point then proceeds by an iterative solution. The equations involved are equations (14) through (16) which were obtained from reference (4), and equation (17).

$$\sin^{6} \theta + b \sin^{4} \theta + c \sin^{2} \theta + d = 0$$

$$b = -\frac{M_{u}^{2} + 2}{M_{u}^{2}} - \gamma \sin^{2} \delta$$

$$c = \frac{2M_{u}^{2} + 1}{M_{u}^{4}} + \left[\frac{(\gamma + 1)^{2}}{4} + \frac{\gamma - 1}{M_{u}^{2}}\right] \sin^{2} \delta$$

$$d = -\frac{\cos^{2} \delta}{M_{u}^{4}}$$

$$(14)$$

$$S_{k} = S_{u} + \frac{1}{\gamma - 1} \left\{ ln \left[\frac{2\gamma M_{u}^{2} \sin^{2} \theta - (\gamma - 1)}{\gamma + 1} \right] -\gamma ln \left[\frac{(\gamma + 1)M_{u}^{2} \sin^{2} \theta}{(\gamma - 1)M_{u}^{2} \sin^{2} \theta + 2} \right] \right\}$$
(15)

$$W_{k} = W_{u} \sqrt{1 - \frac{4(M_{u}^{2} \sin^{2} \theta - 1)(\gamma M_{u}^{2} \sin^{2} \theta + 1)}{(\gamma + 1)^{2} M_{u}^{4} \sin^{2} \theta}}$$
(16)

$$\delta_{k} = \delta_{k'} \pm A_{k'} (W_{k} - W_{k'}) + C_{k'} \pm D_{k'} (S_{k} - S_{k'})$$
(17)

As a first approximation to δ_k , equation (17) is computed assuming the terms involving W and S are zero. A value of $\sin^2 \theta$ is then obtained from equations (14) by solving the cubic by a trigonometric method. This trigonometric method is described in reference 5. Of the three roots obtained, the middle root is the desired weak shock solution. Equations (15) and (16) are then used to compute new values for S_k and W_k . With these values a new value of δ_k may be obtained from equation (17). If this value of δ_k agrees well with the previous δ_k computed the iteration is terminated. If it does not, the new value of δ_k is averaged with the previous δ_k and the iteration continues by recomputing $\sin^2 \theta$, S_k , and W_k as before.

Body Point Calculation

The first step in computing a body point is to locate it geometrically as the intersection of a characteristic line and the body. The body may be either the centerbody or the cowl. If the body is supplied in tabular form a search is performed in the table and the location is found by the simultaneous solution of two linear equations in x and r and the stream angle δ_k is obtained from the table. When the body is supplied in the form of a function, the location of the point is found by combining the equation for the body, equation (18), and the characteristic line equation, equation (19), to form equation (20):

$$\mathbf{r}_{\mathbf{k}} = \mathbf{f}(\mathbf{x}_{\mathbf{k}}) \tag{18}$$

$$\mathbf{r}_{k} = \mathbf{r}_{k'+1} + (\mathbf{x}_{k} - \mathbf{x}_{k'+1}) \tan(\mu + \delta)_{k'+1}$$
(19)

$$g(x_k) = f(x_k) - r_{k'+1} \pm (x_k - x_{k'+1}) \tan(\mu + \delta)_{k'+1} = 0$$
(20)

Equation (19) may then be solved for x_k by means of the Newton-Raphson technique (ref. 6). The stream angle δ_k is set equal to the arc-tangent of the slope of the body at the intersection point.

The remaining properties are easily found since the entropy S_k remains constant on the surface between shock wave impingements. Thus, given δ_k and S_k , W_k may be found from the compatibility equation, equations (5). Equations (8) through (13) furnish the remainder of the calculation.

Starting the Solution

The calculation may be initiated in two ways. The first method is to approximate a conical flow at the nose. The second method is to use some other procedure to calculate several points along a vertical input ray. In the first case, the stream angle and the Mach number on the body and at the shock must be supplied to the program. From these quantities the remaining properties may be found. As few as two points may be used to start the flow field. However, three points are better when the Mach number is low (below Mach 2) or the centerbody angle is small (e.g., $\theta_c = 5^{\circ}$). The third point is the average of the first two.

In the latter case, any method may be used to compute a vertical ray consisting of a number of points at any station on the centerbody ahead of the cowl lip. The quantities, entropy, S_k , velocity, W_k , and stream angle, δ_k , at each point are the required input parameters.

Starting a New Region

A new region is started after a shock wave has impinged on a body or after the flow field in the initial region has intersected the cowl lip. A twodimensional flow is assumed in the immediate area of the intersection for the purpose of computing the starting ray. The initial ray has two points, a shock point and a body point both with the same x coordinate. The x coordinate is determined by adding a constant to the x coordinate of the intersection point. This constant is determined by taking a percentage of the constant used in starting the previous region. The r coordinate at the body is determined from the body equation or table, as is the slope of the body. The slope of the body determines the stream angle at both points. The shock wave angle is computed by equations (14). The entropy and the velocity may then be computed from equations (15) and (16). The r coordinate of the shock point is then computed using the shock-wave angle.

A means of controlling accuracy in the program is by modifying the distance from the cowl lip to the initial ray in the second region. This distance is computed as a percentage of the bow shock wave spacing. The percentage used is an input quantity. However, if none is provided, a value of 0.50 is used. The accuracy of the solution has been improved by use of a spacing compatible with the local mesh size.

Control of the Mesh Size

Control of the mesh spacing has been found to be desirable in order to maintain a good distribution of output at the throat of the inlet. The characteristic mesh size in the initial region is controlled by the spacing on the input line and by spacing the shock points evenly along the bow shock wave. The latter technique is employed to limit spreading of the mesh. The spacing along the bow shock wave is controlled by an input quantity. The horizontal distance along the shock wave is computed as the product of this input quantity and the distance from the nose of the centerbody to the initial point on the input ray.

The characteristic mesh in subsequent regions is controlled by the way in which the shock wave points are computed. The points are located geometrically

as the point of intersection of a characteristic line in the upstream region and the shock wave. The mesh size is thus controlled by the mesh size of the previous region.

A means has been provided for discarding intermediate points in a vertical ray when it is desired to expand the mesh rapidly. This expanding provides for increasing the accuracy in the nose region without substantially decreasing the speed of the solution. The discarding of points is under the control of the user by input quantities.

Refining the Solution

When the distance between points along a characteristic line exceeds a value specified by the user, a means has been provided for improving the accuracy of the solution as in reference 3 without increasing the number of points in the mesh. The values of x, r, S, W, and δ at the points k and k' are averaged together and the k' point is replaced by the averaged values. The same is done with the k' + 1 point. The k point is then recomputed. If the new value of W_k agrees closely with the previous value of W_k the iteration is complete. If not, the points are again averaged and the point k recomputed. This is done until the value of W_k does not change appreciably.

Coalescence

The coalescence of characteristic lines to form a shock wave is a serious problem, for it indicates that the inlet design is not a very good one. The user must then redesign the body contours and recalculate the flow field until the coalescence has been avoided.

When two characteristic lines coalesce, the user is notified and a test is made in the program to determine whether or not the two lines have actually crossed. If they have, the downstream characteristic line is dropped, a message is printed, and the flow-field calculation continues. The user can then determine if the shock wave is in fact building up or if the coalescence occurred because of inaccuracies arising from some of the approximations used in the program.

When two characteristic lines become arbitrarily close to each other, the accuracy of the solution tends to decrease. There is a significant loss in the number of digits of accuracy. To avoid this problem, it is assumed, in this case that coalescence has actually occurred and the downstream characteristic line is dropped.

CONCLUDING REMARKS

A Fortran IV computer program to calculate the flow fields in threedimensional axisymmetric or two-dimensional inlets has been written.

In writing the program, every effort has been made to keep the computation as rapid as possible. The calculation of the upstream and downstream

regions has been carried on concurrently to avoid the computation of extraneous flow-field points and the necessity of saving all the points in the upstream region. In this way the use of external storage devices has been avoided. Extensive search techniques and elaborate curve-fitting schemes have been avoided as well as high-order interpolation formulas. As a further aid, several cases may be stacked to be run at the same time.

The program is flexible since the flow field may be initiated in two ways and the surface input may be tabular or analytical. When tabular input is used the compression surfaces can be defined by both coordinates and local surface angles. The input of surface angles is redundant; however, coordinates alone cannot usually be calculated for input accurately enough or smoothly enough to give a uniform mesh of characteristics. It is suggested that the surface angles be plotted and faired before they are used as input.

The rapidity with which a case may be computed (from 0.5 to 2.0 minutes per case) has been an advantage in designing inlets, since a trial and error design procedure involving many cases is often necessary.

The suitability and accuracy of the program for the design of supersonic inlets is illustrated by the inlet design shown in figure 6. The input and output for this case are presented in appendix A. This particular case was computed in less than one minute on an IBM 7094 computer.

Ames Research Center National Aeronautics and Space Administration Moffett Field, Calif., Mar. 25, 1965

APPENDIX A

PROGRAM USAGE

In this appendix, the program usage is detailed. An attempt has been made to keep the usage of the program simple. The program itself is listed in figure 7. A sample case is listed as figure 8. The input cards used to obtain the data in figure 8 are listed in figure 9. Figure 10 contains a listing of a sample plotting program and figure 11 contains listings of sample body contour programs.

DECK MAKE-UP

Deck label	Subroutine 	Description
EF3131	(main)	Control program.
EF3132	BODY	Computes a body point.
EF3133	FLOW	Computes a flow-field point.
EF3134	JUGGLE	Refines solution when mesh size is large, by averag- ing upstream points.
EF3135	PUNT	Output subroutine.
EF3136	CBODY	Dummy subroutine. If the centerbody ordinates are given in analytic form, this program should be replaced by a subprogram that computes the function and its first derivative. The function should be in the form, $r = f(x)$, where r is the distance along a line perpendicular to the body axis and x is the distance along the body axis. The CALL statement is "CALL CBODY (I,X,R,DR)" where X = x, R = r, and $DR = dr/dx$. At the beginning of the control program an entry is made to this subprogram with the control word $I = 1$ to allow for the ini- tialization of the subprogram. For all other entries $I = 2$. On the initial entry X should be set equal to the last value of X on the center- body.
EF3137	ABODY	Dummy subroutine. If the cowl is given by an analytic expression, this program should be replaced by a subprogram that computes the function as indicated under CBODY. In this case the CALL statement is "CALL ABODY (I,X,R,DR)." On the initial entry, when $I = 1$, the cowl lip ordinates should be returned in X and R.

Deck l a bel•	Subroutine name	Description
EF3138	SHOCK	Computes a shock point.
EF3139	CONIC	Sets.up a conical input ray.
EF3140	ERROR	When an error condition is encountered, this sub- program prints an error code which may be used to determine the type of failure. The next case is then read in under most circumstances. If the error is irrevocable, EXIT is usually called.
EF3141	ENDFIL	This subroutine is entered when the last stacked case has been completed. This condition is sig- nalled by the input card with the word "DONE" in columns 1-4.
EF3142	FLINT	Computes with the point of intersection of the flow field with the cowl lip.
EF3143	SPLOT	Dummy subroutine. To be used if plotting is not wanted. (See EF3150.)
EF3144	ACRAY	Computes a two-dimensional input ray.
EF3145	CUBIC	Finds roots of a cubic and selects proper root for the shock angle equation.
EF3146	UPSC	Computes the upstream conditions for a shock point.
EF3147	BSINT	Computes the intersection of a shock wave with either the centerbody or cowl.
EF3148	CBODY	Sample subroutine for computing the centerbody ana- lytically.
EF3149	ABODY	Sample subroutine for computing the cowl analyti- cally.
EF3150	SPLOT	Constructs arrays for plotting. The user must supply a program that writes the plot tape.
EF3152	PAGE, TITLE	Controls page numbering and headings.

TAPES

Logical tape no.	Usage
5	INPUT
6	OUTPUT
7	PLOTTING OUTPUT (Optional)

ł.

INPUT CARDS

All input is in floating-point form, 7 values per card, 10 columns per value, except for the first card. (See fig. 9 for a sample case.)

Card no.	Columns	Contents
l	1-72	Case identification in Hollerith.
2	1-10	N = number of input points if initial ray is to be read in. N = O, if initial input ray is to be computed as conical input ray. (N \leq 50)
	11-20	NOB = number of centerbody crdinate points if body is in tabular form. NOB = 0, if body is analytic. (NOB \leq 50)
	21-30	NOA = number of cowl ordinate points if cowl is in tabular form. NOA = 0, if cowl is analytic. (NOA \leq 50)
	31 - 40	MAXNP = maximum number of points allowed in a ray. If no value is specified, it is set to 50. (MAXNP \leq 50)
	41 - 50	NODIS = number of points to be discarded between the points kept. When the number of points in a vertical ray exceeds the value assigned to MAXNP, and NODIS = 1, every other point is discarded.
	51-60	IDIM = 2 or 3 determines whether the solution is to be two-dimensional or three-dimensional axisymmetric. If no value is assigned, a three-dimensional solution is assumed.
ć	1-10	EMIN, M_{co} = free-stream Mach number.
	11-20	GAMMA, γ = free-stream ratio of specific heats.
	21-30	SING, S $_{\infty}$ = free-stream entropy, dimensionless.

Card no.	Columns	Contents
	31-40	THETA, $\theta_{\rm SH}$ = shock wave angle (in degrees)
► ٤ ₄ .	1-10	TEST, convergence test for iterations $(10^{-6}$ gives good results).
	11-20	CRMAX, maximum distance between mesh points. If this is exceeded, a refinement is attempted.
	21-30	COALT, coalescence is said to occur if the increments in x and r are both less than this test quantity.
	31-40	SPACE, controls spacing on the shock wave (in the x direction), as a percentage of the distance from the nose to the initial input ray.
	41-50	SPACC, controls distance from the cowl lip to the initial ray in the second region as a percentage of the bow shock spacing. If no value is given SPACC is assumed to be 0.50.
5a	(Optiona x ordi	l - include if body is defined in tabular fashion.) nates - NOB values on the centerbody.
5b	(Optiona analytic User's f	l - may be included or not if centerbody is defined by an function.) format - Constants used in centerbody program.
6	(Optiona r ordin	l - include if body is defined in tabular fashion.) ates - NOB values on the centerbody.
7	(Optiona δ angle table va should b	l - include if body is defined in tabular fashion.) (in degrees) that the line segment joining adjacent lues makes with the body center line. NB = NOB-l values e specified.
8a	(Optiona x ordin	l - include if body is defined in tabular fashion.) ates - NOA values on the cowl.
а 8	(Optiona lytic fu User's f	l - may be included or not if cowl is defined by an ana- nction.) ormat - Constants used in cowl program.
9	(Optiona r ordin	l - include if body is defined in tabular fashion.) ates - NOA values on the cowl.
10	(Optiona δ angle table va should b	l - include if body is defined in tabular fashion.) (in degrees) that the line segment joining adjacent lues makes with the body center line. NA = NOA-l values e specified.

15

.

Cand no	Columns	Contents
card no.		·····
11	(Optiona input ra	l - include if program is to compute the initial conical y, that is, $N = 0$.)
	1-10	XB, x_0 , initial x value on the body at which the mesh is to start.
	11-20	RB, r _o , initial r value on the body.
	21-30	EMSH, ^M SHOCK, ^{Mach} number on the shock wave.
	31-40	EMBODY, M _{BODY} , Mach number on the body.
	41-50	DELSH, δ_{SHOCK} (in degrees).
	51-60	DELBD, δ_{BODY} (in degrees).
	61-70	NOPIN, number of points in initial conical input ray.
11	(Optiona be read routine	al - include N of these cards if the initial ray is to in, instead of being computed by the conical imput sub- .)
	1-10	x _{j,k} , local x
	11-20	r _{j,k} , local r
	21-30	$\delta_{j,k}$, local δ (in degrees)
	31-40	W _{j,k} , local W
	41-50	S _{j,k} , local S
12	1-4	The word "DONE." Any number of cases may be stacked before this card. This card is needed on the last case in order to complete the plotting arrays and terminate properly.

INPUT FOR PLOTTING

These cards may be in any format the user chooses. The sample program included uses a 7F10.6 format and is set to read 5 cards placed after card no. 1 and before card no. 2. These cards contain the origin of the plot, the scale factors, the maximum value for each variable, and the minimum value of the ordinate. The Mach number and pressure distribution along both bodies are plotted versus x. The mesh is also plotted.

ERRORS

When an error occurs during the computation of a case, an error message is usually printed and the program goes on to the next case.

The following is a list of error messages that may appear:

.

Error Conditions

Deck <u>name</u>	Subroutine name	Error code	Probable cause of error
EF3131	(main)	l	The number of points in a ray exceeds MN (an input quantity \leq 50) or 50 if MAXNP is \leq 0.
EF3132	BODY	2	The iteration scheme for finding the intersec- tion of a Mach line and the body is not working. The subroutine for computing the function and its derivative may be incorrect.
EF3132	BODY	3	The local stream angle, δ , is greater than $\pi/2$.
EF3132	BODY) (}	The iteration for a body point is not converging.
EF3133	FLOW	5	The iteration for the local stream angle, δ , is not converging.
EF3135	PUNT	6	There is an error in the computation of the local Mach number.
EF3135	PUNT	7	The recovery, $P_t/P_{t_{\infty}}$, is greater than 1.0.
EF3138	SHOCK	8	There is an error in computing local entropy, S.
EF3138	SHOCK	9	There is an error in computing local velocity, W.
EF3138	SHOCK	10	There is an error in computing the shock wave angle, θ .
EF3139	CONIC	11	There is an error in computing the entropy, S.
EF3142	FLINT	12	The shock wave has fallen inside the lip.
EF3144	ACRAY	13	There is an error in computing the local entropy,

Deck name	Subroutine name	Error code	Probable cause of error
EF3144	ACRAY	14	There is an error in computing local velocity, W.
EF3144	ACRAY	15	There is an error in the shock wave angle, θ , or the Mach number, M, in the computation of a new region. The upstream Mach number is less than the local Mach number or the local Mach number is subsonic.
EF3146	UPSC	16	There are too few points in the upstream region.
EF3146	UPSC	17	There is an error in the computation of the upstream Mach number.
EF3147	BSINT	18	There is an error in finding the point of intersection of the body and the shock wave.

APPENDIX B

FLOW DIAGRAMS

A complete set of flow diagrams is included in figure 12 as a means of assisting the program user. These diagrams were drawn to conform to standard flowcharting techniques (ref. 7). Each diagram has been identified by the corresponding subroutine name and associated deck name.

REFERENCES

- Ferri, Antonio: The Method of Characteristics. General Theory of High Speed Aerodynamics. Vol. VI of High Speed Aerodynamics and Jet Propulsion, sec. G, W. R. Sears, ed., Princeton Univ. Press, 1954, pp. 583-668.
- 2. Liepmann, H. W.; and Roshko, A.: Elements of Gas Dynamics. John Wiley and Sons, Inc., 1957.
- Presley, Leroy L.; and Mossman, Emmet A.: A Study of Several Theoretical Methods for Computing the Zero-Lift Wave Drag of a Family of Open-Nosed Bodies of Revolution in the Mach Number Range of 2.0 to 4.0. NACA TN 4368, 1958.
- 4. Ames Research Staff: Equations, Tables, and Charts for Compressible Flow. NACA Rep. 1135, 1953.
- 5. Birkhoff, G.; and Mac Lane, S.: A Survey of Modern Algebra. Second ed., The MacMillan Co., 1953.
- 6. Nielsen, K. L.: Methods in Numerical Analysis. Second ed., The MacMillan Co., 1964.
- 7. Flowcharting Techniques. Form C20-8152, International Business Machines Corp.

Figure 1. - Typical flow field.

Figure 2.- Location of a flow-field point at the intersection of two characteristic lines.

Figure 3.- Normals to the stream line used for the entropy calculation.

Figure 4. - Location of shock points in regions other than the first.

Figure 5. - Location of field point used in the shock point computation.

		• 7 • 33
		, 5 , 20 , 26 , 32
s)		•5 •15 •25
NUMBER (09834982289597220
03/12/65 IAL FORMULA	MAIN0001 MAIN0002 MAIN0002 MAIN0005 MAIN0005 MAIN0005 MAIN0005 MAIN00010 MAIN0010 MAIN0012 MAIN0015 MAIN0016 MAIN0018 MAIN0018 MAIN0022 MAIN0022 MAIN0022 MAIN0022	MAIN 025 MAIN 026 MAIN 026 MAIN 028 MAIN 029 MAIN 030 MAIN 030 MAIN0035 MAIN0035 MAIN0037 MAIN00037 MAIN00037 MAIN00037 MAIN00037 MAIN003 MAIN0037 MAIN0037 MAIN0037 MAIN0037 MAIN0037 MAIN0037 MAIN0037
EF3131 External formula number - Source Statement - Intërna	<pre>IBJOB IBJOB IBFTC EF3131 NODECK MAIN PROGRAM C TWO-DIMENSIONAL OR THREE-DIMENSIONAL AXISYMMETRIC TWO-DIMENSIONAL OR THREE-DIMENSIONAL AXISYMMETRIC TWO-DIMENSIONAL OR THREE-DIMENSIONAL AXISYMMETRIC NASA, AMES RESCRACH COMPUTATION AND ANALYSIS BRANCH. C VIRGINAL L. SORENSEN, COMPUTATION AND ANALYSIS BRANCH. NASA, AMES RESCRACH CENTER, MOFFETT FIELD, CALIF. EXTERNAL ABODY , CBODY DIMENSION ICON(2, 9), IRR(9), NOP(2,4) DIMENSION ATAB(3,50), CTAB(3,50) DIMENSION ATAB(3,50), CTAB(3,50), M(2,4,50), S(2,4,50), DIMENSION ATAB(3,50), R(2,4,50), DEL(2,4,50), M(2,4,50), S(2,4,50), DIMENSION ATAB(3,50), R(2,4,50), R(2,4,</pre>	DIMENSION TEG(6) READ [5,101) [TEG(1), I=1,6) NOB =TEG(2) NOB =TEG(2) NOA =TEG(2) NOA =TEG(3) NODIS=TEG(4) NODIS=TEG(4) NODIS=TEG(6) IF (101M .LE. 0) ID1M=3 READ (5,101)EMIN,GAMMA,SING,THETA,XT THETA=0.0145329+THETA READ (5,101)TEST,CRMAX,SING,THETA,XT THETA=0.0145329+THETA READ (5,101)TEST,CRMAX,SING,THETA,XT TE (NOB)12,12,13 READ (5,101)(TEST,CRMAX,COALT,SPACE ,SPACC IF (NOB)12,12,13 12 CALL CB0DY(1,XT,R(1,1,1),DR) GO TO 3 13 READ (5,101)(CTAB(1,J),J=1,NOB) 13 READ (5,101)(CTAB(1,J),J=1,NOB)

8

.

Figure 7. - Program listing.

,34

	EF3131 Evicova, endmin a vindoed - Cnidefe statement - 14	03/12/65 Ntfrnai Formii A	NUMBER	(5			
	EALERIAL TURNULA NUMBER - DUCKEL STATEMENT						
	READ (5,101)(CTAB(2,J),J=1,NOB)	MAIN0043	,35	• 36	,37	• 38	• 39
		MAIN0044	• 40				
75	CALE SPLDT(3,CTAB(1,J),CTAB(2,J))	MAIN0045	• 4 L	• 42			
	CALL SPLOT(4.4.8)	MAIN0046	.43				
	NB=NOB+1	MAIN0047	• 4 4				
	READ (5,101)(CTAB(3,J),J=1,NB)	MAIN0048	• 45	,45	.47	,48	• 49
	XT=CTAB(1.NOB)	MAIN0049	, 50				
e	IF (NDA)15.15.16	MAIN0050	, 51				
15	CALL ABODY(1.ATAB(1.1).ATAB(2.1).DR)	MAIN0051	, 52	-			
ì	60 T0 11	MAI N0052	,53				
16	READ (5.101)(ATAB(1.4).J=1.NOA)	MAIN0053	,54	, 55	<u> </u> , 56	, 57	20 20
	READ (5,101)(ATAB(2,J),J=1,NOA)	MAIN0054	• 59	, 60	,61	, 62	• 63
	D0 76 J=1,NOA	MAIN0055	• 64				
76	CALL SPLOT(3,ATAB(1,J),ATAB(2,J))	MAIN0056	6 5	,65			
	CALL SPLOT(4, A, B)	MAIN0057	.67				
	NA=NOA+1	MAIN0058	• 68		i	i	1
	READ (5,101)(ATAB(3,J),J=1,NA)	MAI N0059	, 69	, 70	171	, 72	• 73
11	IREG=1	MAINDO60	• 7 4				
	I RAY=1	MAIN0061	• 75				
	IFAM=1	MAIN0062	,76				
	[±]	MAIN0063	. 77				
	1=1	MAIN0064	, 78				
	CALL PUNT(7)	MAIN0065	• 19				
	P4=[].0+0.5+(GAMMA-1.0)+EMIN ++2)++(GAMMA/(GAMMA-1.0))	MAIN0066	,80				
200	WIN=EMIN++2/(1.0+0.5+(GAMMA-1.0)+EMIN++2)	MAIN0067	, 81				
		MAIN0068	• 82				
	IF (N) 70,70,71	MAIN0069	, 83				
70	IANNEI	MAIN0070	• 84				
	CALL CONIC	MAIN0071	• 85				
	IF (LAST) 24,24,1	MAIN0072	, 86				
11	I ANN= I	MAIN0073	,87				
	DO 2 K=1,N	4700014H	22.				
	K=K	CIUUNIAN MAINOUTA	6 0 0	0	(0,		
	READ (5,101)X(1,3,5K)+K(1,5,3,K)+UEL(1,5,3,N)+M(1,5,3,N)+25(1,3,1,3) 	MAIN077	. 63				
•	UEL[1,J,K)=U.UI/40029*UEL[1,J,V) ////////////////////////////////////	MAIN0078	46	, 95			
V		MAI N0079	, 96				
0	IT (LA317 JU73011 SCD+S/T 1]]	MAIN0080	.97				
ก้		MAIN0081	, 98				
	TTYPE=1	MAIN0082	66				
		MAI N0083	,100				
	NDP([1.])=[N]	MAI N0084	.101				

Figure 7.- Continued.

1

¢

.

	EF3131 External formula number	ı	SOURCE STATEMENT	ı	03/12/65 Internal Formula	NUMBER	s)
	K=N Gn tn 24				MAIN0085	102	
43					MAIN0087	,104	
	K=K 60 ±0 ±11 ±00 ±1				MA [N0088	,105	
57	L+18C+JC+8C+JC1 D1 D9 IN=1N+1				MAIN0089	106	
- 80	#UP=#W(1.J.K)				MAINDOU	108	
1	DUP=DEL(1,J,K)				MAIN0092	.109	
	SUP=S(I,J,K)				MAIN0093	,110	
	XB=X([,J,K)				MAI N0094	,111	
	RB=R(I,J,K)				MAIND095	,112	
	IF (I-1) 40,40,41				MAIN0096	,113	
F	L = L 1 D = J				MAINUUS PAINUUS PAINUU	9 T T 6	
	DO 53 M=1,9				MAIN0099	.116	
53	ICON(IP,M) = IRR(M)				MAINDIOD	,117	,118
	[FAM=1				MAINOIDI	,119	
i	IF (NB) 51,51,52				MAINDIOZ	,120	
21	CALL CBUDY(2,XB,RB,DR)				MAINOLO3	,121	
	UAI=AIAN(UK) Go to 42				MAINOLO4	,122	
5	00 45 1 ≡2.NOR				COTON TAN	1 26	
;	IF (X8-CTA8(1.L)) 46.46.45					1 2 5	
46	DA1=0.01745329*CTAB(3,L-1)				MAINDIDB	.126	
	G0 T0 42				MAIN0109	,127	
45	CONTINUE				MAINOILD	,128	,129
	GO TO 1				MAINOIII	,130	
40	[=2				MAINDILZ	151,	
	11 50 64 M-1 0				WAINULLS	132	
54	ICON(IP.M)=IRR(M)				MAINULL4 MAIND115	134 134	.135
	IFAM=2				MAINOII6	.136	
	IF (NA) 47,47,48				MAINOILT	,137	
47	CALL ABODY(2,XB,RB,DR)				MAINO118	,138	
	DAI=ATAN(DR)				MAINO119	,139	
	60 T0 42				MAINDIZO	,140	
49	DO 49 L=2,NDA				MAIN0121	,141	
i	IF (XB-ATAB(1,L)) 50,49,49				MAIN0122	,142	
20	UA1=0.01/45329*AIAB(3,L-1) Co to 42				MAIN0123	,143	
04					1770N188	***	
5	CONTINUE GO TO i				MAINUL25	147	• 146
						•	

.

.

Figure 7. - Continued.

03/12/65 INTERNAL FORMULA NUMBER(S) 152 152 152 153 ,170 ,171 ,172 ,173 ,183 ,184 ,185 ,185 ,186 ,187 ,187 ,157 ,158 ,166 ,167 ,168 ,169 ,175 ,176 ,178 ,180 ,181 ,160 ,179 ,163 ,164 ,165 ,161 ,162 MAINO151 MAINO152 MAINO153 MAINO154 MAINO154 MAIN0165 Main0165 Main0167 Main0167 MAIN0149 MAIN0150 MAIN0133 MAIN0134 MAIN0135 MAIN0135 MAIN0127 Main0128 Main0129 MAIN0142 MAIN0143 MAIN0159 MAIN0156 MAIN0158 MAIN0160 **MAIN0162** MAIN0163 HAINOL64 MAIN0130 MAIN0138 MAIN0139 MAIN0140 MAIN0141 MAIN0144 44 I NO 145 441N0146 MAIN0147 44IN0148 MAIN0157 MAIND161 MAIN0132 MAIN0137 MAIN0131 ı SOURCE STATEMENT CALL ACRAY(DAI, WUP, SUP, DUP, XB, RB) ŧ CALL BUDY(ABUDY,ATAB(1,1),NUA) IF (X(1,J,K)-XT) 17,17,1 KP=KP+1 5 GO TO (9,10), IFAM 9 CALL BODY(CBODY,CTAB(1,1),NOB) 60 TO 14 EF3131 External formula number IF (KM-NOP(I,JP)) 34,34,36 GO TO (35,37,35,37),J NOP(I,J)=IN-1 R(1,J,K)=R(1,JM,KH) W(1,J,K)=M(1,JM,KH) S(1,J,K)=S(1,JM,KM) U(1,J,K)=C(1,JM,KM) DEL(1,J,K)=DEL(1,JM,KM) KP≟O G0 T0 (1,4,5,6,7),J + JP=1 5 KP=KP+1 5 G0 T0 8 IF (LAST) 8,8,1 IF (K-IN+1) 18,18,19 Call Flow X([,J,K)=X([,JM,KM) IF (LAST) 39,39,1 IF (IN-1) 1,1,55 J=1+1 IF(IFAM) 33,33,17 24 IRAY=IRAY+1 42 IREG=IREG+1 KM=KM+1 ITYPE=1 1+dL=dL KM=KP+1 IRAY=1 **JN**=JP K=K+1 K=K+1 1 N=2 ן=ר 1 ¥=1 1=5 55.33 s ~ 110 **1**8 4 34 34 33

Figure 7.- Continued.

																							416-																	
S)																							512.																	
NUMBER	061.	191.	,192	,193	,194	, 195	,196	,197	,198	، 199	,200	1024		203	204	.205	205	202	208	502.	210	112.	-212	215.	- 216	.217	,218	,219	, 220	1224	7774	6774 7755	1000	.226	.227	,228	, 229	,230	,231	
03/12/65 Al formula	MAI N0169	MAIN0170	MAIN0171	MAIN0172	MAIN0173	MAINAL74	MAIN0175	MAIN0176	MAIN0177	MAIN0178	MAIN0179	10100100	TATINITATION	MAIND183	MAIN0184	MAIN0185	MAINDIRG	MAINDIA7	MAINDIBB	MAIND189	MAIN0190	MAIND191	MAIN0192	ED LON I W	MAIN0194	MAIN0195	MAIN0196	MAIN0197	MALNO198	66T0N184			2020N1V	441N0204	4A I N0205	4A I NO206	1A I NO207	1A I NO 208	14 I N0209	OTZONIEL
INTERN																							GOTOBO							_					-	-	•	-	•	-
I													Ċ										2,111																	
MENT													FFDS 5	1 									VLAB(
STATE													L FXC										۲. ۲.																	
URCE													A RAY										. (X.																	
SO													S IN										RII																	
۱ ~													POINT										AND.											2		2				
UMBER													A OF								2													AUN. (90N.(
ULA N								•	20	-			NUMBER			23				43	,25,2		TAB(1			64								B(1,1		B(1,1		-		•
L FORM									0000			31.89	THE			1,22,		_	9,1	3,44,	T) 60	IANN	LT. A		3,1	4,80,							I FAM	Y, ATA		r, cta	47 CI	120.0	14742	
F313			2	E			INT					31.	E=1.	R(1)		-2) 2	z	KCOUP	59,5	-1) 4	ж)-х	. 24) .		-	63,6	-1) 6						z	.27) .	(ABOD'		CBUD	X-14	24.8		
EXTE	0 38					40 40			ITYPE			IN-50	R C00	ERRO	-	ITYPE	=(r.I	SHOC	AST)	TYPE	((1,)	19) (((1,)	FLIN	AST)	TYPE	7		24	ī	1 24	=([1 (26,	BUDY (28	BUUY		(82	X TW-N	
	60 1					L US			3 4	NOP		IF (ERRO	CALL	00		NOP	CALL		L L	L L	60 1	EF C	CALL	IF (1	IF C		ITYPE	60 10	I N= I N	GO TC	NOP(1	50 IC	CALL	נה בר פה בר			en ro		
	1	5	38	2			÷		32		5			85		20	51	31		59	44	90	61	62		63	+ D	25		22		23		26	1	17		3	82	

ļ

1

.

.

Figure 7.- Continued.

03/12/65 - INTERNAL FORMULA NUMBER(S) SOURCE STATEMENT 1 EF3131 External formula number

	FRROR CODE=1. THE NUMBER	OF POIN	115 1	A Z	RAY	EXCEEDS	MAXNP=MAXIMUM	MAINA2	11			
	NUMBER OF POINTS ALLOWED	IN A RA	17 CI	NPUT	NO.	NTITY).		MAINB2	12	,232		
, [a	CALL FRANK(1)							MAIN02	13	,233		
1	CTCE ENTRY							MAIN02	14	1234		
٤3	K=1							MAIN02	15	,235		
5	IF (NODIS) 87.87.88							MAINO2	16	,236		
87	CALL FRENR(1)							MAIN02	17	, 237		
5								MAINDZ	18	,238		
90	KD-24NODIS							MAIN02	19	,239		
2	TE FMODIN, NODISAI) , NE.	1 60 1	rn 87					MAIN02	20	,240	,241	,242
	1. 1700/114/10010-11 11-1 DO 04 K=2.50	}	, ,					MAIN02	21	,243		
								MAIN02	22	,244		
								MAIN02	23	• 2 4 5		
								MAT NO 2	40	246		
	DEL([,J,K)=DEL([,J,KP)								- u			
	K (I.J.K)=N (I.J.KP)							JUN I NUZ	52	1 + 7 4		
	<pre>(I.J.K)=S (I.J.KP)</pre>							HAIN02	26	,248		
	(1, 1, K) = (1, 1, KP)							MAIN02	27	,249		
	NODII IIEK							MAIN02	28	•250		
	KD-KD4MOO1 C41							MAIN02	29	,251		
	TE (KD .CT. MAXNP) GO TO	89						MAIN02	30	,252	,253	,254
24								MAI NO2	31	,255	,256	
	SDAFF=2.0++NDIS+SPACF							MAI NO2	32	, 257		
5								MAINOZ	33	,258		
								MAIN02	34	,259		
								MAIN02	35			
100	FORMAT(7110)											
101	FORMAT(7F10.6)									040		
	END								5	0076		

Figure 7.- Continued.

30

ი ი

S)															, 23
NUMBER (ີ 4 ມ	<u>, o r</u>	- 00 0	, 11 , 12	, 13 , 14	,16 ,17	119	,21 ,22
03/12/65 NAL FORMULA	800Y0001 800Y 002 800Y0003 800Y0003	800Y 005 800Y0006 800Y0006	BODY0008 BODY0009 BODY0010	800Y0012 800Y0012	BUDY0014 BUDY0015 BUDY0015	FABODY0017 BODY0018 BODY0019	BODY0020 BODY 021	800Y0022 800Y0023	B0DY0025 B0DY0025	BUDY0027 BUDY0028	B00Y0030 B00Y0030 B00Y0031	600Y0032 800Y0033 800Y0034	800Y0035 800Y0036 800Y0036	B00Y0038 B00Y0039	B0DY0041 B0DY0042
EF3132 External formula number - Source Statement - Internal	EE3132 NODECK BODY POINT SUBROUTINE. BASA, AMES RESEARCH CENTER, MOFFETT FIELD, CALIF. SUBROUTINE BODY(FUN,TAB,MAX) B	COMMON /DIM/ IDIM Dimension Aa(1),Tab(3,50) Dimension icon(2, 9),irr(9),nop(2,4) Buttension icon(2, 9),irr(9),nop(2,4)	UIMENSION ATAB(3,50),CTAB(3,50) DIMENSION X(2,4,50),R(2,4,50),DEL(2,4,50),W(2,4,50),S(2,4,50), B LU(2,4,50) COMMON TRR	COMMON X , R , DEL , W , S , U B COMMON GAMMA , TEST , CRMAX , SCB , SAN , P4 B	CUMMUN SING , XI , IHETA , EMIN , MIN , ICON B COMMON I , NOP , CTAB , ATAB , NOB , NOA B COMMON COALT , LAST , XIN , IHETB , SPACF B	EQUIVALENCE (IRR(1),ITYPE),(IRR(2),IREG),(IRR(3),IRAY),(IRR(4),IFAB M),(IRR(5),IN),(IRR(6),J),(IRR(7),JP),(IRR(8),K),(IRR(9),KP) TAN(X)=SIN(X)/COS(X) B	KPP1=KP+1 IF (K-1) 3,3,4 B	60 10 (2+0) 17AM S(1,) K) = SCB F(1,) (K) = SCB	60 TO 7 KP=KP−1	KPP1=KP+1 60 to (4.5),1FAM 51(1-J(K)=5AN	T=-1.0 00 8 ITER=1,25 VI 1 / / v 1 0 / no.1	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	хг.хуууууу (Х.Х.Х.Т.П. 20,77,77 - 50,77,77 - 61 АЗ=U(1,2/P,KPP1)- DEL(1,JP,KPP1)+Т В(TANAZ=TAN(A2) - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000	T1=(TAB(2,LP)-TAB(2,LP-1))/(TAB(1,LP)-TAB(1,LP-1))	IF (X(I,J,K)-TAB(I,LP)) 37,37,99 CONTINUE B(
	C ¢ LBFI							n n	4	o ر	2	11	36		66

Figure 7.- Continued.

,42 INTERNAL FORMULA NUMBER(S) 52 , 38 , 39 58 59 .60 • 62 .46 + 48 • 49 . 50 52 .53 54 . 55 , 61 24 25 25 26 29 29 29 31 32 34 41 .43 44 45 47 51 ,35 ,36 .37 800Y 069 800Y0070 800Y0071 800Y0072 800Y0073 800Y0073 074 B00Y0048 B00Y0049 B00Y0050 600Y0079 **300Y0080** B0DY0043 B0DY0044 30070076 B00Y0078 B00Y0082 B00Y0083 B00Y0084 BODY 066 B00Y0068 B00Y0077 **BODY008**1 800Y0046 **BDDY0054** BODY 055 B00Y0056 30DY0058 BODY0059 300Y0060 B0DY0062 B00Y0063 B00Y0064 B00Y0065 **BODY0045** B0DY0047 BODY0053 B0DY0067 B00Y0052 BODY0057 BODY 061 BODY0051 BODY K(I,J,K)=R(I,JP,KPP1)- TANA2+T *(X(I,J,K)-X(I,JP,KPP1)) Del(I,J,K)=TAB(3,LP-1)*.017453293 W(I,J,K)=W(I,JP,KPPl)+C2*RA2-D2*RA2*(S(I,J,K)-S(I,JP,KPPl)) T1={DEL(I,JP,KPPl)-DEL(I,J,K))*RA2 W(I,J,K)=W(I,J,K)+ T1*T ŧ SOURCE STATEMENT COR2={R(I,JP,KPP1)-R(I,J,K))/R(I,JP,KPP1)/SIN(A2) C2=CDR2=SIN(U(I,JP,KPP1))=SIN(DEL(I,JP,KPP1)) R2=Cdr2=SIN(U(I,JP,KPP1))=SIN(DEL(I,JP,KPP1)) D2=O_5=SIN(2.0+U(I,JP,KPP1))/GAMMA IF (DEL(I,J,K)-1.570796) 17.17.16 CALL ERROR(3) IF (ABS(W(I,J,K)-WPREV)-TEST) 23,23,22 DEL(1, JP, KPP1)+T T1#T X(I,J,K)=X(I,J,K)-RATIO IF (ABS(RATIO)- TEST) 15,15,9 IF (X(I,J,K)-XT) 41,41,40 CALL FUN(2,X(1,J,K),R(1,J,K),OR) DEL(1,J,K)=ATAN(DR) ı EXTERNAL FORMULA NUMBER IF (ABS(GPAN)-1.E-15) 2,2,14 IF (COR2-CRMAX) 20,20,21 GO TO (33,33,31),IDIM TANA2+T IF (ITER-1) 2,18,19 A2=U(1,JP,KPP1)-RATIO=GAN/GPAN COR2=ABS(COR2) CALL JUGGLE(2) CALL JUGGLE(8) **FF3132** TANA2=TAN(A2) CALL PUNT(3) CALL PUNT(3) GPAN=DR+ 60 TO 22 CONTINUE GO TO 2 GO TO 1 RETURN C2=0.0 19 5 6 18 21 14 9 33 16 2 41 -12 37 17

Figure 7.- Continued.

03/12/65

20 IF (K. EQ. 1) GO TD 25 26 KP=KP+1 26 KP=KP+1 26 KP=KP+1 26 KP=KP+1 26 KP=KP+1 26 KP=KP+1 26 KP = KP+1 28 CALL PUNT(8) 28 CALL PUNT(8) 29 CALL PUNT(8) 20 CALL PUNT(8) 20 CALL PUNT(9) 20 CALL	20 IF (K. EQ. 1) GO TO 25 26 KP=KP+1 26 KP=KP+1 25 IF (IFAM-1) 28.28.29 25 IF (IFAM-1) 28.28.29 26 CALL PUNT(8) 28 CALL PUNT(8) 29 CALL PUNT(9) 29 CALL PUNT(9) 29 CALL PUNT(9) 20 V0099 377 20 CALL JUGGLE(5) 20 CALL JUGGLE(5) 300 V0094 300 V095 300 V005 300 V0	EF3132 External formula number	I	SOURCE STATEMENT	I	03/12/65 Internal Formula	NUMBER	(S)	
Z6 KP=KF+1 Z5 IF (IFAM-1) 28,28,29 Z6 CALL PUNT(8) RETURN 29 CALL PUNT(8) RETURN 29 CALL PUNT(9) 29 CALL PUNT(9) 20 CALL SW0099 77 8 CONTINUE CALL EROR(4) 8 CONTINUE 5 CALL EROR(4) 8 CONTINUE 8 CONTINUE 8 CONTINUE 5 CALL EROR(2) 8 CONTINUE 8 CONTI	Z6 KP=KP+1 Z6 KP=KP+1 Z6 KP=KP+1 Z6 KL PUNT(8) 28 CALL PUNT(8) 29 CALL PUNT(8) 29 CALL PUNT(9) 29 CALL PUNT(9) 20 CALL PUNT(9) 20 CALL JUGGLE(5) 20 MR2V=W(1,J,K) 20 MR2V=W(1,J,K) 2	20 IF (K .EQ. 1) GO TO 25				BODY 085	.67	• 68	69.
Z5 IF (IFAM-1) Z8.28.29 B0DY0087 77 28 CALL PUNT(8) B0DY0088 772 B0DY0089 773 800Y0090 775 800Y0090 775 800Y0090 775 800Y0091 775 800Y0091 775 800Y0092 775 800Y0093 777 80Y0093 777 80DY0093 777 80DY0093 777 80DY0093 777 80DY0094 778 779 775 800Y0094 778 779 775 800Y0094 778 779 775 800Y0094 778 779 775 800Y0094 778 775 800Y0093 777 800Y0093 777 800Y0093 777 800Y0093 777 800Y0093 777 800Y0094 778 775 800Y0094 775 800Y0094 778 775 800Y0094 775 800Y0094 778 775 800Y0094 778 775 800Y0094 775 800Y0094 775 800Y0094 775 800Y0094 788 800Y0094 788 800Y0094 788 800Y0095 800Y0095 800Y0095 800Y0095 800 800Y0095	25 IF (IFAM-1) 28.28.29 26 CALL PUNT(8) 77 29 CALL PUNT(9) 77 8 CALL PUNT(9) 77 8 CALL PUNT(9) 77 8 CALL PUNT(9) 77 20 CALL JUGGLE(5) 800Y0092 77 8 CALL JUGGLE(5) 800Y0094 77 8 CALL JUGGLE(5) 800Y0094 77 8 CALL ERROR(4) 800Y0094 77 8 CALL ERROR(4) 800Y0094 78 8 CALL ERROR(2) 800Y0094 78 8	26 KP=KP+1				BODYOOB6	.70	•	•
ZB CALL PUNT(8) 72 BODY0088 77 800 0089 77 800 0089 77 800 0089 77 800 0090 77 800 0090 77 800 0090 77 800 0091 77 800 0091 77 800 0092 77 800 0093 77 800 0093 77 800 0093 77 800 0093 77 800 0093 77 800 0093 77 800 0093 77 800 0093 77 800 0093 77 800 0093 77 800 0093 77 800 0093 77 800 0093 77 800 0093 77 800 0093 77 800 0093 77 800 0093 77 800 0095 78 800 0005 78 800 0095 78 800 0095 78 800 0095 78 800 0095 78 800 0095 78 800 0095 78 800 0095 78 800 0095 78 800 0005 78 800 0095 78 800 0005 78 8000000000	ZB CALL PUNT(8) B0DY0088 772 RETURN 800000090 774 RETURN 80000090 774 RETURN 80000092 775 CALL JUGGLE(5) 800Y0092 775 CALL JUGGLE(5) 800Y0094 778 775 CALL ERROR(4) 800Y0094 778 775 CALL ERROR(4) 800Y0094 778 775 CALL ERROR(4) 800Y0094 778 800 RETURN 800Y095 782	Z5 IF (IFAM-1) 28,28,29				B0DY0087	, 71		
RETURN B0DY0089 73 29 Call PUNT(9) B0DY0090 74 RETURN B0DY0091 75 22 WPREV=w(1,J,K) B0DY0092 76 23 WPREV=w(1,J,K) B0DY0093 77 24 L JUGGLE(5) B0DY0093 77 80DY0093 77 B0DY0093 77 80DY0093 77 B0DY0094 78 80DY0094 78 B0DY0094 78 80DY0094 78 B0DY0094 78 80DY095 80DY095 80 80 80DY095 80 96 80 80DY095 80 96 80 80DY095 80 98 98 80DY095 80 98 98	29 CALL PUNT(9) RETURN 29 CALL PUNT(9) B0DY0090 74 RETURN B0DY0091 75 22 WPREV=w(1,J,K) B0DY0092 77 8 CALL SEROR(4) B0DY0094 78 8 CALL ERROR(4) B0DY0094 78 8 CALL ERROR(2) B0DY0095 80 8 CALL ERROR(2) B0DY0095 80 8 CALL ERROR(2) B0DY0095 90 8 CALL ERROR(2) B0DY0095 91	ZB CALL PUNT(8)				BODY0088	, 72		
29 CALL PUNT (9) BODY0090 ,74 22 METURN BODY0091 ,75 22 MERV=W(1,),K) 23 CALL JUGGLE(5) BDDY0092 ,77 8 CONTINUE BODY0094 ,78 6 CALL ERROR(4) BDDY0094 ,78 7 CALL ERROR(4) BDDY0095 ,80 8 CONTINUE BODY095 ,80 7 CALL ERROR(2) 8 CONTINUE BDDY095 ,80 8 CONTINUE BODY095 ,80 8 CONTINUE BODY05 ,80 8	29 CALL PUNT(9) B0DY0090 ,74 RETURN B0DY0091 ,75 22 WREV=#(1,1,K) 22 WREV=#(1,1,K) 23 WREV=#(1,1,K) 2 CALL JUGGLE(5) 8 CONTINUE CALL ERROR(4) 8 CONTINUE CALL ERROR(4) 8 CONTINUE CALL ERROR(4) 8 CONTINUE CALL ERROR(4) 8 CONTINUE 8 C	RETURN				BUDYO089	.73		
RETURN BGDY0091 75 22 WREUS 000002 76 22 WREUS 0000093 77 30000093 77 0000093 40000094 78 0000093 8 CONTINUE 0000094 78 6 CALL ERROR(4) 8000094 78 77 000094 77 8 CONTINUE 0000094 78 70 77 8000094 71 8000094 78 71 8000094 78 72 CALL ERROR(2) 8000094 73 77 8000094 74 8000094 78 77 8000094 91 78 8000094 91 79 8000094 91 70 8000094 91 70 8000094 92 70 8000094 92 70 8000094 92 70 8000094 92 70 8000	RETURN BGDY0091 75 22 WPRE-w(1,J,K) BODY0092 76 22 CALL JUGGLE(5) BODY0093 77 8 CALL ERROR(4) BODY0094 77 8 CALL ERROR(4) BODY0095 77 8 CALL ERROR(2) BODY0095 78 77 60070096 90 90 8 CALL ERROR(2) BODY 095 90 8 CALL ERROR(2) BODY 095 91 8 BODY 095 91 93 8 ETURN BODY 095 93 8 ETURN BODY 095 93 8 BODY 099 93 93	29 CALL PUNT(9)				800Y0090	, 74		
ZZ WPREV=W(I_J,K) Call JuGGLE(5) 8 CONTINUE 8 CONTINUE 8 CONTINUE 8 CONTINUE 8 CONTINUE 8 CONTINUE 8 DDY 005 8 DDY 095 8 DDY 095 8 DDY 095 8 DDY 096 8 DDY 097 8 DDY 096 8 DDY 097 8 D	ZZ WFRE-W(I,J,K) Gall JuGGLE(5) 77 6 Call JuGGLE(5) 8 Call B00Y0094 77 8 Call ERROR(4) 8 Call ERROR(4) 8 Call ERROR(2) 8 Call ERROR(3) 8 Call ERROR(4) 8 Call ERROR(5) 8 Call ERROR(5	RETURN				B0DY0091	, 75		
CALL JUGGLE(5) B0DY0093 77 8 CONTINUE B0DY0094 78 79 79 79 8 CONTINUE 80DY 095 78 77 8 CALL ERROR(4) 80DY 095 78 8 CALL ERROR(2) 82 8 CALL ERROR(2) 82 8 CALL ERROR(2) 82 8 CALL ERROR(2) 83 8 CALL ERROR(2) 82 8 CALL ERROR(2) 78 8 CALL ERROR(2) 78 78 78 78 78 78 78 78 78 78 78 78 78 7	CALL EKROR(1) 8 CONTINUE 8 CONTINUE 8 CONTINUE CALL EKROR(4) 8 CALL EKROR(4) 8 CALL EKROR(4) 8 CALL EKROR(2) 8	22 WPREV=W(I,J,K)				800Y0092	,76		
8 CONTINUE 800Y0094 ,78 ,79 ,79 ,79 CONTINUE 800Y0094 ,78 ,79 ,79 COLL ERROR(4) 800Y 095 ,80 CALL ERROR(2) 800Y 095 ,81 800Y 097 ,82 RETURN 800Y 097 ,82 RETURN 800Y 098 ,83	8 CONTINUE 800Y0094 ,78 ,79 ,79 ,79 CALL ERROR(4) 800Y 095 ,80 800Y 095 ,80 RETURN 800Y 095 ,81 800Y 096 ,81 800Y 097 ,82 RETURN 800Y 097 ,82 800Y 098 ,83 800Y 099 ,84 800Y 090 Y 00Y 800Y 090 Y 00Y 800Y 00Y 800Y 00Y 80 Y 00Y 800Y 00Y	CALL JUGGLE(5)				800Y0093	. 77		
CALL ERROR(4) BODY 095 ,80 Return BODY 096 ,81 2 Call Error(2) ,82 Return BODY 098 ,83	CALL ERROR(4) B0DY 095 ,80 RETURN B0DY 096 ,81 2 CALL ERROR(2) 82 RETURN B0DY 097 ,82 END 80DY 098 ,83 END 80DY0099 ,84	8 CONTINUE				B0DY0094	, 78	• 79	
RETURN BODY 096 81 2 Call Error(2) 800Y 097 482 Return 800Y 096 483	RETURN BODY 096 ,81 2 Call Error(2) 82 Return BODY 097 ,82 Return BODY 098 ,83 END 80DY0099 ,84	CALL ERROR(4)				80DY 095	, 80		
2 CALL EKROR(2) Return BODY 097 ,82 	2 CALL EKROR(2) 80DY 097 982 Return 80DY 098 93 END 80DY0099 984	RETURN				BODY 096	, 81		
RETURN BODY 098 ,83	RETURN B0DY 098 ,83 END B0DY0099 ,84	2 CALL EKROR(2)				BODY 097	, 82		
	END B0DY0099 ,84	RETURN				BODY 098	, 83		
END 80070099 ,84		END				800Y0099	, 84		

Figure 7.- Continued.

INTERNAL FORMULA NUMBER(S) 1010 FL0W0021 FL0W0022 FL0W0023 FL0W0025 FL0W0026 FL0W0027 FLOW 038 FLOW 039 FLOW 001 FLOW 002 FLOW0003 FLOW0004 FLOW 005 EQUIVALENCE (IRR(1), ITYPE), (IRR(2), IREG), (IRR(3), IRAY), (IRR(4), IFAFLOW0016 IM), (IRR(5), IN), (IRR(6), J), (IRR(7), JP), (IRR(8), K), (IRR(9), KP) CRFUN(QOODFL,QOOIFL,QOOZFL)=ABS((QOOIFL-QOODFL)/(QOOIFL*SIN(QOOZFLFLOW0018 FLOM0024 FL0W0030 FLOW0033 FLOW034 FLOW0035 FLOW036 FLOW0037 FLOW 040 FLDW0006 FLOM0008 FLOW0010 FLOW0013 FLOW014 FLOW0015 FLOW0019 FLOW 020 FL0M0028 FL0W0029 FLOW0031 FLOW0032 FLOW0041 FLOW042 FLOW0007 FLOW0009 FLOW0012 FLOW0011 03/12/65 FFC EF3133 NUDECK SUBRUUTINE FOR FLOW FIELD POINT. SUBRUUTINE FLOW SUBRUUTINE FLOW SUBRUUTINE FLOW COMMON /DIM/TDIM DIMENSION ICON(2, 9), IRR(9), NOP(2,4) DIMENSION ICON(2, 9), IRR(9), NOP(2,4) DIMENSION ATAB(3,50), CTAB(3,50), NOP(2,4,50), M(2,4,50), S(2,4,50), DIMENSION X(2,4,50), R(2,4,50), DEL(2,4,50), M(2,4,50), S(2,4,50), DIMENSION X(2,4,50), R(2,4,50), R(2,4,50), R(2,4,50), S(2,4,50), S(2,50), (T2#T) CFUN(Q003FL,Q004FL,Q005FL)=Q003FL+SIN(Q004FL)+SIN(U005FL) RAFUN(Q006FL,Q007FL)=Q006FL+TAN(Q007FL) DFUN(Q008FL)=SIN(2.0+Q008FL)/2.0/GAMMA Т SOURCE STATEMENT T1+T)/ GO TO (26,26,25),101M C2=CFUN(COR2,U(1,JP,KP+L),DEL(1,JP,KP+L)) Ral=RafUN(M(1,JP,KP),U(1,JP,KP)) DEL(I,JP,KP+l)#T T1=X(I,JP,KP)=TANA1+X(I,JP,KP+1)+TANA2 COR2=CRFUN(R(I,J,K),R(I,JP,KP+1),A2) X(I,J,K)=(R(I,JP,KP+1)-R(I,JP,KP)+ Tl=(X(I,J,K)-X(I,JP,KP))*TANAl DEL(I,JP,KP)+T DEL CRMAX THETA CIAB CIAB I 11+1 EXTERNAL FORMULA NUMBER R(I,J,K)=R(I,JP,KP)+ TAN(X)=SIN(X)/COS(X) D0 30 ITER=1,25 60 T0(4,5),IFAM T=1.0 60 T0 6 A2=U(I,JP,KP+1)-6 Al=U(I,JP,KP)+ T2=TANA1+TANA2 EF3133 TANA1=TAN(A1) TANA2=TAN(A2) 5 T=-1.0 C2=0.0 (((1 \$18FTC C C 4 22 5 2

Figure 7.- Continued
	EF3133 External formula number – Source Statement – Inter	03/12/65 Val Formula N	UMBER(S)
	RA2=RAFUN(W(I,JP,KP+1),U(I,JP,KP+1))	FLOW0043	, 20
	DI = DFUN(U(I,I,JP,KP))	FLOW0044	,21
	D2=DFUN(U(I,JP,KP+I))	FLOW0045	,22
¢	IF (K(I,JP,KP)) 8,8,9	FL0W0046	,23
ວ່	UEL[[,J,K]=(DEL[[,JP,KP+l)=RA2+W([,JP,KP+l)-W([,JP,KP)+C2=RA2]/	FL0W0047	
	(Z • 0 + Z • Z + Z + Z + Z + Z + Z + Z + Z + Z	FLOW0048	,24
	C1=0.	FLOW 049	,25
	CUKI=0.0	FLOW 050	,26
¢		FLOW0051	,27
20	CT=0.0 CT=0.0	FLOW 052	,28
S	CURT-CKFUNIKLIJJK/JFKLIJJFSKFIJALJ CD TA (28.28.37),IAIM	FLUM0053	,29
27	CI=CFUN(COR1,U(I,JP,KP),OEL(I,JP,KP))	FLUW U54 FLOWD055	, 5U
28	T1=W(I,JP,KP+1)-W(I,JP,KP)-C1+RA1+C2+RA2	FLOM0056	32
	DEL(I,J,K)=(DEL(I,JP,KP)*RA1+RA2*DEL(I,JP,KP+1)+ T1+T)/	FLON0057	
~,	(RA1+RA2)	FLOW0058	•33
n		FLOW0059	,34
	DU 33 1COM=1,25	FLOW0060	, 35
	UELII=UEL(1,3,4,K)	FLOW0061	,36
	A=CUKI+K(I,JP,KP)+KP)+KP) DEC(I,J,J,K)+T)	FLOW0062	.37
		FLOW0063	•38
	S(1,J,K)=S(1,JP,KP)+(S(1,JP,KP+1)-S(1,JP,KP))+A/(A+B) B04K-01-2041-1511 - V 511 - V 511 - V 51-00-000000000000000000000000000000000	FLOWD064	,39
	DKAKEUL#KKAL#(SU19/1)-S(1,9/K)))-UZ#KAZ#(S(1,9/K)-S(1,9/K)+K)) DKAKEUL#KKAL#(SU19/)-S(1,9/K))-UZ#KAZ#(S(1,9/4K)-S(1,9/F))	FL0W0065	,40
	DKAKFDKAK/ (KAL+KAZ) Del ji - y y - Del t do av t	FLOW0066	• 4 1
	UELIIJJAA/#UELITOKAN# F {ARKINFI/I_J4K}_NFITT]_TECT\ 10.10.22		.42
33	LI INDSCREETTATING PERSON TOTALS LICED TOTALS CONTINUE	FLUWUU08	143 44
	CALL ERROR(5)		644 440 47
	RETURN	FLOW 071	.47
10	T1=RA2+(DEL(I,J,K)-DEL(I,JP,KP+1))	FLOW0072	• 48
•	10 * 1 > 5 + (X * 0 * 1) * 2 × X × Z + Z × X × Z + Z + Z + Z × Z + Z × Z + Z + Z × Z + Z +	,FLOW0073	
-	KV+1)) TE /TTED_1/ 11 11 10	FLOW0074	• 49
10	IF (INCNEDIAL ILATIONSENTERT) 12 12 2 IF (ARCINENTIAL)	FLUW0075	50
4 m	11 11/2/12/21/21/21/21/21/21/21/21/21/21/21		121
17	IF (X(1,J,K)-X(1,JP,KP+1)) 20,20,22	FLOW0078	53
22	<pre>IF (ABS(X(I,J,K)-X(I,JP,KP+1))/XI-COALT) 23,21,21</pre>	FLOM0079	-54
23	IF [ABS(R(I,J,K)-R(I,JP,KP+1))/XT-COALT) 20,21,21	FLOM0080	, 55
20	CALL PUNT(2)	FLOW0081	,56
ā		FLOW0082	.57
15	CALL PUNI(1) Return	FL0W0083	,58 59
•			AC 4

i.

•

.

_	.67	
NUMBER(S)	766 766 766 709 709 709	
03/12/65 Internal Formula	FL0W0085 FL0W0086 FL0W0087 FL0W0089 FL0W0089 FL0W0089 FL0W 093 FL0W 093 FL0W 093	
ı		
STATEMENT		
SOURCE		
ı		
EF3133 External formula number	<pre>11 IF (COR2-CRMAX) 17,17,18 17 IF (R(I,JP,KP)) 14,14,19 19 IF (COR1-CRMAX) 14,14,18 18 CALL JUGGLE(3) 2 DPREV=DEL(1,J,K) 2 DPREV=DEL(1,J,K) 30 CALL LUGGLE(6) 30 CALL BROR(5) RETURN END</pre>	

(2)							.10		• 26
NUMBER							275 - 1- 68 - 46	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	50 50 50 50 50 50 50 50 50 50 50 50 50 5
03/12/65 Enal Formula	JUGGL000 JUGGL001 JUGGL002 JUGGL002	JUGGLOOG	JUGGL007 JUGGL008 JUGGL008	JUGGL011 JUGGL012 JUGGL013 JUGGL014	FAJUGGLO15 Jugglo16 Jugglo17 Jugglo17	JUGGL019 JUGGL020 JUGGL021 JUGGL022 JUGGL022	JUGGL 024 JUGGL 025 JUGGL 025 JUGGL 028 JUGGL 028	JUGGEL027 JUGGEL031 JUGGEL031 JUGGEL033 JUGGEL033 JUGGEL035	JUGGL 036 JUGGL 037 JUGGL 038 JUGGL 039 JUGGL 040 JUGGL 040
EF3134 External formula number - Source Statement - Inter	\$IBFTC EF3134 NODECK C JUGGLE SORENSEN, COMP AND ANALYSIS BRANCH. C NASA, AMES RESEARCH CENTER, MOFFETT FIELD, CALIF. Subroitive Juggle(L)	DIMENSION AATIJ, TLLZJ DIMENSION ICON(2, 9),IRR(9),NOP(2,4) DIMENSION ATAB(3,50),CTAB(3,50) DIMENSION ATAB(3,50),CTAB(3,50)	DIMENSION X(2,4,50),R(2,4,50),UEL(2,4,50),M(2,4,50),S(2,4,50), 10(2,4,50) Common IRR . DEL . M . S . U	COMMON GAMMA , TEST , CRMAX , SCB , SAN , P4 COMMON SING , XT , THETA , EMIN , WIN , ICON COMMON I , NOP , CTAB , ATAB , NOB , NOA COMMON COALT , LAST , XIN , THETB , SPACE	EQUIVALENCE (IRR(1),ITYPE),(IRR(2),IREG),(IRR(3),IRAY),(IRR(4),I IM),(IRR(5),IN),(IRR(6),J),(IRR(7),JP),(IRR(8),K),(IRR(9),KP) ASIN(X)=ATAN(X/SQRT(1,O-X**2)) UFUNLQOOFL)=ASIN(SQRT(1,O-GAMMA-1,O)*O.5*QOOFL**2)/QOOFL)	KPP1=KP+1 GO TO (1,2,1,4,5,4,7,8,7),L I T(1)=DEL(1,JP,KP) T(2)=W(1,JP,KP) T(3)=S(1,JP,KP)	T(4)=U(I,JP,KP) T(5)=X(I,JP,KP) T(6) =R(I,JP,KP) IF (LEQ. 1) RETURN 2 T(7)=EL(I,JKPP1) T(8)=U(L,JP,KPP1)	T(9)=S(1,JP,KPP1) T(10)=U(1,JP,KPP1) T(11)=X(1,JP,KPP1) T(12)=R(1,JP,KPP1) 11 RETUKN 4 DEL(1,JP,KP)=O.5*(DEL(1,J,K)+DEL(1,JP,KP))	W(I,JP,KP)=0.5*(W(I,J,K)+W(I,JP,KP)) S(I,4D*KP)=0.5*(S(I,JP,KP)) U(I,4P*KP)=UFUN(M(I,JP,KP)) X(I,4D*KP)=UFUN(M(I,JP,KP)+X(I,J,K)) R(I,4D*KP)=0.5*(X(I,JP,KP)+X(I,J,K)) R(I,4D*KP)=0.5*(R(I,JP,KP)+R(I,J,K)) IF (L. ±Q. 4) RETURN

.11

٠

Figure 7.- Continued.

• 27

• 42 INTERNAL FORMULA NUMBER(S) JUGGL042 JUGGL043 JUGGL044 JUGGL045 JUGGL046 JUGGL046 JUGGL049 JUGGL050 JUGGL052 JUGGL055 JUGGL055 JUGGL055 JUGGL055 JUGGL 060 JUGGL 061 JUGGL 063 JUGGL 063 JUGGL058 JUGGL 059 03/12/65 ī SOURCE STATEMENT 5 X(I,JP,KPP1)=0.5*(X(I,JP,KPP1)+X(I,J,K))
R(I,JP,KPP1)=0.5*(R(I,JP,KPP1)+BEL(I,J,K))
DEL(I,JP,KPP1)=0.5*(DEL(I,JP,KPP1)+BEL(I,J,K))
U(I,JP,KPP1)=0.5*(S(I,JP,KPP1)+S(I,J,K))
U(I,JP,KP1)=0[UN(M(I,JP,KPP1)+S(I,JJ,K))
U(I,JP,KP)=T(2)
X(I,JP,KP)=T(2)
X(I,JP,KP)=T(2)
X(I,JP,KP)=T(4)
X(I,JP,KP)=T(5)
X(I,JP,KP1)=T(1)
DEL(I,JP,KP1)=T(1)
DEL(I,JP,KP1)=T(1)
DEL(I,JP,KP1)=T(1)
DEL(I,JP,KP1)=T(1)
X(I,JP,KP1)=T(1)
DEL(I,JP,KP1)=T(1)
X(I,JP,KP1)=T(1)
DEL(I,JP,KP1)=T(1)
DEL(I,JP,KP1)=T(1)
DEL(I,JP,KP1)=T(1)
DEL(I,JP,KP1)=T(1)
DEL(I,JP,KP1)=T(1)
DEL(I,JP,KP1)=T(1)
X(I,JP,KP1)=T(1)
DEL(I,JP,KP1)=T(1)
R(I,JP,KP1)=T(1)
DEL(I,JP,KP1)=T(1)
R(I,JP,KP1)=T(1)
R(I,JP,KP1)
R(I,JP,K 1 EXTERNAL FORMULA NUMBER EF3134

• 43

Figure 7.- Continued.

ļ

	ĒX	EF3135 (TERNAL	FORMULA	NUMBER -	SOURCE	E STATEMER	1 - 1	03/12 NTERNAL FO	2/65 ORMULA N	NUMBER (S
\$18FT(C EF3135	NODECK						NUM	10001		
ပ	011PU	IT-INPUT	SUBROUT	INE. SOREN	SEN, CAB.	_		PUN	T0002		
ა	NASA, A	MES RES	EARCH CE	VTER, MOFF	ETT FIELD	D. CALIF.		PUN	T0003		
	SUBROUT	INE PUN	IT(L)					PUNJ	T0004		
	DATA DU	INE /4HD	ONE /					PUNI	T 005		
	DIMENSI	ON AA(1	, SBHED(12)				NUM	T0006		
	DIMENSI	ON ATA	B(3,50),(TAB(3,50)				LNNA	10007		
	DIMENSI	ON ICON	11. (9, 1)	R(9), NOP	(2,4)			PUNI	T0008		
	DIMENSI	ON X12.	4,50),R(2	2,4,50),DE	L(2,4,50)	• W(2,4,50	1,5(2,4,50	PUNI .(T0009		
	10(2,4,5	(0						PUN	T0010		
	COMMON	/DIM/ I	MIO					LNDA	T 011		
	COMMON	IRR						LNDA	T0012		
	COMMON	×	ч ч	, DEL		s ,	۰ ۱	PUNI	T0013		
	COMMON	GAMMA	, TEST	, CRMAX	, SCB	, SAN	, P4	INUG	F0014		
	COMMON	SING	• XT	, THETA	, EMIN	. WIN	, ICON	INUA	T0015		
	COMMON	I	, NOP	, CTAB	, ATAB	, NOB	, NOA	INUA	T0016		
	COMMON	COALT	, LAST	NIX •	, THETB	, SPACE		INUA	T0017		
	EQUIVAL	ENCE (II	RR(1), IT)	/PE), (IRR(.	2), IREG),	(IRR(3), I	RAY), (IRR(4), IFAPUNI	T0018		
	IM), (IRR	(NI.(2)	.(IRR(6),	J), (IRR17	1, JP1, (IR	R(8),K),(IRR(9),KP)	LNNG	T0019		
	ASIN(X)	=ATAN(X.	/SQRT(1.()-X**2])				LNUG	T 020		
	60 TO (1,2,3,4	,5,4,4,1(),16,27),L				PUNI	F 021	.1	
16	IB00=2							LNN	r0022	• 2	
	GO TO 1	L L						LNUG	T0023	ě.	
10	I=0081 0							LNNd	F0024	*	
	60 TO 1	-						PUNI	r0025	،	
-1	1800=3							PUNT	r0026	•6	
11	TA=1.0-	0.5+(GAI	MMA-1.0)*	HII'L'I'K)	-2			PUNT	r0027	.7	
	IF (TA	.LE. 0.1	0) 60 10	23				PUNT	r 028	8.	6.
21	. TB=5QRT	(TA)/WC	I,J,K)					PUNT	r 0029	11,	
	IF (18-	1.0) 22	,22,23					PUNT	r0030	,12	
23	CALL ER	ROR (6)						PUNT	r 031	.13	
	RETURN							PUNT	r 032	,14	
22	. U(I,J,K)=ASIN(TB)					PUNT	10033	,15	
	EM=1.0/	TB						PUNT	r0034	,16	
	DELTA=0	EL (I , J ,	K)+57.295	57795				PUNT	r0035	,17	
	P1=EXP(SING-St	[()*f,1					PUNT	r0036	,18	
12	P2=TA**	(GAMMA/	(GAMMA-1.	(10)				PUNT	10037	,19	
	P3=P1+P	2#P4						PUNT	10038	,20	
	WRITE (6,100)II	REG, IRAY,	K,X(I,J,K	1. R(I,J,K		A, EM,Pl	PUNT	10039	,21	,22
	60 10 (17,18,1	9),IBOD					PUNT	10040	,24	
17	CALL SP	LOT (6 , X	(I,J,K),É	(W)				PUNT	r0041	, 25	
	CALL SP	LOT 17, X	{[],], K), F	13)				PUNT	10042	,26	

,10

• 23

٠

٠

		• 43		• 64
		• 42		• 63
		,41 ,48		, 67 , 67 , 75
2)		440	• 512	• 66 • 74
NUMBER(22 22 22 22 22 22 22 22 22 22 22 22 22	0 0 4 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	70 70 70 70 70 70 70 70 70	60 66 77 77 77 77 77 77 77
3/12/65 L FORMULA	PUNT0043 PUNT0044 PUNT00445 PUNT0045 PUNT0046 PUNT0048 PUNT0048 PUNT0048 PUNT0048 PUNT0050	PUNT0055 PUNT0056 PUNT0058 PUNT0058 PUNT0059	PUNT0061 PUNT 062 PUNT 063 PUNT 064 PUNT 065 PUNT 066 PUNT 066 PUNT 068 PUNT 068	PUNT 0071 PUNT 072 PUNT 073 PUNT 075 PUNT 075 PUNT 076 PUNT 077 PUNT 078 PUNT 080 PUNT 080 PUNT 081 PUNT 081 PUNT 088
03 INTERNAL			NTERNAL I	15.7) HX.13X.
ł			TICS. I	(GAMMA) (HO L= E (N1.8X.1)
TATEMENT			RACTERIS G METHOD)++(1.0/ 10HRHD/F 3X.5HPD1
source s		(1, 1, K)	D DF CHA Symmetri)) 15.7,2X, 15.348&Y.
1	()) J.K),R	METHO AL AXI) ENDFIL ING-SL SL=E
NUMBER	, FM) , P3) , R(I,J, ,26	,M=1,12 ,K,X(I,	NSIONAL MENSION	.,J=1,12 ()CALL)CALL) (MMA)+(S (MMA)+(S ()MA)+(S ()C ()C ()C ()C ()C
DRMULA	(([,J,K) (([,J,K) (([,J,K)),24 [) 25,25 [) 25,25	SBHED(M) KEG, I RAY	IDIM FWO-DIME FHREE-DI CASE.+O	5884ED(J) 541.07P1 541.07P1 (1.0-6A (1.0-6A (1.0-6A 541.6) 5614.6)
EF3135 TERNAL F	9 LOT(8.) LOT(9.) 1.01 9.9 1.00 9.9 LOT(3.) ROR(7) NE+1 NE+1	GE 6,102)(; 6,103)IF FAM 9	6,104) 7,6,7), TLE(57H1) 5 TLE(72H1 TLE(72H1	5,105)(9 ED(1) .6 ED(1) .6 6 + ALD(6 + ALD(7 + ALD(7 + ALD(6 + ALD(6 + ALD(6 + ALD(6 + ALD(2 +
EX	60 T0 I Call SP Call SP Call SP Call SP IF (PI- IF (PI- Call ER Call ER Call ER PI=10 PI=10 IF (LIN	CALL PA WRITE (LINE=1 RETURN WRITE (IFAM=-11 GO TO	WRITE (LAST=L RETURN GO TO (CALL TI CALL TI CALL TI CALL TI CALL TI CALL TI CALL TI	READ IF (SBH RETURN RETURN SL= SNL SNL= IT MRITE FORMAT(FORMAT(FORMAT(FORMAT(FORMAT(
	18 19 26 25 25 25	2 I3 I5		5 27 27 27 100 110

NUMBER (S)	, 78	NUMBER(S)	- 10 - 4	NUMBER(S)	
03/12/65 NAL FORMULA	PUNT0085 PUNT 086 PUNT 087 PUNT 087 PUNT 088	03/12/65 NAL FURMULA	C800Y001 C800Y002 C800Y005 C800Y004 C800Y004 C800Y005 C800Y005 C800Y005 C800Y005	03/12/65 4al Furmula	ABJDY001 ABDDY002 ABDDY003 ABDDY004 ABDDY004 ABUDY005 ABUDY005 ABUDY008 ABUDY008
- INTER	PT/PTINF) TED.)	- INTER	D IF TABLÉ	- INTËRI	
CE STATEMENT	4ach Nu. 6x,8h) . Case termina	CE STATEMENI	ST BE FUKNISHE Juction. .D, Calif.	E STATEMENF	D, CALIF.
k – sourc	A(DEG),5X,8HM Hcualescence Been Reached.	R - SOURC	TER-BUDY. MUS F ANALYTIC FL MOFFETT FIEL	k - sourc	Muffett fiel
5 FORMULA NUMBE	INF,6X,IOHDELT .2F14.0,60X,11 .0F budy mas	, Formula NUMBE	UTINE FOR CEN USED INSTAD U SEARCH CENTER, SEARCH CENTER, DDY(1,X,R,DR)	FURMULA NUMBE	LE FUR ANNULUS LEARCH CENTER, LUY(I,X,K,DR)
EF313 External	HR,12X,6HP/P URMAT(6X,318, ORMAT(47H0ENC ORMAT(2F8,4) ND	EF3136 External	F3136 NUDECF DUMMY SUBRC F VALUES IS L F VALUES IS L F VALUES RES F VA	EF3137 External	F3137 NODECK DUMMY ROUTIN ASA, AMES RES Abrutine Abes Brutine Abu Brutine Abu Cturn ND ND
	103 F 104 F 106 F E		4187 5558 5558 50 50 70 10 10 10 10 10 10 10 10 10 10 10 10 10		5 18FTC CA800 C CA800 C S S S S S S S S S S S S S S S S S S

0						,21 ,24
JMBER(10m200000	125 125 125 125 125 125 125 125 125 125	114 118 119 120 123
03/12/65 Al formula Nu	SHOCK001 SHOCK002 SHOCK003 SHOCK003 SHOCK005 SHOCK005 SHOCK005	SHOCKOOO SHOCKOOO SHOCKOOO SHOCKOID SHOCKOII SHOCKOII SHOCKOII		SHOCK022 SHOCK023 SHOCK023 SHOCK024 SHOCK026 SHOCK026 SHOCK028 SHOCK028	SHUCK029 SHUCK020 SHUCK031 SHUCK031 SHUCK033 SHUCK033 SHUCK035 SHUCK035 SHUCK035 SHUCK037	SHDCK038 SHDCK039 SHDCK040 SHDCK041 SHDCK041
03/ FORMULA NUMBER - SOURCE STATEMENT - INTERNAL	<pre>SH CAB. SHOCK POINT CALCULATION. FEARCH CENTER, MOFFETT FIELD, CALIF. SH Sck(DUP) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2</pre>	16(3,50),6(1AB(3,50)) (4,50),R(2,4,50),DEL(2,4,50),W(2,4,50),S(2,4,50), SH 3H 3Y , ABODY 1H 1H 1H 1H 1 DEL , W , S , U SH 3H	<pre>, IE>I , UKMAX , SUD , SUN , ICON SH , XT , THETA , SUN , WIN , ICON SH , NUP , CTAB , ATAB , NUB , NUA SH , LAST , XIN , THETB , SPACE , LAST , XIN , THETB , SPACE , (IRR(6),J),(IRR(2),IRE5),(IRR(8),K),(IRR(4),IFASH , (IRR(6),J),(IRR(7),JP),(IRR(8),K),(IRR(9),KP) SH (COS(X)</pre>		<pre>SH F SH SH SH SH SH SH SH SH SH SH SH SH SH</pre>	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
EF3138 External	F3138 NODECN SORENSEN, ASA, AMES RES UBROUTINE SHO IMENSION CO(IMENSION 47 IMENSION X(2) (2, 4, 4, 50) X (2, 4, 4, 50) X (2, 4, 4, 50) X (2, 4, 4, 50) X (2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,	UMMUN GAMMA OMMON SING OMMON I OUIVALENCE (I),(IRR(5),INN SIN(X)=SIN(X), AN(X)=SIN(X),	P=THEIA UPRE=DUP M=JP P=KP-1 M=KP+1 =1.0 0 TO (1,2),1	=-1.0 2=TP+0UPRE+T 1=U(1,J;K-1) ANA1=TAN(A1) ANA2=TAN(A2) 1=X(1,J;K-1) 2=TANA1-TANA 2=TANA1-TANA 2:,J;K)=(K(1	F (1: J,K)=K(1: (1: J,K)=K(1: ALL UPSC(DUP F (LAST) 79: F (ABS(T2) : F (X(1: J,K)
	сс С С С С С С С С С С С С С С С С С С		H N M Ū Ū Ū Ū Ū Ū Ū Ū Ū Ū Ū Ū Ū Ū Ū Ū Ū Ū	1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	0-1 0 4 F 4 F F F X F	

,22

,27 • 50 44 INTERNAL FORMULA NUMBER(S) 40 4.4 4004 .43 446 • 48 .47 64 65 60 SHOCK049 SHOCK050 SHOCK051 SHOCK052 SHDCK058 SHDCK059 SHDCK050 SHDCK050 SHDCK061 SHDCK062 SHDCK064 SHDCK065 SHOCK055 SHOCK056 SHDCK070 SHDCK071 SHDCK078 SHDCK079 SHDCK080 SHDCK042 SHDCK043 SHOCK044 SHDCK045 SHDCK046 SHOCK047 SHOCK048 SHOCK053 SHOCK054 SHOCK057 SHOCK072 SHOCK073 SHDCK074 SHDCK075 SHDCK076 03/12/65 SHOCK077 SK=(R(I,J,K-I)-R(I,J ,K))/(X(I,J,K-I)-X(I,J ,K)) SJ=(R(I,J,K-I)-R(I,JP,KM))/(X(I,J,K-I)-X(I,JP,KM)) X(I,JP,KP)=(SK*XINT-SJ*X(I,J,K-I)-RINT+R(I,J,K-I))/(SK-SJ) R(I,JP,KP)=RINT+(X(I,JP,KP)-XINT)*SK ı IF (IFAM-1) 4,4,11 CALL BSINT(ABODY,ATAB(1,1),NOA,XB,RB,SLOB,XINT,RINT) CALL BSINT(CBODY,CTAB(1,1),NOB,XB,RB,SLOB,XINT,RINT) SOURCE STATEMENT -- >rACE= X(I,JM,KM) *SPACE 23 XINT=X(I,JM,KM)+SPACE 23 XINT=X(I,JM,KM)+SPACE 8 RINT=R(I,JM,KM)+SPACE*TAN(TP) 1F (XINT .GE. X(I,J,K-1)) GO TO 20 SPACE=2.0+SPACE 60 TO 23 G4={2.0*G1+1.0}/G2 G5={GAMMA+1.0}*=2/4.0+{GAMMA-1.0}/G1 1 CALL JUGGLE(1) IF (IREG-1) 21,21,77 IF (IRAY-2) 10,10,23 IF (SPACE .LE. 0.) SPACE=0.5 EXTERNAL FORMULA NUMBER σ (IREG .LE. 1) GO TO IF (ITYPE-2) 27,78,27 EF3138 DEL(1,J,K)=DUP 63=(61+2.0)/61 X(I,J,K)=XB R(I,J,K)=RB S(I,J,K)=SUP W(I,J,K)=SUP X(I,J,K)=XINT R(I,J,K)=RINT XB=X(I,JM,KM) RB=R(I,JM,KM) SLOB=T+TANA2 61=EMUP++2 RINT=RB 60 TO 20 62=61*+2 GO TO 20 G0 T0 22 XINT=XB Ŧ 10 62 54 27 78 4 11 σ

U U

• 45

, 51

ļ

•28

Figure 7.- Continued.

, 68 69

SHOCK082 SHDCK083

RL=[X(I,JP,KP)-X(I,JP,KM))/(X(I,J,K-I)-X(I,JP,KM))

SHUCKOB1

,110 , 117 ,114 INTERNAL FORMULA NUMBER(S) • 100 101. ,103 ,104 ,106 101 ,109 ,112 ,113 ,115 ,116 120 ,122 ,123 ,124 ,121 884 992 992 995 995 995 998 998 998 998 ,85 ,86 8 9 7 8 1 , 76 79 60 , 75 . 77 SHDCK107 SHDCK108 SHOCK089 SHOCK089 SHOCK090 SHOCK109 SHOCK110 SHOCK114 SHOCK115 SHOCK116 SHDCK118 SHDCK119 SHOCK120 SHOCK123 SHUCK126 SHDCK128 SHOCK093 SHOCK095 SHOCK096 SHOCK098 SHDCK099 SHDCK100 SHOCK 102 SHOCK 103 SHOCK104 SHOCK LOS SHOCK 106 SHOCK111 SHUCK 112 SHOCK113 SHDCK117 SHOCKI21 SHOCK122 SHOCK124 SHDCK125 SHDCK127 SHOCK129 SHOCK130 SHOCK131 SHDCK 132 SHUCK133 SHDCK085 SHDCK086 SHOCK091 SHOCKU92 SHOCK094 SHDCK097 SHOCKIOI SHDCK087 SHOCKO84 03/12/65 - [F (T2) 13,13,14 16 (T2) 13,13,16 16 S(1,3,4,8)=SUP+(ALOG(T1)-GAMMA*ALOG(T2))/(GAMMA-1.0) T1=1.0-4.0*(G1*Z-1.0)/(GAMMA+1.0)**Z*(GAMMA*S1*Z+1.0)/(Z*G2) 17 [1] 17,18,18 Tl=(W(1,J,K)-W(1,JP,KP))/RAI-Cl+Dl+(S(1,J,K)-S(1,JP,KP)) 1 DEL([,JP,KP)=DEL([,JP,KM)+RL*(DEL([,J,K-])-DEL([,JP,KM)) SUURCE STATEMENT W(I,JP,KP)=W(I,JP,KM)+RL+(W(I,J.K-I)-W(I,JP,KM)) S(I,JP,KP)=S(I,JP,KM)+RL+(W(I,J,K-1)-S(I,JP,KM)) U(I,JP,KP)=U(I,JP,KM)+KL+(U(I,J,K-I)-U(I,JP,KM)) U(I,JP,KP)=U(I,JP,KM)+KL+(U(I,J,K-I)-U(I,JP,KM)) CORI=0.0 COR1=(K(I,J,K)-R(I,JP,KP))/R(I,JP,KP)/SIN(AL) DEL(I,J,K)=DEL(I,JP,KP)+T1+T IF (ABS(DEL(I,J,K)-OULO) .LE. TEST) G0 TU 19 DEL(I,J,K)=0.5*(DEL(I,J,K)+DULD) 14 T2=[[GAMMA+1.0)+G1+Z]/[[GAMMA-1.0]+G1+Z+2.0] Cl=CORL*SIN.U([,JP,KP)]*SIN(DEL([,JP,KP]) RAL=W(1,JP,KP)*TAN(U(1,JP,KP)) D1=0.5*SIN(2.0*U(1,JP,KP))/GAMMA DEL(1,J,K)=DEL(1,JP,KP)-Cl*T D0 99 IT=1,50 TI={2.0+GAMMA+GI+Z-GAMMA+1.0)/{GAMMA+1.0} IF (TI) 13,13,14 ŧ EXTERNAL FORMULA NUMBER ROOT=SURT(2) IF (ROUT .LE. 1.0) GO TO 26 W([,J,K)=WUP+SQRT(T1) DOLD=DEL([,J,K) DELTA=DUP-DEL([,J,K) SOS=SIN(DELTA)++2 CO(3)=-63-6AMMA+SDS CO(1)=(SDS-1.0)/62 CALL CUBIC (CU.Z) THETA=ASIN(RUOT) CO(2)=64+65+SDS CALL JUGGLE(7) CALL PUNT(1) CALL EKROR(10) EF3138 COR1=ABS(CUR1) 13 CALL ERRUR(8) CALL ERROR(9) CO(4)=1.0 GO TO 25 CONTINUE RETURN RETURN RETURN RETURN C1=0.0 END 99 19 22 80 17 m 25 12 18 26 ~ æ 31

Figure 7.- Continued.

, 111

ں

,118

													4																				
۲S													• 3																				
NUMBER (•2	• •	ō 1	~	20		11	,12	.13	+ u 	919	.17	18	,19	• 20	• 21	27.		, 25	,26	,27
03/12/65 AL FORMULA	CONICOO1 CONICOO2 CONICOO3	CONICO04 CONICO05	CONICO06	CONICOOB	CONIC009	CONICOLO	CONICOLZ	CONICO13	CONICO14	CONTCOLS	CONICOT 7	CONICO18	CONICO19	CONICO20	CONICO21	CONTCO22	62001N00	CONTCO24	CONICO26	CONICO27	CONICO28	CONTCORD	CONTROOM	CONICO32	CONICO33	CONICO34	CONICO35	CONI CO36	CUNICO37	CONTCO39	CONICO40	CONICO41	CONICO42
EF3139 631 EXTERNAL FORMULA NUMBER - SOURCE STATEMENT - INTERNAL	3139 NODECK Sorensen, cab. Subroutine for starting new conical region. Co Sa. Ames research center, moffett field, calif. Color. Co	IBKUUIINE CUNIC Mension Icon(2, 9),Irr(9),NOP(2,4) Co	MENSION ATAB(3,50), CTAB(3,50) (CD	mension Alga4,301,8412,41301,004.12,44,301,9412,44,301,5312,44,301,7 CC 2,44,50)	MMON IRR CO	MMDN X , R , DEL , W , S , U CO MMDN GAMMA , TEAT , CRMAX , ACR , AAN , D4 CO		MMON I , NOP , CTAB , ATAB , NOB , NDA CO	MMDN COALT , LAST , XIN , THETB , SPACE	ULYALENCE (IKK(1),ITTE],IKK(2),IKK(2),IKK(2),IKK(2),IKK(4),ITAUU .(IRR(5),IN).(IRR(5),J).(IRR(7),JP).(IRR(8),K).(IRR(9),KP)	N(X)=SIN(X)/COS(X)	J CO	AD15,101) XB,RB ,EMSH,EMBOD,DELSH,DELBD, OPIN CO			(NOPIN) 8,8,9 (D		10 TO CU	PIN=2 CO	P(I+1)=[N CO	YPE=1 CO	1.1.4.1.2.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0		L(I,J,J,K)=0.01745329*DEL80	<pre>I.J.K)=EMBOD/SQRT(0.5+(GAMMA-1.0)*EMBUD**2+1.0)</pre> CO	SIN(THETA) ++2 CO	=EMIN+2	= (2:0:6AMMA+GI+Z-GAMMA+1.0)/(GAMMA+1.0)	±(\JAMMA+T。U)+61+2/\{\GAMMA-T。U)+61+2+2.0} 170 0.0.3		LL ERROR(11) CO	TURN	= (ALOG(T2)-GAMMA+ALOG(T3))/(GAMMA-1.0) CO
	C C N N N	<i>~</i> _	0	חני	ن	υũ	οÕ	Ū	Ōi			<u>ر</u>	æ	Ź:	×÷		- C	5 00	Ž	10 N	H 3	č >	< at	ā	3	2	أف		-	3	5	8	Ö ~
	*																																

•

٠

_																					• 49				
NUMBER(S)	, 28	, 29	•30	,31	, 32	£6 ,	,34	, 35	,36	,37	,38	• 39	• 40	,41	,42	,43	***	• 45	•46	141	•48	, 50		•51	
/12/65 FORMULA	DNIC043	ONIC044	ONIC045	011C046	CONICO47	ONIC048	CONIC049	CONICO50	CONICOSI	CONICO52	CON1C053	:0NIC054	CONICO55	CON1CO56	CONICO57	CON1C058	CONICO59	CONICO60	CONICO61	CONICO62	CONIC063	CONIC064	CONICO65	CONIC066	
03 Internal	0	U	0	U	0	J	0	0	0		•		0			-		-	-		-				
ł																									
EF3139 External formula number – Source Statement	fe (DS) 12.13.13			13 3(1,9,1,1)=21NGTU3		CALL PUNICSI				UMEU.UI.49324FUCL3N c		DDM=(DM-DEL(I,J,K))/UIV		UL LECTRUTIN		X(I;J)F(J=X) (), (), (), (), (), (), (), (), (), (),	2011-1-2012-2012-2012-2012-2012-2012-20		K(100K)=K(1000K)=L140KB	DEL(1,J,K) =UEL(1,J,KTITUUN	CALL PUNICIS	IL CUNIINUE		OI FURMAI (/FIU.6)	END
		•							:	*														-	

	<u>یں</u>	
NUMBER(S)	, 4 6 6	NUMBER(S)
03/12/65 Internal Formula	ERROR001 ERROR002 ERROR003 ERRUR004 ERRUR005 ERRUR005 ERROR005 ERROR000 ERROR000	03/12/65 INTERNAL FORMULA ENDF1L01 ENDF1002 ENDF1002 ENDF1004 ENDF1006 ENDF1006 ENDF1006 ENDF1006 ENDF1006
•		t
EF3140 External formula number - source statement	<pre>\$IBFTC EF3140 NUDECK C EREDR SUBRUTINE SUBROUTINE EREOR(LERR) COMMON DUMMY(2750),LAST,XIN,THETB,SPACE WRITE (6,100) LERR 100 FORMAT(12HOEREGR CODE 12) LAST=1 RETURN END</pre>	EF3141 EXTERNAL FURMULA NUMBER - SOURCE STATEMENT SIBFTC EF3141 NUDECK C NASA, AMES RESEARCH CENTER, MUFFETT FIELD, CALIF. SUBROUTINE ENDFIL CALL SPLOT(5, A, B) CALL SPLOT(5, A, B) CALL EXIT RETURN END

٠

.

	ĒX	EF3142 Ternal	FORMUL	A NUMBE	ı œ	sourc	E STATEI	MENT	-	03 MTERNAL	1/12/65 . FORMULA	NUMBER (S)	~
IBFTC	EF3142	NUDECK								-	LINTOOL		
1 1 1 1	NT SORE NASA A	INSEN, E	MC. IN'	FINTER -	ION OF MOFFF	TT FIFI	S AND FI		ELD.		LINT002		
2	SUBROUT	INE FLI	IN			•		•			LINT004		
	DIMENSI	ON ICON	(2, 9)	IRR(9) *NOP (2,4)				-	LINT005		
	DIMENSI	ON ATA	8(3,50)	,CTAB(3,50)						LINT006		
	DIMENSI	ON X12,	4,501,1	{{2,4,5	0),DEL	(2,4,50) "W(2,4	, 50), 5	(2,4,50)		LINT007		
	10(2,4,5	(0)									LINIUUS		
		221	a		EI	,		•	-		LINTOLO		
	COMMON	GAMMA	, TES	• •	RMAX	, SCB	. SAN	• •	54 54		LINTOLL		
	COMMON	SING	, XT	-	HETA	. EMIN	NIN .	•	ICON	-	LINTOL2		
	COMMON	1	, NOP	•	TAB	• ATAB	, NOB	•	NOA	-	LINT013		
	COMMON	COALT	, LAS	×	N	, THETB	, SPA	СЕ 			LINTOLA		
	EQUIVAL	ENCE (I	RR(1).	TYPE),	(IRR (2	, IREG)	, LIRR(3	J, IRAY), (IRK(1777°()	-LINIUIS		
	1M),(IRR 	(2), IN)	, (IRR()"(Г"(9	IRR(7)	I)'(df'	RR(8),K),(IRR	(d) • (d)	1 U T C	-TUINIOTO	, ,	5
`	15 (AL	• 14676	6C+ AI	111100	• • • • •				11117	-	LINTOIR	+ 4	1
000	L=2 1M=1										FINING 610	- in	
4	K M = C										LINTO20	9.	
	L'=NL									-	LINTO21	. 7	
	KN=K-1									-	LINT022	84	
	JQ=JP									-	LINT023	6,	
	KQ=KP+1									_	LINT024	,10	
-	IF (KN)	1,1,8								-	LINT025	,11	
8	CONTINU	ш									LINT026	•12	
26	CALL DV	CHK (ICH	ž.								LINTOZY	, 13	
	S1=(R(I	,JQ,KQ)	-R(1,J	4. KM) //		0,XQ)-X	X.M. (1)	ŝ			LINT028	, 14 15	
	S2=(R(I	(WX.MC.					2 4 N 7 4 1 1				LINTO30	.16	
		- 34・3つ・			~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~						LINTOBL	.17	
	GO TO (14.10)	ICHK							-	LINT032	,18	
10	T1=ATAB	(2,1)-R	I. N. I.)	+ES-(W)	ATAB(1	,1)				-	LINT033	,19	
	XA=(T1+	S1+X(I,	JM, KM)	1/1S1-S	3)					-	LINT034	,20	
	XB=(T]+	52+X(1,	JM, KH)	1152-5	31						-LINT035	•21	
	IF (XA-	ATAB(1,	11) 12	12,13						-	-LINIU30	774	
13	IF (XB-	ATAB(1,	111 15	15,14							-LINI031	524	
12	IF {XB-	ATAB(1,	1)) 14	,15,15							-LINIU38	1 V 1	
14	GO TO (16,17),	ب								-LINI039	674	
16	U=ND											074	
	KQ=KN										LLINI UAL	324	
	KNHKM-I									-		1 1 0	

.

	EF3142 External formula number - Source Statement	t	03/12/65 Internal formula	NUMBER (S)	
	IF (R(I,JM,KM) .LT. ATAB(2,1)) GO TO 1		FLINT043	96.	30	וני
	L=2		FLINT044			
	IF (KN) 1,1,8		FLINT045			
-			FLINT046	34		
			FLINT047	, 35		
			FLINT048	, 36		
	IF (K(I;JU;KU) .L[. AIAB(2;1)) 60 TO 1 -		FLINT049	,37	, 38	,39
	L=1 GO TO 7		FLINT050	• 40		
15	RA=R([],M_KM)+C]+(YA-Y/[, M_KM))		FLINIUSI	41		
	IF (RA-R(I.JN.KN)) 14.28.28			44 7 4		
28	RB=R([,JM,KM)+S2+(XB-X([,JM,KM))		FLINIU55 FLINIU55	44		
	RATA=(XA-X(I,JM,KM))/(X(I,JQ,KQ)-X(I,JM,KM))		FLINT055	. 45		
	RATE=(XB-X(I, UM, KM))/(X(I, UN, KN)-X(I, UM, KM))		FLINT056	.46		
	DA=DEL(I,JM,KM)+(DEL(I,JQ,KQ)-DEL(I,JM,KM))+RATA Se-ST:1:		FLINT057	.47		
	UD=UEL(1,JM,KH)+(DEL(1,JN,KN)-DEL(1,JM,KH))+RATB		FLINT058	• 48		
	VIVX*((XX*TO*])X-(7X*77*T)X)+(XX*X7*T)×I+		FLINT059	•49		
	HINT I ALL ALL ALL ALL ALL ALL ALL ALL ALL A		FLINT060	,50		
	ダーダメキヘーモン・モフゥ コークーイブシップ フゥコーク・トービン・ビフゥ コンクーオクション シング ススシーズ アンシング アンシング アンシング ステレー アンサーロン		FLINT061	, 51		
	00-017*23*23*23141011*202*28/1001**03*237352*24720 DEX=X*1X0		FLINT062	,52		
	UEN-AA-AD 16 / ADC/DEN1-1 6-4/ 10 10 10		FLINT063	.53		
0	IT 1.4031.UCN/T.4CT0/ L09L09L9 DATC={ATAB/1 11_VD1/ACM		FLINT064	• 54		
1	CO TO (31,201,1 - AB)/UEN		FLINT065	155		
20			FLINT066	, 56 51		
	GD TO 22					
21	J=10 J=10			, 58		
	X=KQ		FLINI U69	6 6 ,		
	IRAY=IRAY-I		FLINT	.61		
			FLINT071	, 62		
-	IF (JP .LE. 0) JP≖4 XYZ		FLINT072	, 63	• 64	• 65
N N	X([,J,K)=AIAB([,1)		FLINT073	• 66		
	K(1, J, K) = A AB(2, 1) Dei fi (V) = Doi ioi (Doi : 0 + 10)		FL INT074	,67		
	UCL(1939A)=U0+(UA=UB)=KA C H/1 = 4 v/-u0+(u4-H0)-04TC		FLINT075	• 68		
	2011 - 2010-2014 2014 2014 420 - 420		FL INT076	• 69		
	0.11,44,57,400410A440014KA1C		FLINT077	• 70		
	UMLE FUNILLI Te (1851) 22-22.1		FLINT078	11,		
5	IT LEAST 2372311 NDDT		FLINT079	, 72		
2			FLINI 080	21		
	GO TO (24-25-24-25).1			÷.,		
*	00 • 0 • • • • • • • • • • • • • • • •		FL INI UB2 El TNTADO	51		
			LLINIU02	0.1		

.

EF3142 External fu	RMULA NUMBER	ı	SOURCE	STATEMENT	ı	03/12/65 Internal Formula	NUMBER(S)
GD TO 5 25 IN=K+1 5 ITYPE=2 Return 18 Ratc=0.0 6 TO 22 6 TO 22 4 Call Error(12) 1 Return End						FL INT084 FL INT085 FL INT085 FL INT087 FL INT087 FL INT089 FL INT091 FL INT091 FL INT092 FL INT092 FL INT093	7 7 7 8 8 7 7 7 7 7 7 7 7 7 7 7 8 8 7 7 7 8 8 8 7 8 8 8 9 7 8 8 9 7 8 9 8 9
EF3143 External Fu	RMULA NUMBER	ı	SUURCE	STATEMENI	ı	03/12/65 Internal Formula	NUMBER(S)
<pre>\$IBFTC EF3143 NUDECK C DUMMY SUBRUUTINE SUBRUUTINE SPLOT SUBRUUTINE SPLOT A = X A = Y RETURN END</pre>	FOR SPLOT. (L,X,Y)					SPL0T001 SPL0T002 SPL0T003 SPL0T003 SPL0T005 SPL0T005 SPL0T005	-1 (1 m 4

50

į

l

NUMBER(S)	4 0	
03/12/65 NAL FORMULA	ACRAY001 ACRAY002 ACRAY003 ACRAY005 ACRAY005 ACRAY006 ACRAY009 ACRAY010 ACRAY010 ACRAY011 ACRAY0113 ACRAY013 ACRAY013 ACRAY016 ACRAY016 ACRAY016 ACRAY017 ACRAY017 ACRAY017	ACRAY023 ACRAY024 ACRAY025 ACRAY026 ACRAY028 ACRAY023 ACRAY030 ACRAY033 ACRAY033 ACRAY033 ACRAY033 ACRAY035 ACRAY035 ACRAY038 ACRAY038 ACRAY038 ACRAY038 ACRAY038 ACRAY038
- INTER	L. .(2,4,50), U ICON NICA NICA (9),KP)	
STATEMENT	NEW REGION CALIF. M(2,4,50),S San San Nob IRr(3),IRAY (8),K),(IRAY	
- SOURCE	DR STARTIN(FETT FIELD) JP.XB,RB) DP(2,4,50),)) (, SCB (, SCB (, SCB , ATAB , ATAB , ATAB , ATAB , ATAB , (2),IREG),(IR	P++2)/NUP
LA NUMBER	JBROUTINE FI LENTER, MO L.MUP,SUP,DU J.CTAB(3,5()), CTAB(3,5()), CRMA) THETA THETA THETA THETA THETA THETA THETA THETA THO THO THO THO THO THO THO THO	PACC=0.5 34,35 34,35 AI}
EF3144 ERNAL FORMU	NUDECK SEN, CAB. SI SEN, CAB. SI SE RESEARCH NE ACRAYIDA SPACC/SPACC N COC/SPACC N COC/SPACC SPANA N (CON(2, 9 N (CON(2, 9 N (CON(2, 9 N (CON(2, 9 N (CON(2, 9 N (COS(2)))) N (COS(2)) N (C	•SPACC •SPACC •XB •XB+DX •XB+DX •XB+DX •(3) •(3) •(3) •(3) •(3) •(3) •(3) •(3)
EXT	C EF3144 AY SOREN NASA AM SUBROUTI SUBROUTI COMMON DIMENSIO DIMENI	T f (1, 1, k)= 1 f (2 T 3) 1 f (1, 1, k)= 1
	\$18F: CACI CACI	m m m m

4 **•**5

Ì

	EF3144		03/12/65	MINGED (C	_
	EXTERNAL	FORMULA NUMBER - SOURCE STATEMENI - INTER	WAL FURMULA		_
	C1 = C #110 = # 2		ACRAY043	,25	
	C3-101-10		ACRAY044	,26	
) + U = U = C = C = C = C = C = C = C = C =	11/61**2	ACRAY045	,27	
)	ACRAY046	,28	
	0.1 TAPHA01-00		ACRAY047	,29	
		2-DAI 11++2	ACRAY048	,30	
		- 014 - 11-14 1/[]482	ACRAY049	16,	
	CO14711111111111111111111111111111111111	2	ACRAY050	, 32	
		4	ACRAYO51	, 33	
			ACRAY052	,34	
		. /)	ACRAY053		
Ļ			ACRAY054	, 35	
د	6 T2=(2,0+6AMMA	#G1#Z-GAMMA+1.0)/(GAMMA+1.0)	ACRAY055	,36	
	IE (T2) 7.7.8		ACRAY056	137	
	7 CALL FRRDR(13)		ACRAY057	,38	
	DETIEN		ACRAY058		
Ļ	NE LONG		ACRAY059	, 39	
د	8 T3=15AMMA+1.0)=C]+7/{{GAMMA-1.0}+G1+2+2.0}	ACRAY060	• 40	
	IF (TAL 7. 1.		ACRAYO61		
L			ACRAY062		
ں د			ACRAY063	,41	
د	IN SIT I.K ISSUP	(A DG[T2)-GAMMA*ALOG(T3))/(GAMMA-1.0)	ACRAY064	,42	
	19/=0-7×101110 0T	1=7-1.0)/2+(GAMMA+61+2+1.0)/((GAMMA+1.0)+61)++2	ACRAYO65	• 43	
			ACRAY066	• 4 4	
	11 CALL FROMDULE		ACRAY067	,45	
	TT CALL CANON FT		ACRAY068	,46	
	12 ULT I KI-UIDE	5.0.0.1.1.4.1	ACRAY069	.47	
	SING CONTRACTING TO THE TOTAL STREET	AX XA-1.0) = 2(1.). K) = + 2	ACRAY070	• 48	
	TE (TA) 11.11.	36	ACRAY071	• 49	
	AA FM=W(I.J.K)/Si	DRT(TA)	ACRAY072	• 20	
		01 GT TO 13	ACRAY073	14	24
	TE (EM-EMUP)	33,13,13	ACRAY074	• 0.4	
	13 CALL EDDOR [15		ACRAYO / 5	,	
	LJ CALL LANDIN LJ	~	ACRAY076	• 56	
	33 TE (7) 13.13.	14	ACRAY077	151	
	107107 121 21 20 17 17 17 17 17 17 17 17 17 17 17 17 17		ACRAY078	• 58	
		6.16.13	ACRAY079	, 59	
	I TUSTECTI II		ACRAYOBO	, 60	
	RS=RB+T+DX+TA	N(THETA+T=DUP)	ACRAY081	101	
	DINK=IN-I		ALKATUDE ACDAV002	106	
	DR=(RS-R(1, J,	K))/DINK	ALKATU02 ALDAVORG	. 44	
	GO TO (17,18)	,IFAM	->>	- > =	

3

NUMBER(S)	, 65	, 00 , 7	• 68	, 69	.70	.71	, 72	, 73	• 74	. 75	,76	, 77	, 78	, 79
03/12/65 Internal Formula	ACRAYO85	ACKATU86 ACRAY087	ACRAYO88	ACRAY089	ACRAY090	ACRAY091	ACRAY092	ACRAY093	ACRAY094	ACRAY095	ACRAY096	ACRAY097	ACRAY098	ACRAY099
I														
SDURCE STATEMENT														
I														
EF3144 External formula NUMBER	17 SCB=S(1,J,K) G0 T0 16	18 SAN=S(1, J, K)	LO CALL PUNT(I)		X(1,J,K)=X(1,J,K-1)	R[[,J,K)=R[],J,K-])+DR	DEL(I,J,K)=DEL(I,J,K-I)	(] - × • 7 •]) = (× • 7 •]) =	S(1,J,K)=S(1,J,K-1)	IF (K-IN) 16,19,19	NI=(r'I)dON 61	CALL PUNT(1)	RETURN	END

I

٠

		•		
s)		ŝ		
NUMBER(22098728
03/12/65 Internal formula	CUBIC001 CUBIC002 CUBIC002 CUBIC003 CUBIC005		CUBICULZ CUBICULZ CUBICULZ CUBICOL3 CUBICOL4 CUBICOL5 CUBICOL7 CUBICOL7	CUBICO19 CUBICO10 CUBICO20 CUBICO22 CUBICO22 CUBICO22 CUBICO22
I				
EF3145 External fürmula number – source statement	<pre>\$IBFIC EF3145 NUDECK C NASA, AMES RESEARCH CENTER, MOFFETT FIELD, CALIF. SUBROUTINE CUBIC(C,2) DIMENSION C(4),VLST(7) ACOS(X1=ATAN(SQRT(1,0-X**2)/X) D==C(2),2/2,2/2)</pre>	The second secon	<pre>X1= TEM+CUS(PHI/3.0) X2= TEM+CUS(PHI/3.0) X2= TEM+CUS(PHI/3.0 + 2.09439510) X3= TEM+CUS(PHI/3.0 + 4.18879020) 1F (X2-X3) 150,150,160 1S0 Y1=AMAX1(X1,X2) Y1=AMIX1(Y1,X3) G0 T0 170 171</pre>	160 Y1=AML41(X1,X2) Y1=AMAA1(Y1,X3) 175 Y1=Y1-C(3)/3.0 8 2=Y1 RETURN END

INTERNAL FORMULA NUMBER(S) 10 100400100 UNTHON X R R DEL M S U UPSCOOS UPSCOOS COMMON GAMA TEST CRMAX SCB SAN P4 UPSCOOI COMMON SING XT THETA EMIN WIN ICON UPSCOOI COMMON I NOP CTAB AND UPSCOOI COMMON COALT LAST XTN HETB NOB NOA UPSCOOI COMMON COALT LAST XIN HETB, SPACE UPSCOOI EQUIVALENCE (IRR(1),J),(IRR(2),IREG),(IRR(3),IRAY),(IRR(4),IFADSCOOI IM),(IRR(5),IN),(IRR(1),J),(IRR(3),K),(IRR(9),KP) UPSCOOI IF (IREG-1) 67,24,25 DB=0.0 UPSC0028 UPSC0029 UPSC0030 UP SC 0035 UP SC 0036 UPSC0041 UPSC0042 UP SC 0022 UP SC 0023 UP SC 0024 UPSC0034 UPSC 038 UP SC0039 UPSC0040 UPSC0037 UPSC0001 UPSC0002 UPSC0003 UPSC0005 UPSC0006 UPSC0033 **UPSC0025** UP SC0026 UP SC0031 UPSC0021 UPSC0027 UP SC0032 UPSC0004 UP SC0008 UP SC0007 03/12/65 \$IBFTC EF3146 NODECK C UPSC SORENSEN, EMC. SPECIAL EVALUATION OF UPSTREAM CONDITIONS. C UPSC SORENSEN, EMC. SPECIAL EVALUATION OF UPSTREAM CONDITIONS. C NASA, AMES RESEARCH CENTER, MOFFETT FIELD, CALIF. SUBROUTINE UPSC(DB,WB,SB,EMUP,XB,RB) EXTERNAL CBODY , ABOSY DIMENSION ICUN(2, 9),IRR(9),NOP(2,4) DIMENSION ICUN(2, 9),IRR(9),NOP(2,4) DIMENSION ATAB(3,50),CTAB(3,50) DIMENSION X(2,4,50),R(2,4,50),DEL(2,4,50),W(2,4,50),S(2,4,50), DIMENSION X(2,4,50),R(2,4,50),DEL(2,4,50),W(2,4,50),S(2,4,50), 1 SOURCE STATEMENT XPREV=X(I,JM,KM) SL=(RC-R(I,JM,KM))/(XC-X(I,JM,KM)) ASSIGN 5 TO ISWT ŧ EXTERNAL FORMULA NUMBER G0 T0 (67,16,67,16),J IF (IN-2) 67,13,71 67 CALL ERROR(16) EF3146 IRAY=IRAY+1 XC=X(I,J,K) RC=R(I,J,K) EMUP=EMIN GO TO 50 GO TO 68 KM=KP+1 T+dr=dr SB=SING RETURN RETURN WB=WIN JM=JP 1+1=1 16 IS=0 Ц=У 13 J=J 11 23 2 ŝ

Figure 7.- Continued

NUMBER (S	.26	,27	,28	,29	,30	,31	,32	, 33	• 34	935		80.	, 39	• 40	, 41	,42	,43	• 44	• 45	• 46	.47	• 48	644	,50	151	, 52	,53	,54	, 55	,56	15.	8c.	,59	,60	•61	• 62	, 63	•64	, 65	, 66	,67
03/12/65 Internal Formula	UPSC0043	UP SC0044	UP SC0045	UP SC0046	UPSC0047	UPSC0048	UP SC0049	UPSC0050	Tennisan			UPSCOOSS	UPSCOD56	UP SC 0057	UP SC0058	UPSC0059	UP SC0060	UPSC0061	UP SC0062	UPSCO063	UPSC0064	UPSC0065	UP SC0066	UPSC0067	UPSCO068	UP SC0069	UP SC0070	UPSC0071	UPSC0072	UPSC0073	UPSC0074	61000S40	UPSC0076	UP SC0077	UP SC0078	UPSC0079	UPSC0080	UPSCOOBL	UP SC0082	UPSCOOB3	UPSC0084
ı																																									
SOURCE STATEMENT																																									,KK)-X([,J,K)]
EF3146 External formula number -	KP=0	61 GO TO (56,56,57,70,59),J	56 JP=1	70 IN=IN	69 KP=K₽+1	G0 T065	59 J=1	57 IF (IFAM-1) 62,62,63	02 CALL BUUTICBUUT, CIABIL, LI, NUBI	60 TO 64 63 CALL RODVIABODV-ATAB(1-1) NOA)	0. 0000 1000 1000 101 111 1100 1000 100	KP=KP+1	IF (LAST) 11,11,501	II IF (K-IN+1) 65,65,66	65 CALL FLOW	IF (IFAM) 1,1,64	1 X(I,J,K)=X(I,JP,KP+1)	R(I,J,K)=R(I,JP,KP+1)	W([,J,K)=W([,JP,KP+])	S(I,J,K)=S(I,JP,KP+1)	U(I,J,K)=U(I,JP,KP+I)	DEL(I,J,K)=DEL(I,JP,KP+1)	K≖K+]	KP=KP+1	IF (KP-NOP(I,JP)) 1,3,3	3 IFAM=-IFAM	NOP(I,J)= K-l	IF (LAST) 5,5,501	66 NOP([,J)=[N+]	_ =			6 KP=K-1	GO TO (8,7,8,7),J	7 KP=K	8 JN=JP	I S=1	KQ=KP+1	KK=KP	9 EM3=SL	12 EM2=(R(I,JN,KK)-R(I,J,K))/(X(I,JN)
																														4											

,

.

,108 INTERNAL FORMULA NUMBER(S) ,100 ,102 ,103 ,104 ,105 ,105 ,105 ,111 66 . 549220088888889100981010088 54992408888888910101098 5499240988888889100981010098 96. ,98 UPSC0105 UPSC0105 UPSC0105 UPSC0108 UPSC0109 UPSC0112 UPSC0112 UPSC0112 UPSC0113 UPSC0113 UPSC0122 UPSC0123 UPSC0123 UPSC0124 UPSC0125 UPSC0125 UPSC0116 UPSC0117 UPSC 127 UPSC0128 UP SC 0086 UP SC 0087 UPSC0089 UPSC0090 UPSC0092 UPSC0093 UPSC0119 UP SC0120 UP SC0100 UPSC0118 UP 5C 008 8 UPSCOIDL UP SC0103 UPSCOOBS UPSC0094 UP SC0095 UP SC0096 UPSC0097 UPSC0098 UP SC0099 UPSC0102 UPSC0121 UP SC0091 03/12/65 ł SOURCE STATEMENT CONTINUE RB=K(I,J,K)+EM2*(XB-X(I,J,K)) EL2=(XB-X(I,J,K))/(X(I,JN,KK)-DEL(I,J,K)) DB=DEL(I,J,K)+EL2*(DEL(I,JN,KK)-M(I,J,K)) WB=W(I,J,K)+EL2*(M(I,JN,KK)-M(I,J,K)) SB=S(I,J,K)+EL2*(S(I,JJ,K))-S(I,J,K)) TA=1.0-0.5*(GAMMA-1.0)*WB**2 If [TA] 44,44,45 1 XB=(T1+EM2*X(I,J,K))/(EM2-EM3) IF (XB-X(I,JN,KK)) 18,18,19 IF (IN-2) 16,16,20 GO TO 4 IF (XB- XPREV - COALT) 5,5,17 EXTERNAL FURMULA NUMBER T1=RC-k(1,J,K)-EM3+XC JP=JP-1 60 TO (22,27,26,21),J 8 ASSIGN 48 TU ISWT GO TO 50 8 CONTINUE 1F (IS) 500,500,501 0 ITYPE=2 J=J-1 NUP([,J]=NUP([,J]-1 IRAY=IRAY-1 ICON(IP-L)=IRR(L) IRR(L)=ICON(I,L) G0 T0 ISMT,(5,48) CALL ERROR(17) RETURN EMUP= WB/SQRT(TA) G0 T0 (51,52),1 EF3146 DO 54 L=1,9 IN=IN-1 60 TO 21 60 TO >3 RETURN I P = 2 JP=4 I = 4 I **1=** J J=5 1=2 [=] END 48 47 500 501 54 15 18 2122 4 5 6 8 9 51 53 44 22 114 52

Figure 7.- Continued.

.11 ,21 03/12/65 Internal Formula Number(S) ,10 .12 200964000 .14 40,045 01. 36 BSINT005 BSINT005 BSINT006 BSINT008 BSINT008 BSINT008 BSINTO13 BSINT014 BSINT015 BSINT019 BSINT020 BSINT021 BSINT022 BSINT022 BSINT023 BSINT023 BSINT024 BSINTO26 BSINTO27 BSINTO28 BSINTO28 BSINTO20 BSINTO30 BSINTO33 BSINTO34 BSINTO34 BSINTO34 BSINTO34 BSINTO35 BSINTO35 BSINT038 BSINT039 BSINT040 BSINT041 BSINT041 BSINT042 BSINT043 **BSINTOO1** BSINT002 BSINTOU3 **BSINT004** BSINTULO BSINT012 COMMON COALT , LAST , XIN , THETB , SPACE BSINTOIG EQUIVALENCE (IKR(1),ITYPE),(IRR(2),IREU),(IRR(3),IKAY),(IRR(4),IFABSINTOI7 (M),(IRR(5),IN),(IRR(6),J),(IRR(7),JP),(IRR(8),K),(IRR(9),KP) BSINTOIB BSINTOLL C BSINT SURENSEN, CAB. SUBRUUTINE FUR FINDING ORDINATES UF BODY-SHOCK iMask Testerch Center, Moffett Field, Calif. iMask Testerch Center, Moffett Field, Calif. Subroutine Bsinf(vbddy,tab,N0,xb,rb,sl.Osh,xinf,rinf) Dimensiun Tab(3,50) Dimensiun ICON(2, 9),IRR(9),NUP(2,4) Dimension Atab(3,50),CTAB(3,50) Dimension X(2,4,50),R(2,4,50),DEL(2,4,50),M(2,4,50),S(2,4,50), SLOP1=(TAB(2, IP)-TAB(2, IP-1))/(TAB(1, IP)-TAB(1, IP-1))
XINT=(SLOP1*TAB(1, IP)-XB*SLOSH-TAB(2, IP)+RB)/(SLUP1-SLUSH)
IF (XINT-TAB(1, IP)) 9,9,10 ICUN ı , NOA Ρ4 ∍ SOURCE STATEMENT NUN . , SAN • . EMIN . ATAB. , SCB . , DEL , CRMAX , THETA ۱ , CTAB EXTERNAL FORMULA NUMBER IF (ABS(GX/GPX)-1.E-6) 6,6,3 IF (ABS(GPX)-1.E-6) 4,4,5 CALL VBUDY(2,XV,RV,DRV) GX=RV-RB-(XV-XB)*SLDSH RINT=RB+(XINT-XB)+SLOSH IF (X8-TA8(1, IP)) 8,8,7 , R , TEST , XI \$IBFTC EF3147 NUDECK EF3147 GAMMA CALL EARDR(18) INTERSECTION. GPX=DRV-SLUSH IF (ND) 1,1,2 S I NG DO 3 IX=1,25 XV=XV-6X/6PX DO 7 IP=2,NO IRR × IU(2,4,50) COMMON IR CONTINUE CONTINUE XINT=XV [+d]=d] COMMON COMMUN COMMON COMMON RETURN RETURN X V = X B d I = d I 10 ò Ś m 4 ~ ► 8

ں ں

Figure 7.- Continued

28

BSINT044 **BSINT045** BSINT046

IF (IP-NO) 8,8,9 kini=tab(2,1P)+(XINT-TAB(1,1P))+SLUP1 RETURN

ENO

σ

J

	PAGE 032 PAGE 033 PAGE 033	PAGE 005 PAGE 006	PAGE 007	PAGE 009	PAGE 010 PAGE 011	PAGE 012	PAGE 013		PAGE OIS	PAGE 016	PAGE 017	PAGE 010	PAGE 020	PAGE 021	PAGE 022	PAGE 023		PA3E 025	PAGE 026	PAGE 027	PAGE 028	PAGE U29	PAGE 031	PAGE 032	PAGE 033	PAGE 034	000 1000 0000 1000	
05/12/65 EF315200 EF315201	ING TITLE AND PAGE AUMBEK AT THE F Output. Sokensen, Emc. Aujust 7, 1961.	VARIABLE TITLE ENTRY	PREPARE FUR RETURN FRUM PAGE			ND. BLANK OUT BUFFER.											TEST FOR END OF TITLE	77		YES.	NO. STORE IN BUFFËR							BKING IN DATE AND INSERT
	INE FOR PRINT EACH SHEET OF PAGE	TITLE VTITLE	TEST	TI2 TFS1.4	5V1,1	SV4,4 BLAJK	18,1	BUFF+18,1	* -1.1.1	TEST	VARY	4.4	PAGNO	0,1 3.4	20.4	+	*,1	<i><i>ГГ<i>ГГГГГГС-</i></i></i>	=	##2 PAGE+2	BUFF,1	++1,1,-1	L00P,4,1	PAGE+2	24.44	PAGND, 1	PAD,1,0	BLANK
ŭ	SUBROUT HEAD. OF ENTRY	ENTRY ENTRY	512	TRA = SXD	SXA	SXA CLA	AXT	ST0	TIX	NZT	TRA	NZT#	STZ	AX I	AXT	STA	CAL		LAS	TRA	SLW	TXI	×11	LKA V V	445	LXA	ТХН	CAL
NUDECI	*₽ΔĠÊ *		אדודנו	1111	T12									661			LUOP								LAUL			
2 100. 2			10001	10001	10001	10001	10000	10011	10001	10001	10001	10000	10001	10000	10000	10011	1001		10001	11001	10001	1001	10001	10011	10001	10001	10001	10001
\$IBMAP EF315 \$IBLDR EF315 \$TEXT EF315			<pre>/ CARD (NUT PUNCHED) 00000 0600 00 0 0014i</pre>	00001 0020 00 0 00003	00003 0634 00 1 00066	00004 0634 00 4 00067 00005 0500 00 0 00132	00006 0774 00 1 00022	00007 0601 00 1 00000	0 00022 7 00106	00011 74250 00 0 00141	00012 0020 00 0 00071	00013 4520 60 4 00004	00014 0600 00 0 00137	00015 6774 00 1 00000	00015 0376 00 4 00003	00020 0621 00 0 01001	00021 4500 00 1 01000	CARD (NOT PUNCHED)	00022 4340 00 0 00144		00024 0020 00 0 04002 00025 0602 00 1 00106	00026 1 7777 1 01001	00027 2 00001 4 00021	00030 0020 00 0 04002	00031 0634 00 1 00065	00032 0634 00 4 00057 00033 0534 00 1 00137	00034 3 00000 1 00050	00035 4500 00 0 00132
			BINAR															BINARY										

03/12/65

EF3152 AŠSEMBLED TEXT.

58

	037 038	039	040	041	1	2		045		040	047	840	740					050		052	053	*		055	0 0 0	1058	029	090	061	062	063	4 9 9 7 9 4	066	
•	PAGE PAGE	PAGE	PAGE	PAGE				PAGE		PAGE			J A C L					A G E		AGF.	AGE	5			5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ы р ц р ц р ц	AGE	AGE	AGE	AGE	U U V V V V	2 4 6 2	AG AG	
													-						•			L		a , (10	- 0	. 0.	. a	۵.	۹.	a . d	7 0	. a.	
.2/65																																		
03/1												-	•																					
												FORM																						
												N06.																						
	AT	+ 18	I			T		+19		-		0 · / • 0						20,1		4	<u>ر</u>		4	4										
	5Y50 12	BUFF	SLAS	6 F.		SLASI	12	BUFF	[+ +		PAGNO	. FWRI					20.1	BUFF		FCNV	-2,1 PAGNO		FCNV	FFIL	•,1	4.	4	5 4 4	AGNU AGNU	r • •	4	LOOP	*	
																									•	Ī	-			r •	- (1)	2	0	
		SL N	CAL	ALS		ORA	LGL	SLH	TOV	IXI	SXA	CALL					AXT	CLA		TSX	CLA		TSX	TSX	AXT	AXT	TRA	*1 7N		PAX	ADD	STA	AXT	
										PAD	I														SVI	544		ARY						
	11	10	10	20		1	õ	22	10		1	0	-	-4 (2 -	1-	• •		-				-				00	- -	• 0			-1	0	
	100		100			100	100		1001	1001	1000	000	1001	1001			1000	1001	1000	1001	10001		1001	1001	1001	1001	1000	0001	1000	1000	1000	1000	1000	
	6000 0014	0106	0140	0000		0140	0014	0000	100	100	137	_	000	400		133	024	000	106		137		000	000	000	000	100	200	004	000	003	100	000	
техт	000	ŏ >►	õõ	53 00	HED)	o o	0	0 0	- 0	1 01	1 00	00000	4 05	50	50		100	1 00		+ 10	1 0 0 0	ED)	4 10	4 11	101	4 01 01	5 5 4 4	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	000 000 000	1 00	4 00	000	5 5 7	
3152 Bled	50 00	00022	00 00	20	PUNC	1 00	60 60 60	2003	30	1000	4 00	0000	4 00	2000	0000	0000	4 00	00 00	0024		00 00	PUNCE	00 4	4 00	8	88			09 09	00 +	80	88	3	
SSEM	476	20	45(076	(NOT	450	476	500	014	1 0	063	000	200	⇒ ¢			077	050			020	NOT	200	007	077	110		1040	0200	0734	040(0621		
A	00036		00041	00043	ARD	00044	00045	0+00	10047	00000	1500	0052	0052	5000 9900	0055	0056	0057	0900		1900	0063	ARD (0064	0065	0066	1900	0100	1100	0073	2074	0075	0076		
		-			ARY C	5	50	د	0	0	0	0	00) C	0	0	0	0	Ċ	50	Ó	NRY C.	ō	Ö	ō	ō ð	53	ōč	ŏ	õ	õ	ŏč	5	
					BIN																	BINA												

1

ļ

Figure 7.- Continued.

	PAGE 067 PAGE 068	PAGE 059 PAGE 070	PAGE 071	PAGE 072	PAGE 073										PAGE 074									PAGE 075			PAGE 076				PAGE 078					PAGE 081	
03/12/65	BRING IN ARRAY.																											04941140001111									
	*,1 BUFF,4	#+1,4,-1 DACE+2-418	VLOOP.1.1	PAGE+2	9,										6									2,			606060606060	4.1 LILI . CUAD.			41	70					
	VLOOP CLA STO		TIX	TRA	BUFF BCI										BCI									BCI			BLANK OCT				PAGNO PZE	JLAJI UCI Tret 070	+LDIR	1	+LORG	END	
	10001	11001	10001	1001	10000		10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000		10000	10000	10000	10000	10000		10000	10000	10000	11110	
EF3152 Sembled Text.	0500 00 1 01000 0601 00 4 00106	1 77777 4 01001 7 77764 4 04002	2 00001 1 00100	0020 00 0 04002	606060606060	NOT PUNCHED)	606060606060	606060606060	606060606060	606060606060	606060606060	606060606060	606060606060	606060606060	606060606060	606060606060	606060606060	606060606060	606060606060	606060606060	606060606060	606060606060	606060606060	606060606060	606060606060	NOT PUNCHED)	606060606060	74013001730367	730430472127	257331043460			000000000000000000000000000000000000000	252603010502	11111111111	00000	
AS	00100	00102	00104	00102	00100	BINARY CARD (00100	001100	00111	00112	00113	00114	00115	00116	00117	00120	00121	00122	00123	00124	00125	00126	00127	00130	00131	BINARY CARD (00132	00133	00135	00136	00137	04100	00141	00143	00144		

EF3152 Control dictionary

03/12/65

EF315208

4

SCDICT EF3152

START=0,LENGTH=101,TYPE=7094,CMPLX=5 LOC=0,LENGTH=101 LOC=31,LENGTH=0 LOC=0,LENGTH=0 LOC=2 ,LENGTH=0 SECT. 5,CALL SECT. 6 SECT. 8 SECT. 9 SECT. 7 PREFACE .FWRD. VIRTUAL SYSDAT VIRTUAL .UN06. VIRTUAL .FCNV. VIRTUAL .FFIL. VIRTUAL EF3152 DECK TITLE REAL REAL VTITLE REAL PAGE 332626314333

\$DKEND EF3152

NO MESSAGES FOR THIS ASSEMBLY

Figure 7.- Continued.

EF315209

03/12/65

EF3152 Cross reference data.

REFERENCES TO DEFINED SYMBOLS.

CLASS SYMBOL VALUE REFERENCES BLANK 00132 5,35 BUFF 00106 7,25,40,46,60,101 FDRM 00133 56 GET 00015 27 FDRM 00133 56 GET 00021 27 PAD 00050 34 PAGE 00031 24,30,103,105 PAGE 00031 24,30,103,105 PAGE 00031 24,30,103,105 PAGE 00031 24,30,103,105 PAGE 000137 14,33,51,63,72 PAGNO 00137 14,33,51,63,72 PAGNO 00141 0,2,111 T12 000067 4,32 TEST 00141 0,2,111 T12 000003 1 T17LE 000003 1 T17LE 000000 76,104 VITTLE 000000 76,104

REFERENCES TO VIRTUAL SYMBOLS.

61,64 65	55 36
80 60	5 ~ 3
.FCNV.	.FWRD. .UN06. SYSDAT

Figure 7.- Concluded.

•														CUALESCENTE	CUALESCENCE										CUALESCENCE																COALESCENCE
		PI/PIINF	- 10105 0 0 000010	0.994014	0.993671	4104040	12122.00	0.995681	0.993806	0.995446	0.906818	0.994014	0.995114		0-99445	0.996473	0.994517	710766.0	0.005802	00000000	0.945520	0005000	0.005000	+00066.00	0 000016	0.995053	0.995393	0.991441	0.994580	0.995263	0.992299	0.992646	0.994014	4794974	0.993366	0.997597	0.993567	0.994535	0.994011	0.992854	
		2,60000	2-250000	2.658124	2.734400	2.552813	2.729667	2 766831	2.651582	2.766314	2.789752	2.546557	2.698219		2.607548	2.727685	2.747104	2.559919	2.644951	2.747535	2.764076	2.598121	2-671048		2.564738	2.626562	2.691612	2.705405	2.596168	2.648879	2.706978	2.720387	2.577817	2.618387	2.666694	2.720898	2.732918	2.596887	2.637295	2.681553	
.00	DELTA(DEC)	12.499998	5.249999	8.233369	5.312679	12.50000	5.797173	4.650740	8.076803	4.800107	4.184130	12.50000	6.522618		9.47878	5.67774	5.053197	12.50000	8.026234	5.134191	4.706908	10.154383	7.146212		12.50000	8.835477	6.512144	5.905651	10.575611	7.937300	6.061395	5.599142	12.500000	9.336113	7.313833	5.678059	5.342962	10.813050	8.500481	6.805364	
JEGREE CONE M=3	P/PINF	1.829847	1.452360	1.672694	1.487003	1.968664	1.497941	1.417778	1.689303	1.418565	1.370511	1.987871	1.574268		1.809782	l.506641	l.459558	1.947082	1.710110	1.458900	L.423552	1.837013	1. 641465		1.917662	I.•758043	1.590797	1.551223	1.841782	1.698852	1.548816	1.517765	1.893800	1.780256	1.649662	1.516499	1.490232	1.839649	1.727328	1.611498	
ASE 14A 12.5 [æ	0.022160	0.043067	0.036991	0.064600	0.031629	0.061062	0.086218	0.056675	0.084147	0.107296	0.047494	0.080627	0.106465	0.072390	0.103711	0.128003	0.063587	0.096414	0.126297	0.149407	0.087913	0.119892	0.148993	0.079529	0.111821	0.143444	0.170531	0.103510	0.135833	0.166750	0.192645	0.095398	0.127744	0.159604	0.190309	0.214501	0.119580	0.151804	0.183621	0.213547
C	×	0.100000	0.100000	0.121087	0.150000	0.142810	0.162227	0.200000	0.177843	0.206976	0.250000	0.214447	0.218943	0.252751	0.249193	0.261858	0.300000	0.287108	0.287596	0.305835	0.350000	0.321220	0.327868	0.351399	0.359091	0.358329	0.370127	0.400000	0.392834	0.397955	0.413371	0.0004+0	0.430740	0.429823	0.438935	0.458165	0.500000	0.464861	0.468646	0.481665	0.503302
	POINT	r	2	٦	2	-	2	ŝ	1	2	m	H	2	ŝ	1	2	m	7	2	ŝ	4	1	2	æ	1	2	ŝ.	4,	- -	2	~ 1 ~	t .	- 0	~	Ē.	4	Ś	1	2	n ·	t
	RAY	F.	-	2	2	e i	ŝ	ŝ	4	4	4	in i	in i	5	6	o	9	~ 1	~	~	~	80	80	æ	6	6	م ا	ה ה י	2	<u>-</u>	10	2:	1.	1.	11			12	12	21	77
	REG	1		-4 /	-4 -	- - • .	4 -	-4		-		-1		-		-4	-	-1	٦	-		7	-1	-	1	1	-4,	-	-	- 1	-	- 1 ,	4,	-1.	- - ,	-4 ,	-4,	-	-4 -	-4 ,	-

9 CASE 144 12.5 DECREE CONE 4-3

THREE-DIMENSIONAL AXISYMMETRIC METHOD OF CHARACTERISTICS. INTERNAL CASE.

I

.

ļ

i

03/12/65

Figure 8. - Sample output.

THREE-DIMENSIONAL AXISYMMETRIC METHOD OF CHARACTERISTICS. INTERNAL CASE.

CASE 14A 12.5 DEGREE CONE M=3.00

	PT/PTINF	0.994014	0.994238	0.993291	0.993320	0.991320	0.994134	0.993677	0.993309	0.991879	0.992215	0.994014	0.993877	93454	0.992313	0.992142	166766.0	1+6666	0.993633	TR/766*0	0.992218	0.992831	09666660	0.994014	111666.0	0.993127	0.992422	0.992638	000000	0000000 V		0.002562	0.775705	162666.0	0.992074	0.994014	0.993623	0.992990	0.992613	0.993017	0.992402	
	MACH ND.	2.582278	2.615254	2.652663	2.694672	2.703979	2.597802	2.630495	2.666175	2.705568	2.714865	2.588263	2.611899	2.643969	2.678093	2.715610	2.724416	2.599357	2.624849	2.656353	2.688509	2.724793	2.732901	2.590275	2.610872	2.637241	2.666976	2.698121	630063	CCU44C.2	100770.7		20101007	2. (06861	2.713099	2.591919	2.609512	2.632975	2.657694	2.685770	2.714259	
	DELTA(DEG)	12.500000	9°710469	7.844671	6.403674	5.934829	11.051210	8.875940	7.337607	6.089848	5.712078	12.500000	9.991691	8.244847	6.944455	5.809903	5.516748	11.164071	9.208309	7.760577	6.601687	5.571530	5.343304	12.500000	10.197787	8.614437	7.347186	6.312946		11.307454	0164/4°6	8.11/669	168200-1	6.064659	5.748213	12.500000	10.427276	8.881883	7.708818	4.709708	6 855652	
	P/PINF	1.880754	1.787577	1-685616	1.580026	1.554438	1.836305	1.744976	1.650889	1.551519	1.530028	1.863400	1.796224	1.708661	1.619324	1.528168	1.508868	1.831535	1.760188	1.675189	1.593313	1.507812	1.490269	1.857604	1.798886	1.725934	1.647380	1.570588		1.832294	1.765743	1.697074	1.622946	1.550565	1.533967	1.852881	1.802407	1.737103	777127	1. 201322	C72100*1	1.731146
30 T+H TC.0	æ	0.111497	0.143759	0.176126	0.207300	0-236144	0.135591	0.168251	0.200114	0.230829	0.258283	0.127633	0.160125	0.192449	0.223961	0.254413	0.280233	0.152013	0.184441	0.216525	0.247857	0.277764	0.302021	0.144015	0.176315	0.208684	0.240654	0.271517	0.300913	0.168157	0.200627	0.232991	0.264550	0.294963	0.323664	0.160293	0.197449	0.275036	000000000	0.251080	0.2882.35	0.318315
CA	×	0.503632	0.501445		0.524014		0.527681	0 540352	0.551038	0 548810	0,00000	0.576289	0.574281	0.580276	0.593417	0.613585	0.650000	0.610814	0.612445	0.621203	0.636758	0.658602	0.00000	0.650260	0.647129	0.651847	0.663205	0.680447	0.703833	0.684471	0.684974	0.692466	0.705669	0.724419	0.750000	0.722755	0 720672	716071-0	0.124205	0.733678	0.748499	0.768809
	POINT		- r	ч r	0 3	ru	n -	- r	v r	•	r u	- r	- 0	J (*	4	• •	. •a	•	• ~	1 ~	n - 4	r ur	. .) -	• •	1 1	14	r ur	. •	-	~	I (0)	4	·u	• •	0.	-1 (~	m,	4	ŝ	¢
	V V O		<u>-</u>	1:	32	35	<u>-</u>	+ - -	t . 1 -	+ . 	+ - -	t u 1	<u>,</u>	1 -	1 U 1 -	4	15	41	0 1	94	91	14	94						17		81		9		-	0 (1	19	19	19	19	19	19
	0.01	5	-	-4 -	-1 -	-	-4 ,		-4 -	- -			-	4 -		4	4	4 -	-	4	-, -	4 -	4 ~	4	-	-	4.	4-	4	4	•	4	4	4 -		-	1	-4	-	-	-1	-

Figure 8. - Continued.

.

03/12/65

03/12/65

•

-

•

THREE-DIMENSIONAL AXISYMMETRIC METHOD OF CHARACTERISTICS. INTERNAL CASE.

CASE 14A 12.5 DEGREE CONE M=3.00

	CDALESCENCE
PT/PTINF 0.9932676 0.9932676 0.9932676 0.9927656 0.9927656 0.9928286 0.992828 0.9928289 0.9928269 0.9928469 0.9928469 0.9928469 0.992642 0	0.993728 0.993224 0.992899 0.992899 0.992730 0.993233 0.993875 0.993875
MACH NU. 2.599972 2.619091 2.6599780 2.659693 2.659883 2.659883 2.7213760 2.721376 2.651530 2.651530 2.651530 2.651530 2.651137 2.651137 2.651137 2.6601078 2.660109 2.660109 2.6627753 2.660109 2.6627753 2.660172 2.660178 2.714566 2.714566	2.601157 2.615351 2.615351 2.653098 2.653098 2.674926 2.720599 2.720599
DELTA(DEG) 5.591093 9.718620 8.399718 7.399718 7.399718 7.394169 5.662563 5.4648379 5.662563 5.4648379 9.149521 7.997465 7.997465 7.997465 7.997465 7.97465 7.97465 7.97465 7.97737 5.317854 6.239035 5.336271 5.336271 5.336271 5.336271 5.336271 5.336271 5.336271 5.336264 6.587558 5.862677 5.862677	11.582844 10.083673 8.926731 7.948246 7.103544 6.384400 5.505048 5.505048
P/PINF 1.516895 1.775267 1.775267 1.7711170 1.775267 1.6580887 1.5698877 1.561516 1.5809877 1.561516 1.687778 1.687778 1.687778 1.668778 1.668778 1.653288 1.765328 1.765328 1.765328 1.7759601 1.668152 1.6681552 1.6881552 1.6881552 1.6881552 1.6881552 1.6881552 1.6881552 1.6881552 1.6881552 1.6881552 1.6881552 1.68815552 1.68815552 1.68815552 1.68815555555555555555555555555555555555	1.826049 1.785487 1.737105 1.683532 1.683532 1.6575322 1.519149 1.507603
R 0.345645 0.184427 0.216895 0.216895 0.216895 0.216895 0.216895 0.341700 0.341700 0.341700 0.261191 0.273273 0.267199 0.364924 0.36475 0.364759 0.364752 0.364759 0.364759 0.364759 0.366919 0.2563219 0.3287599 0.3287219 0.2257300 0.2257300 0.2257300 0.2257300 0.2257300 0.321199 0.321199 0.322199 0.322199	0.410942 0.217064 0.247064 0.313514 0.313514 0.375142 0.405357 0.4053570
X 0.800000 0.758273 0.758273 0.758273 0.758273 0.758273 0.7574183 0.775357 0.813784 0.813784 0.813784 0.813784 0.8137665 0.794055 0.858931 0.817601 0.887959 0.8875264 0.8875264 0.8875264 0.887529 0.9924232 0.99242 0.9924232 00	0.9446/2 0.905669 0.905469 0.917327 0.917327 0.917327 0.9173238 0.947200 0.968853 1.000000
L N N N N N N N N N N N N N N N N N N N	Σ – Ν M 4 M 0 – Φ
	, , , , , , , , , , , , , , , , , , ,
0	

THREE-DIMENSIONAL AXISYMMETRIC METHOD OF CHARACTERISTICS. INTERNAL CASE.

CASE 14A 12.5 DEGREE CONE M=3.00

																																									COALESCENCE				
	PT/PTINF	0.994014	0.993459		140666.0	661266.0	0.992767	0.993076	174502.0		001066.0	0.993394	1216660	0.993230	0.992902	0.992780	0.992961	0.993466	0.993336	0.993362	0.993753	0,044014		C0+C66*O	0,993041	0.992831	0.992891	0.993281	0.993380	0.993354	0.993722	0.994078	0.993728	0.995255	4767660	009766 0	261666.0	0.993345	0.993363	0.993616		0.994014	0.993466	0.993062	
	MACH NO.	2.597105	2 207120	5°001705	2.623051	2.640419	2.660290	2 681700	2021100 C	010201-2	2.125632	2.730481	2.601304	2.614057	2.630202	2.647522	2.667098	2.688086	2.708317	2.730773	7 726507	240203 5	200166.2	2.607018	2.620659	2.637072	2.654278	2.673553	2.693911	2.713584	2.735712	2.740371	2.601959	2.612815	2.627160	2.643666	2.660719	2.679602	2.699315	2.718677		7 509480	2.606645	2.000012	10-010-0
	DELTA(DEG)	12 50000		10.848129	9.566375	8.534400	7.650604		1000000	0.20220	5.560166	5.392768	11.651752	10.253198	9.119026	8.196179	7.389073	6.667342	4 040340	CUC9C9 3	202024°C	5.288300	12.500000	10.968100	9.743195	8.736001	7.900736	7.156890	6.485046	5.889109	5.303201	5.190695	11.717343	10.388058	9.309498	8.403420	7.639796	6.951694	6-315745	5 750710			T 2.5 500000	0014C0.TT	101070.4
	DINE	770000	1.838004	1.808651	1.764034	1.716920	1 445035		1.611495	1.560913	1.506412	1.495555	1.825631	1.789075	1.744406	1-698165	1 447963	1 506257		1.241240	1.494831	1.484409	1.835914	1.809080	1.770580	1.725869	1.680744	1.632181	1.581975	1.534804	1.484090	1.474052	1.823785	1.792522	1.752663	1.708452	1.664538	1.617146	1 548853		7+767C•T		1.831320	1.810151	1.775803
	٥		0<209350	0.241140	0.273392	0 305676		0.331411	0.368687	0.399111	0.428452	0.454147	74666 0	0 265307	0 207657	0 220748		0100000	012245.0	c422340	0.451586	0.475832	0.225608	0.257325	0.289584	0.321799	0.353684	0.384978	0.415666	0.445777	0.474604	0.497429	0.249516	0.281561	0.313767	0 345819	0 377692	0.00670		ACTAC**0	0.468941	0.497515	0.241901	0.273651	0.305742
•	;	×	0.945258	0.941107		0.02710	0.940.20	0.958680	0.972840	0.990870	144610-1			0.917202		061106-0	121884.0	1.000387	10/610.1	1.034815	1.058879	1.100000	1.018665	1-014552	1 015504	101000 L	1 020520	667670 I	1 055933	1.02020	1.104237	1 1 5 0 0 0 0	1.150000	1 061127	1.053943		1000001		1.084/00	1.102550	1.123809	1.149704	1.092235	1.087989	1.088527
		POINT	-		1 (n -	4	2	9	~	- 0	0 0	r -	(4	n .	t	ŝ	9	7	80	6	-	• •	, 1	n ,	t 1	n 、	0 1	~ '	χ	,	7	-1 (v c	n •	4	۰ م	6	2	8	6		2	i m
		RAY	25	1 0	2	2	55	25	25	50	, , ,	2	5	97	20	26	26	26	26	26	26	26			17	12	17	17	21	27	27	27	21	87	87	27	28	28	28	28	28	28	50	00	29
		REG		4 -	-•	-1	1			4	4.	-1 -	-1	-	-	1	-	-1	-1	٦		•	4 -		-	-1	-	-	-	-	7	-	~	4		-	~1		1		ı –	4	4	4	4 -4

Figure 8. - Continued.

03/12/65

• 03/12/65

•

THREE-DIMENSIONAL AXISYMMETRIC METHOD OF CHARACTERISTICS. INTERNAL CASE.

CASE 14A 12.5 DEGREE CONE M=3.00

PI/PIINE	0.992891	0.993026	0.993266	0.993357	0.993535	0.993949	0.993144	0.993731	0.993246	0.992965	0.992970	0.993172	0.993324	0.993474	0.993819	0.993318	0.993472	0.994014	0.993474	160566.0	0.992968	0.03090	0.993266	0.993420	0.993704	0.993472	0.993449	177699.0	0.993736	0.993267	0.993022	0.993040	0.993196	0.993362	0.993604	0.993548	0.993456	0.993746	0.994045	0.994014
MACH NO.	2.633494	2.649996	2.666877	2.685158	2.704508	2.723523	2.727036	2.602667	2.611823	2.624704	2.639640	2.656149	2.672541	2.690451	2.709476	2.727579	2.731572	2.600059	2.606802	2.617214	2.630564	2.645704	2.661848	2.677909	2.695519	2.713872	2.731820	2.735846	2.602842	2.611446	2.622669	2.636441	2.651376	2.667247	2.683043	2.700176	2.718165	2.735947	2.739884	2.600577
DELTA(DEG)	8.935175	8.111222	7.409902	6.762247	6.161369	5.623417	5.463190	11.754562	10.506715	9.477750	8.608045	7.854661	7.198855	6.590138	6.019830	5.507788	5.370459	12.500000	11.132923	10.035568	9.112333	8.321832	7.620440	7.007846	6.432856	5.891426	5.397718	5.283116	11.800877	10.605742	9.628145	8.793798	8.061965	7.409273	6.833875	6.290384	5.769740	5.295198	5.200621	12.500000
P/PINF	1.735538	1.692114	1.649030	1.603392	1.556644	1.512458	1.503106	1.821793	1.795295	1.759399	1.719281	1.676375	1.634796	1.590570	1.545244	1.502115	1.493169	1.829681	1.809707	1.780113	1.743548	l.703469	1.661865	1.621491	1.578580	1.534307	1.492567	1.483857	1.821308	1.796379	1.765042	1.727916	1.688804	1.648250	1.609022	1.567067	1.524197	1.483591	1.475103	1.828213
R	0.337846	0.369718	0.401223	0.432227	0.462535	0.492047	0.518947	0.265858	0.297781	0.329846	0.361819	0.393550	0.425001	0.455757	0.485800	0.515088	0.540689	0.258247	0.289880	0.321872	0.353863	0.385736	0.417432	0.448664	0.479178	0.509000	0.538177	0.562355	0.282098	0.313910	0.345902	0.377840	0.409709	0.441202	0.472218	0.502531	0.532248	0.561172	0.583948	0.274539
×	1.092956	1.100915	1.112297	1.127667	1.146402	1.168513	1.200000	1.126291	1.124283	1.126586	1.132460	1.141728	1.154442	1.170776	1.190414	1.213414	1.250000	1.166038	1.161440	1.161353	1.165212	1.172470	1.183142	1.196830	1.214073	1.234644	1.258700	1.300000	1.199950	1.197484	1.199074	1.204408	1.213121	1.224838	1.239437	1.257611	1.279277	1.304083	1.350000	1.239601
POINT	4	ŝ	6	1	80	6	10		2	ŝ	4	5	9	7	9	6	10	1	2	e	4	\$	¢	~	æ	6	10	11	4	2	ŝ	4	Ś	¢	2	8	6	10	11	I
RAY	29	29	29	29	29	29	29	30	30	30	30	30	30	30	30	30	30	31	31	31	31	31	31	31	31	31	31	31	32	32	32	32	2	32	32	32	32	32	32	33
REG	1	-1	4	-	-1		-	4	T		7	٦	-1	٦	-	-	. - 1	-	-4	7	-	T	1	Ţ		-		-	-1	-4 -		-		7	-	-	-	-		-

THREE-DIMENSIONAL AXISYMMETRIC METHOD OF CHARACTERISTICS. INTERNAL CASE.

CASE 14A 12.5 DEGREE CONE M=3.00

											CUALESCLACE																															
	PT/PTINF	0.993490	0.993133	0.993032	0.993132	0.993298	0.993515	0.993568	0.993485	0.993661		C+15990	0,993298	0.9930//	0.993090	0.993231	0.993432	0.993549	0.993513	0.993607	0.993937	0.993316	0.994014	0.993511	0.993177	0.993085	0.993173	0.993352	0.993504	0.993526	0,000010	068686.0	0.993454	0.993590	0.993756	0.993332	0.993126	0.993136	0.993280	0.993446	0.993518	
	MACH ND.	2.606523	2.616350	2.628259	2.642003	2.656774	2.672406	2.687878	2.704574	2.722375		2.603029	2.610719	2.621534	2.633623	2.647339	2.661936	2.677344	2.692384	2.708862	2.726425	2.729395	2.601043	2.606328	2.615377	2.626598	2.638829	2.652463	2.666932	2.681933	2.696736	2.713011	2.729869	2.733248	2.603221	2.610316	2.620042	2.631589	2.643865	2.657465	2.671587	
))	DELTA(DEG)	11.211240	10.15227	9.274333	8.506126	7.828587	7.217604	6.676554	6.155953	5.656667		11.841670	10.706558	9.759904	8.956465	8.248782	7.617495	7.044617	6.528735	6.031347	5.551231	5.414951	12.50000	11.280911	10.271649	9.409242	8.673217	6.016833	7.427378	6.882739	6.392069	5.915415	5.454087	5.336219	11.877912	10.799505	9.884872	166790.6	8.418815	7.808393	7.250178	
	P/PINF	1.810518	1.782566	1.749879	1.713300	1.674973	1.635451	1.597030	1.556408	1.514687		1.820797	1.798456	1.768239	1.735540	1.699417	1.661917	1.623113	1.585908	1.546372	1.505716	1.497930	1.826895	1.811102	1.785332	1.754469	1.721787	1.686241	1.649289	1.611646	1.575425	1.536900	1.497050	1.489514	1.820278	1.799639	1.772409	1.741081	1.708638	1.673436	1.637521	
31 114 151 N	×	0.306020	0.337913	0.369912	0.401883	0.433576	0.464865	0.495707	0.525932	0.555399	0.584077	0.298295	0.329960	0.361925	0.394001	0.425826	0.457339	0.488465	0.519242	0.549237	0.578460	0.605474	0.290783	0.322126	0.353944	0.386032	0.418001	0.449672	0.481044	0.512113	0.542681	0.572450	0.601467	0.627176	0.314453	0.346045	0.378045	0.410064	0.441912	0.473465	0.504797	
4)	×	1.234894	1.234275	1.237437	1.244289	1.254094	1.266784	1.282309	1.301571	1.324026	1.349557	1.273383	1.270695	1.271789	1.276535	1.284539	1.295355	1.309026	1.325624	1.345668	1.368883	1 400000	1.312946	1.308145	1.307307	1.310093	1.316051	1.325114	1.336942	1.351729	1.369097	1-389891	1.413903	1.450000	1 246612	1 242817	72277C . 1	1 36877	1.255937	1.366051	1.379013	
	POINT	~		t, i	. v.	i ve	~	- 00	• •	10	11	-	2		4	5	· •0		. 60	• •	10	2 -	-	• ~	, 1	• •	، د	. .	, r	. 6	. 0	01	0 I 1		77	-	4	n .	r u	n 4	o ~	
	V V O) r 1) (r) r	ר ה ייים ייים) (r) (r	34	34	44	34	34	46		. 4	46	46	36	- u -	י ע ה ה			י ע י ר	י ע י י	י ע י י) (ľ	י י הי) (1 (1) (1)	ייי	0 0	0	0,0	5	5	0 0	0,0	9 9 9	•
	000	9 2	4 -	4	4	1	4 -	-4	-	4	• ~		ı	•		• ~	4	4	4	4	4	4 -	4 -	4 -	4 -	-	4 -	4 -	4	4 -	4 -	4 ~		-1 -	-1 .	- 1 -	-1 -			- • ,	-4	•

Figure 8.- Continued.

03/12/65

03/12/65

~

ļ

THREE-DIMENSIONAL AXISYMMETRIC METHOD OF CHARACTERISTICS. INTERNAL CASE.

i

CASE 14A 12.5 DEGREE CONE M=3.00

																															OAL FACENCE										
	PT/PTINF	0.002550	0.993752	0.993568	0.993568	0-993844	0.994014	0.993534	0.993220	0.993132	0.993219	0.993379	0.993491	0.993544	0.993685	0.993627	0.993568	0.993820	0.994079	0.993768	0.993366	171592.0	0.993182	0.993314	144500.0	0.993524	0.993635	0.993647	0.993587	0.993749		0.994014	0.993557	0.993260	0.903177	0.003258	101100 U	1.993494	0.993594	0.993643	0.993607
	MACH ND.	2.686333	2.700952	2.716723	2.733475	2.736908	2.601466	2.606376	2.614469	2.624739	2.636470	2.648825	2.662150	2.676033	2.690587	2.704861	2.720378	2.737008	2.740393	2.603599	2.609888	2.618777	2.629404	2.641330	2.653499	2.666623	2.680320	2.694626	2.708591	2.723985		2.602215	2.606326	2.613706	2.623148	2-634109	2.645943	2.657973	2.670927	2.684450	2.698430
	DELTA(DEG)	6.733471	6.265210	5.808690	5.360925	5.261429	12.500000	11.345801	10.373455	9.542897	8.819429	8.190734	7.614872	7.087220	6.595245	6.148539	5.706686	5.273265	5.190235	11.912702	10.877075	9.998198	9.237920	8.570296	7.979781	7.437387	6.936683	6.468267	6.037389	5.610869		12.500000	11.397661	10.465774	9.664712	8.965844	8.340736	7.786835	7.273833	6.798573	6.347676
	P/PINF	i. 600818	1.565519	1.527748	1.488961	1.481552	1.825699	1.811008	1.787916	1.759598	1.728150	1.695778	1.661466	1.626386	1.590573	1.555944	1.519196	1.481288	1.474004	1.819235	1.800892	1.775958	1.747051	1.715396	1.683708	1.650106	1.615831	1.580660	1.546986	1.511081		1.823587	1.811192	1.790100	1.764012	1.734531	1.703360	1.672210	1.639312	1.605602	1.571374
	æ	0.535665	0.566028	0.595607	0.624507	0.648814	0.306984	0.338265	0.370109	0.402089	0.434017	0.465777	0.497309	0.528456	0.559126	0.589319	0.618797	0.647466	0.670389	0.330641	0.362257	0.394140	0.426069	0.457934	0.489696	0.521060	0.552025	0.582531	0.612643	0.641906	0.670349	0.323191	0.354523	0.386247	0.418125	0.450026	0.481912	0.513528	0.544724	0.575540	0.605968
	×	1.394613	1.412715	I.434292	1.459234	1.500000	1.386095	1.381300	1.380416	1.382775	1.388065	1.396221	1.407495	1.421291	1.437664	1.456528	1.479018	1.504647	1.550000	1.419748	1.416995	1.417617	1.421244	1.427698	1.437038	1.449173	1.463757	1.480926	1.500679	1.523840	1.550138	1.459275	1.454498	1.453367	1.455343	1.460199	1.467894	1.478117	1.491063	1,506453	1.524540
	POINT	80	6	10	11	12	-	2	n -	4	ŝ	6	-	œ	6	10	11	12	13	1	2	n	4	ŝ	9	~	æ	6	10	11	12	7	2	ŝ	4	ŝ	9	2	8	5	10
	RAY	36	36	36	36	36	37	37	37	37	37	37	37	37	37	37	37	37	37	38	38	38	38	38	38	3.8	800	89	38	80 i	38	39	39	39	39	39	39	39	39	96	39
1	REG.	-1		-4	-	, 1	. ,	- - -	-		-	~4	-			4		-1	-			-	-	-1	-1	~4	-4,	-1 -					-		-	-1	-1	-			-

.

03/12/65

THREE-DIMENSIONAL AXISYMMETRIC METHOD OF CHARACTERISTICS. INTERNAL CASE.

CASE 14A 12.5 DEGREE CONE M=3.00

01 / 01 / NC		0.993699	0.993987	0.993358	0.993780	0.993399	0.993215	0.993273	0 003337	0.000.66		04444	0.993625	0.993619	0.993669	0.993901	0.993497	0.993597	0.994014	0.993581	0.993299	0.993220	0.993289	0.993406	0 003516	01/04/0	77272720	0.993622	0.993652	0.993826	0.993616	0.993581	0.993820	0.993793	0.993431	0.993255	0.993259	0.993357	0.993472	0.993567	0.94413	0.003644	1+003747U	
	MACH NU.	2.712252	2.727475	2.729987	2.603987	2.609539	2.617698	2 677636	213053 5	10000.2	2.650380	2.662276	2.675110	2.688328	2.702133	2.715816	2.730415	2.733349	2.602552	2.606465	2.613062	2.621898	2.631984	2 642085	C0121012	2.074071	2.666484	2.679045	2.692077	2.705741	2.718987	2.733553	2.736564	2.604151	2.609415	2.616898	2.626026	2.636238	2.647214	2 458858	2 470652	C.50C01 C	2.002002	471660.7
	DELTA(DEG)	5.933171	5.520623	5.402857	11-934760	10.947358	10 101518	01/101 •01	7.20192.V	8.716071	8.131349	7.609477	7.123989	6.667810	6.234821	5.835176	5.436695	5.334137	12.500000	11 442289	10-549905	9.778217	0 004530	7*07040*6	8.488910	1.939363	7.447226	6.982537	6.545672	6.128890	5.744087	5.355604	5.268445	11.961638	11.009042	304101	9.483542	850297		200707°2		1.244200	6/9068-9	6.431236
	PINF	1.538480	1.503366	1 406635	1 818165	1 001070	COOOLE .	1.19002	106161.1	1.722635	1.691840	1.661252	1.628832	1.596008	1.562550	1.530390	1.495861	1.489292	1.822635	1.810843	1 701054	1 747408		1-140288	1.711176	1.680818	1.650585	1.618985	1.586880	1.554150	1.522519	1.488804	1.482298	1.817726	1 802330	1.781278	1 766379	1 730010	010621.1	1./UU158	1.0010.1	1.640542	1.609604	1.578183
	æ	0.635885	C0050000		004740.0	014040	0.5/8459	0.410212	0.442101	0.474050	0.505806	0.537274	0.568335	0.599086	0.629323	0 459048	0.687924	0.713599	0 330457			666704°0	U.434188	0.466155	0.497996	0.529618	0.560970	0.591979	0.622551	0.652599	0.682166	0.710951	0 725236	0.363111	2002 D	00646640	0.420212	0.428425	0+106+0	0.521867	0.553386	0.584701	0.615542	0.645937
	*	1 564041	1 540753		1.60000	1.495035	1.490008	1.490327	1.493603	1.499747	1.508382	1.519435	1 533705	1 560517	1 560282		1.612811		1.52710	01/202.1	1.52/040	1.1026.1	1.527875	1.532493	1.539622	1.549135	1.561027	1 575728	1. 503736	1 612141	11111101	1 4503047	0016001	1. 562370	61000C • T	1.562995	1.562988	1.566091	1.571745	1.579791	1.590188	1.603016	1.618413	1.636063
	TMICO		1:	71	13	-	2	e,	4	5	.		- 0				1:	71	۲ <u>،</u>	 (2	m	4	5	6	-	- 0	o c	•	1:		71.	13	14	-4	2	ŝ	4	5	9	7	. 60) o	10
		TAT CC	50	55	9 6	40	40	40	40	40	04			P) •	0 ·	41	41	41	41	41	41	41	4	+ -		41	4	41	41	41	42	42	42	42	42	42	6.4	1 4	104	1 C2 7 T
	, L	ж Г С	-4 /		-1		-1	-			4	4 -	-1 -	-4 .		-	- 1 ,	-	-	-	-1	-1	-1	-	۱	•	4.	- <i>.</i>	7	-4	-	-1	-1	1	-1	7	-1	-1	-		4	4	4 -	
~

THREE-DIMENSIONAL AXISYMMETRIC METHOD OF CHARACTERISTICS. INTERNAL CASE.

CASE 14A 12.5 DEGREE CONE M=3.00

	CUALESCENCE
P1/P1INF 0.993583 0.993591 0.993591 0.993591 0.993604 0.9933355 0.9933557 0.9933557 0.993552 0.993552 0.993529 0.993521 0.993521 0.993521 0.993524 0.993524	0.993805 0.993805 0.993293 0.993293 0.993569 0.993569 0.993618 0.993650 0.993650 0.993650 0.993650 0.993650 0.993650 0.9936401 0.993642 0.9935442 0.9935442 0.993595 0.993559 0.995500 0.99550000000000
MACH NU. 2.729079 2.729079 2.729079 2.729644 2.7366415 2.602858 2.602858 2.602858 2.602811 2.602811 2.602858 2.651386 2.651386 2.651386 2.651386 2.651386 2.659388 2.725294 2.725294	2.604310 2.609261 2.609261 2.616285 2.614499 2.614499 2.6544499 2.653552 2.655352 2.655352 2.617962 2.617962 2.617962 2.617962 2.617962 2.617962 2.617962 2.617962 2.617962 2.617962 2.61716 2.65312 2.55352 2.55352 2.55352 2.55352 2.55352 2.55352 2.55352 2.55352 2.55352 2.55352 2.55352 2.55352 2.55352 2.553552 2.553552 2.553552 2.553552 2.553552 2.553552 2.553552 2.553552 2.553552 2.553552 2.553552 2.553552 2.553552 2.553552 2.555552 2.5555552 2.5555552 2.55555552 2.55555552 2.55555555
DELTA(DES) 6.030488 5.656314 5.256314 5.278722 5.205540 12.560000 12.560000 12.56451 9.216973 10.626451 9.216973 10.625675 8.625675 8.625675 8.625675 8.625675 6.727348 6.727348 6.727320 5.573205 5.573205	11.986060 11.986060 10.280158 8.974406 8.974406 8.974406 8.474406 8.4944652 7.019779 6.613162 5.846489 5.494346 5.494346 5.494346 5.494346 5.494346 5.390805 11.534457 10.698447 11.534457 8.753999 8.253999 8.253999 8.253999 8.253999
P/PINF 1.545976 1.545976 1.515112 1.482065 1.475624 1.475624 1.475624 1.475624 1.77731 1.718094 1.776360 1.776360 1.776380 1.7669345 1.6509865 1.569715 1.569715 1.568736 1.568736	1.817303 1.817303 1.817303 1.763232 1.760222 1.794656 1.707320 1.650167 1.650167 1.651799 1.651799 1.651799 1.651799 1.551268 1.551268 1.551268 1.551268 1.551268 1.773156 1.573156 1.575252 1.573156 1.575156 1.5
R 0.675830 0.758323 0.756816 0.756816 0.355684 0.355684 0.450370 0.418471 0.418471 0.450370 0.450370 0.450370 0.450370 0.450370 0.450370 0.5514055 0.5514055 0.5140555 0.51405500000000000000000000000000000000	0.756797 0.379272 0.442498 0.442498 0.442498 0.55379383 0.5537938 0.5537938 0.5537938 0.5537938 0.5537938 0.5537938 0.65268 0.65268 0.65268 0.651875 0.498345 0.498345 0.498345 0.498345 0.498345 0.5531875 0.5531857 0.5531857 0.5531857 0.5531857 0.5531857 0.5531857 0.5531857 0.5531857 0.5531857 0.5531857 0.5531857 0.5531857 0.5531857 0.5531857 0.5531857 0.5531857 0.553187 0.55
x 1.656167 1.658652 1.704577 1.704577 1.704577 1.700000 1.600988 1.600951 1.600951 1.600951 1.601325 1.601325 1.661246 1.661246 1.661246 1.677583 1.723557 1.723557	1.750055 1.639558 1.63955867 1.6338467 1.6338467 1.651259 1.651229 1.6512217 1.651323 1.651323 1.6673233 1.673223 1.673223 1.673223 1.673233 1.672192 1.772192192 1.772192192 1.772192192 1.772192 1.772192 1.772192 1.7721
PO 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	・ユ ・ユ ンターこうようらてのひつ」こうよーこうようらての
₹ 44444444444444444444444444 > N N N N N N N N N N N N N N N N N N N	.4444444444444444444444444444444444444
9 m m m m m m m m m m m m m W W	• • • • • • • • • • • • • • • • • • • •

03/12/65

CASE 14A 12.5 DEGREE CONE M=3.00

	PT/PTINF	0.993663	0.993707	0.993672	0.993687	0.993875	0.993521	0.993612	0.993816	0.993492	0.993328	0.993319	0.993399	0.993498	0.993574	0.993639	0.993691	0.993685	0.993682	0.993816	0.993627	0.993598	0.993811	0.994014	0.993648	0.993404	0.993323	0.993365	0.993457	0.993543	0.993614	0.993671	0.993687	0.993683	0.993772	0.993685	0.993606	0.993793	0.993998	0.993827	0.993519
	MACH ND.	2.670359	2.681561	2.693394	2.705675	2.718578	2.730954	2.733558	2.604597	2.609053	2.615560	2.623517	2.632372	2.642033	2.65228	2.662870	2.673985	2.684957	2.696643	2.708827	2.721359	2.733738	2.736423	2.603661	2.606529	2.611888	2.618927	2.627250	2.636142	2.645786	2.655907	2.666508	2.677416	2.688241	2.699825	2.711752	2.724149	2.736501	2.739179	2.604888	2.608878
	DELTA(DEG)	7.304230	6.896862	6.503569	6.127008	5.761749	5.420395	5.329880	12.010082	11.128302	10.361754	9.686448	9.091049	8.548844	8.053913	7.597161	7.172413	6.779591	6.400437	6.036012	5.682315	5.348662	5.271338	12.500000	11.570804	10.764777	10.057663	9.431036	8.870696	8.359519	7.890097	7.455840	7.046941	6.669198	6.302973	5.950752	5.605427	5.280236	5.215021	12.025312	11.178620
- - - -	P/PINF	1.640862	1.612862	1.583698	1.554092	1.523874	1.494661	1.488837	1.816517	1.803449	1.785096	1.763259	1.739437	1.713853	1.687229	1.659871	1.631767	1.604416	1.575818	1.546781	1.516999	1.488405	1.482605	1.819510	1.810788	1.795399	1.775819	1.753197	1.729439	1.704030	1.677747	1.650643	1.623158	1.596325	1.568269	1.539642	1.510484	1.482402	1.476629	1.815717	1.803985
	æ	0.624564	0.655456	0.685947	0.715966	0.745429	0.774408	0.800028	0.395460	0.426893	0.458617	0.490459	0.522293	0.554097	0.585714	0.617082	0.648172	0.679025	0.709355	0.739206	0.768519	0.797422	0.821660	0.388076	0.419250	0.450806	0.482563	0.514417	0.546293	0.577997	0.609496	0.640763	0.671820	0.702523	0.732693	0.762405	0.791644	0.820374	0.843244	0.411726	0.443084
	X	1.715174	1.730064	1.747632	1.767370	1.789452	1.813648	1.850000	1.712667	1.709294	1.708809	1.710924	1.715643	1.722900	1.732280	1.743719	1.757249	1.772950	1.791109	1.811415	1.834104	1.859011	1.900000	1.752246	1.747168	1.745196	1.745909	1.749127	1.754934	1.763011	1.773134	1.785314	1.799677	1.815966	1.834695	1.855602	1.879019	1.904437	1.950000	1.785914	1.782330
	POINT		10	1	11	1	14	15		2	. ന	t i	ŝ	9	7	80	5	10	11	12	13	4	15	-	2		t,	5	. •0	7	8	6	10	11	12	11	14	15	16		2
	RAY	14	1 I 1 4	45	45	40	45	45	40	46	40	49	40	46	46	46	46	46	46	46	46	49	46	47	47	47	47	47	47	47	47	47	47	47	47	47	47	47	: 4	· 4	• 6
	RFG		4	1							•	•	•		-		-	-				·							•	• ~			۔ ،		ı			4	•	•	•

Figure 8.- Continued.

•

CASE.
INTERNAL
CHARACTERISTICS.
0F
METHOD
AXI SYMMETRI C
THREE-DIMENSIONAL

CASE 14A 12.5 DEGREE CONE M=3.00

ļ

...

٠

03/12/65

	COALESCENCE		
PT/PTINF 0.993347 0.993347 0.993347 0.993348 0.993586 0.993588 0.993681 0.993681 0.993681 0.993614 0.993614 0.993611	0.993667 0.993434 0.993434 0.993353 0.993387 0.993387 0.993654 0.993654 0.993654 0.993654	0.993683 0.993722 0.993723 0.993707 0.993478 0.993478 0.993837 0.993837 0.993837 0.993837 0.993837 0.9938390	0.993372 0.9935434 0.993596 0.993596 0.993578 0.993578 0.993723
MACH ND. 2.614924 2.614924 2.622447 2.639826 2.639826 2.659540 2.659540 2.659540 2.659543 2.691445 2.7145844 2.71458458585858585858585858585858585858585	2.663001 2.606670 2.606670 2.611521 2.611521 2.653161 2.653043 2.653001 2.653001	2.683946 2.694543 2.694543 2.717401 2.7129669 2.729669 2.605021 2.608852 2.608852 2.614460	2.621438 2.6224367 2.6379367 2.646989 2.6665494 2.666342 2.67653 2.687089
DELTA(DEG) 10.437250 9.782869 9.194561 8.667761 8.184101 7.321628 6.929009 6.929009 6.221698 5.55216 5.532163	12.500000 11.602536 10.1426107 10.1426107 10.141824 10.141824 8.977221 8.977221 8.480087 8.022259 7.1955397	6.817871 6.467508 6.467508 6.123711 5.790009 5.462249 5.468249 5.3682249 5.468261 12.0443861 12.0443861 11.223402 11.223402	9.869712 9.2969360 8.776603 8.307153 7.661046 7.651046 7.077151 6.713922
P/PINF 1.786910 1.766226 1.743463 1.743463 1.743463 1.743463 1.743463 1.7641895 1.6641895 1.6641895 1.668494 1.5688566 1.5688566 1.568894 1.564231	1.818850 1.818850 1.816472 1.777923 1.777923 1.7733934 1.7733934 1.710291 1.685194 1.685194 1.6535988	1.606975 1.558895 1.558895 1.558895 1.558895 1.558895 1.558895 1.558895 1.492821 1.492821 1.4928246 1.788246	1.747595 1.747595 1.7246595 1.720960 1.651075 1.655415 1.655412 1.599222
R 0.474716 0.506518 0.538435 0.570231 0.601831 0.601831 0.633242 0.695397 0.695397 0.755992 0.755992 0.814706	0.843266 0.4654329 0.4656338 0.4566338 0.4566338 0.556338 0.5562398 0.655633 0.655633 0.655633 0.655633 0.688138	0.109124 0.118907 0.149343 0.8779324 0.837707 0.864781 0.457281 0.459288 0.45928	0.554520 0.554520 0.586305 0.617455 0.680750 0.711723 0.712377
X 1.781629 1.783503 1.787859 1.794516 1.803365 1.814250 1.814250 1.842250 1.842250 1.842250 1.842434 1.90006 1.924006	1.949924 1.825632 1.825632 1.818074 1.818674 1.821656 1.824910 1.854910 1.854743 1.855743 1.865743 1.865743	1.864958 1.922455 1.9224661 1.969061 2.000001 1.855342 1.855342 1.8554402	1.860157 1.860157 1.866253 1.885027 1.885027 1.897411 1.911659 1.927839
POINT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 5101010000000000000000000000000000000		11 1000001
₩ 4747444444444 ₩ 8888888888888888888888888888	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	. 4 4 4 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6	00000000000000000000000000000000000000
9			*~~~~~

Figure 8.- Continued.

03/12/65

THREE-DIMEN

		:	ć	0.00100	DELTAIDECI	MACH NU.
A A	Y POINT	X 1 045004	K D 772766	1.573780	6.373694	2.697483
<u>п</u> ц		1 066560	0.802593	1.547172	6.040057	2.708581
۱ ur	7	1,989216	0.831917	1.520121	5.715284	2.720173
\ (7	0 15	2.014227	0.860673	1.492336	5.396268	2.732006
	0 16	2.050000	0.886445	1.487152	5.314064	2.734332
1 0		1.898874	0.420551	1.818246	12.50000	2.60411(
	• ~	1.893507	0.451591	1.810464	11.636703	2.60666
1 16		1.891008	0.483071	1.796817	10.882677	2.61141
۱ ۲	• •	1.891352	0.514831	1.779954	10.217128	2.61746
	·	1.894099	0.546648	1.760137	9.620630	2.62472
\ (C	. 9	1.898977	0.578448	1.738498	9.081930	2.63277
, (r		1-905921	0.610190	1.715390	8.591985	2.64149
1.17		1.915077	0.641850	1.692054	8.143997	2.65041
` "		1-926244	0.673258	1.667712	7.726079	2.65983
، ۳	10	1.939240	0.704404	1.642881	7.334801	2.66958
	11	1.954111	0.735271	1.617506	6.966374	2.6/9/0
	1 12	1.971015	0.765880	1.591851	6.614102	2.69007
	1.1	1.989682	0.796126	1.566856	6.284606	2.70035
<i>.</i> .	4	2-010753	0.825801	1.540704	5.960398	2.71138
, (1	 	2.033950	0.854990	1.514001	5.644780	2.72267
שר		2.059609	0.883664	1.486735	5.332063	2.73450
יני		2 100000	0.908064	1.481549	5.261401	2.73690
, ur		1.932387	0.444089	1.815027	12.061969	2.60514
	2	1.928482	0.475356	1.804301	11.270977	2.60879
	с т	1.927335	0.507022	1.789278	10.570384	01410.2
. .	· •	1.928719	0.538799	1.771539	9.950737	2.62053
		1.932386	0.570587	1.751322	9.391587	2.62199
	0	1.938146	0.602362	1.729391	8.884852	2.03020
	1	1.946011	0.634124	1.706533	8.418175	2.04481
		1.955843	0.665681	1.683442	7.991595	2.62313
	6	1.967637	0.696973	1.659434	661165-1	2.00301
\ u	10	1-981268	0.728022	1.634846	7.216902	2.67271
1 16		1.996868	0.758852	1.609979	6.860193	2.68272
, μ	10	2.014301	0.789321	1.584760	6.519423	2.09291
1 16		2.033464	0.819424	1.560193	6.199863	2-70318
. u		2.055070	0.848972	1.534371	5.885263	2.71399
. 4	15	702870.2	0.878088	1.508174	5.576296	2.72517
.1 4	14	2.105049	0.906600	1.481338	5.270535	2.73699
		2 15000	0.929640	1.476154	5.210544	2.73939
., u		1.971983	0.436742	1.817689	12.500000	2.60430
	1 50			1		

CASE.
INTERNAL
CHARACTERISTICS.
ОF
METHOD
AXI SYMMETRIC
THREE-DIMENSIONAL

CASE 14A 12.5 DEGREE CONE M=3.00

																CUALESCENCE																								
PT/PTINF	0.993703	0.993488	0.993405	0.993426	0.993496	0.993573	0.993633	0.993673	0.993701	0.993706	0.993694	0.993743	0.993726	0.993670	0.993778		0.993856	0.993590	0.993444	0.993417	0.993466	0.993541	0.993609	0.993658	0.993690	0.993704	0.993699	0.993726	0.993732	0.993688	0.993746	7495947	0.993497	0.994014	0.993718	0.993512	0.993429	0.993445	0.993509	0.993581
MACH ND.	2.606775	2.611126	2.616929	2.623646	2.631325	2.639524	2.648164	2.656963	2.666268	2.675818	2.685646	2.695811	2.705879	2.716539	2.727689		2.605366	2.608687	2.613653	2.619836	2.626841	2.634557	2.642766	2.651366	2.660154	2.669325	2.678764	2.688504	2.698567	2.708465	2.719073	2.730154	2.731925	2.604689	2.606805	2.610870	2.616316	2.622866	2.629965	2.637733
DELTA(DEG)	11.669691	10.936564	10.285654	9.706237	9.181358	8.699708	8.256073	7.848805	7.466417	7.104099	6.759604	6.429462	6.119963	5.812404	5.510722		12.079556	11.311822	10.632258	10.024808	9.482124	8.984270	8.527307	8.104419	7.715687	7.346709	6.947367	6.664135	6.344681	6.042611	5.742704	5.447843	5.363254	12.500000	11.696834	10.986787	10.353990	9.786038	9.272450	8.801038
P/PINF	1.810200	1.797669	I.781460	1.763096	1.742424	1.720633	1.697942	1.675118	1.651303	1.627189	1.602732	1.577932	1.553666	1.528336	1.502556		1.814427	1.804648	1.790576	1.773493	l.754484	1.733827	1.712105	1.689616	1.666923	1.643545	1.619810	1.595748	1.571240	1.547443	1.522518	1.497138	1.492400	1.816617	1.810144	1.798424	1.783191	1.765257	1.746111	1.725413
æ	0.467752	0.499248	0.530963	0.562736	0.594519	0.626329	0.657998	0.689451	0.720654	0.751674	0.782371	0.812701	0.842687	0.872168	0.901130	0.929482	0.460279	0.491565	0.523147	0.554885	0.586676	0.618509	0.650239	0.681813	0.713188	0.744371	0.775264	0.805829	0.836044	0.865973	0.895308	0.924117	0.951173	0.452941	0.483990	0.515404	0.547040	0.578820	0.610679	0.642447
×	1.966645	1.964158	1.964115	1.966461	1.971048	1.977755	1.986327	1.996800	2.009243	2.023609	2.039744	2.057690	2.077377	2.099618	2.123927	2.150543	2.005496	2.001648	2.000328	2.001304	2.004608	2.010169	2.017608	2.026850	2.037985	2.051171	2.066080	2.082733	2.101219	2.121528	2.144237	2.169009	2.200000	2.045122	2.039804	2.037189	2.036941	2.038925	2.043233	2.049555
POINT	2	£	4	5	9	7	80	6	10	11	12	13	14	15	16	17	T	2	e	4	ŝ	¢	7	8	6	10	11	12	13	14	15	16	17	1	2	e,	4	S	6	7
RAY	53	53	53	53	53	53	53	53	53	53	53	53	53	53	53	53	54	54	54	54	54	54	54	54	54	54	54	54	54	54	54	54	54	55	55	55	55	55	55	55
REG	, - 4	٦	-	-1	-	1	-	7	-1		-4	1	7	-1	-1	٦	-	-	-1	7	, -1	~	-1	-1	T	-	٦	-1	- 1	٦	, m	٦	7	T	1	-	, m	-	-	-1

Figure 8. - Continued.

75

03/12/65

03/12/65

CASE 14A 12.5 DEGREE CONE M=3.00

PT/PTINF	0.993638	0.993678	0.993699	0.993701	0.993716	0.993730	0.993703	0.993728	0 003888	0 0035000	84C644.0	1005940	0.993863	0.993610	0.993468	0.993438	0.993481	0.993551	0.993614	0.993662	0.993691	0.993700	117590.0	0 003775	0.00210710	21/644.0	02020200	668666°U	0.993682	0.99369	0.993830	+10+66°0	0.993733	0.993535	0.993451	0.993462	0.993521	0.993588	0.993643	0.002680	00000000000000000000000000000000000000	14056440 707070	101044-0
MACH NU.	2.645931	2.654540	2.663213	2.672286	2.681636	2.691301	2-201196	2 711020	23111100	1/(17/ 7	2.132241	2.734351	2.605588	2.608593	2.613248	2.619148	2.625855	2.633055	2.640845	2.649077	2.657589	2 666180	2 4 7 5 1 6 7		7044897	2.693969	2.103773	2.713544	2.723809	2.734510	2.736699	2.604862	2.606928	2.610643	2.615845	2.621974	2.628836	2 436100	2 462061	2.6704040	001200.2	2.660030	2.009002
DELTA(DEG)	8.366257	7.963168	7.588769	7.233584	6.896183	6 574207	6. 343736	LC 170700	700000	5.675925	5.388229	5.313674	12.090966	11.349863	10.690097	10.099620	9.563101	9.077821	8.630123	016307	157913.0	101077 2		104071.1	6.800924	6.487422	6.184487	5.897908	5.612626	5.330005	5.265695	12.500000	11.720798	11.033707	10.419258	9.862590	0 356684			8.411239	8.074012	7.702001	7.355677
P/PINF	1.703811	1.681397	1 - 659093	1.636059	1 41 340 3	1 500000			1.541441	1.516903	1.491814	1.487110	1.813818	1.804947	1 - 791 741	1.775418	1 757185	1 737868	1 717108	1.11110	10306,0*T	1.0(3231	1.651526	1.628830	1.605707	1.582361	1.558695	1.535647	1.511388	1.486730	1.482005	1.816133	1.809824	1 799096	1.784531	201111		101641.1	1.729/81	1.709034	1.687724	1.665915	1.644209
ď	0.674094	0.705600	0.734040	0.150702		0. 190194	162628.0	0.859412	0.889204	0.918393	0.947074	0.972833	0.476526	0.507751	0 530253	0 570058		C20200*0		0.666334	0.69/924	0.729423	0.760676	0.791621	0.822289	0.852697	0.882723	0.912379	0.941446	0.970060	0.994452	0.440178	0.500186	0 531530	C.11673 0	74700000	064466	0.626792	0.658548	0.690200	0.721793	0.753189	0.784332
>	2 057686	2.057616	010100*2	200610.2	242660 - 2	2.1086/2	2.125871	2.144991	2.165757	2.188922	2.214193	2.250000	2.078709	701010-7 0 010400 C		117610.2	610410.2	2.011048	C+1280.2	2.089184	2.098024	2.108725	2.121172	2.135446	2.151428	2.169258	2.188850		0000T7•7		COC4C7+7		2.110104 2 110000	066211.2	2.110107	2.109/32	2.111622	2.115480	2.121320	2.129090	2.138716	2.15000	2.162988
THICO		o c	,	21:	11	12	13	14	15	16	11	- a			. 1	n .	t i	'n	9	7	8	6	10	11	:2	1 7	4	r u 4 ,		<u>,</u>		10		7	r n -	4	5	\$	7	. œ	σ		11
	TAT 1		5	52	55	55	55	55	55	5	י ע י ע	1 U 1 U			0.0	0	96	56	56	56	56	56	56	56) ((2 4	0 4	0	96	90	56	96	51	57	57	57	57	57	57				12
i i i	אר י	- • ,	-	.4	-	-1	-1			4		4	-1 -	-1 -	-	-4	-	7	-	-1	~	1		•	4 -	4,		-4			-4		1		-1	-	-4	1 ~	•	4	-	- 1 -	

Figure 8.- Continued.

.

.

•

THREE-DIMENSIONAL AXISYMMETRIC METHOD OF CHARACTERISTICS. INTERNAL CASE.

CASE 14A 12.5 DEGREE CONE M=3.00

																										COALESCEN'E														
DT/DTINE	002200	07155600 U	1110000	1110000	0.493729	0.993663	0.993813	0.993984	0.993871	0.993629	0.993490	0.993457	0.993495	0.993559	0.993620	0.993665	093690	0.993703	0.993715	0.993718	0.993717	0.992773	0.993752	1.993683	0.00000.0		0.994014	0.993747	0.993556	0.993472	0.993478	0.993532	0.993595	0.993647	0.993680	0.993698	0.992711	717599.0	0.993718	0.993754
MACH ND.	2.678010	2.687161	2.404572	2.206313	2.715889	2.726072	2.736773	2.738974	2.605695	2.608603	2.612967	2.618476	2.624822	2.631792	2.639151	2.646949	2.655055	2.663432	2.671917	2.680733	2.689787	2.699129	2.708735	2.718179	2.728352		2.605020	2.606946	2.610613	2.615369	2.621163	2.627669	2.634772	2.642105	2.649874	2.657927	2.666285	2.674655	2.683379	2.692360
DELTA(DEG)	7.025669	6.709132	6.404635	6.109648	5.830841	5.550893	5.273992	5.219217	12.105185	11.384080	10.745486	10.167371	9.643254	9.164324	8.728196	8.320536	7.939957	7.582272	7.249138	6.928692	6.621657	6.325527	6.038747	5.765527	5.491546		12.500000	11.746640	11.077522	10.477944	9.934648	9.439565	8.986056	8.568782	8.178825	7.813456	7.469766	7.146780	6.836364	6.538145
P/PINF	1.621730	1.599033	1.576048	1.552747	1.529955	1.506117	1.481812	1.477074	1.813533	1.804954	1.792560	1.777298	1.760018	1.741278	1.721707	1.701183	1.680083	1.658540	1.637014	1.614939	1.592585	1.569949	1.546901	1.524512	1.501019		1.815690	1.809800	1.799218	1.785883	1.769968	1.752356	1.733343	1.713919	1.693548	1.672670	1.651277	1.630127	1.608373	1.586353
æ	0.815183	0.845808	0.876087	0.905978	0.935522	0.964528	0.992995	1.016031	0.492715	0.523895	0.555384	0.587120	0.618923	0.650717	0.682442	0.714107	0.745605	0.776897	0.807955	0.838770	0.869271	0.899422	0.929203	0.958694	0.987559	1.015880	0.485389	0.516326	0.547679	0.579329	0.611076	0.642855	0.674631	0.706381	0.737961	0.769363	0.800575	0.831603	0.862300	0.892679
×	2.177818	2.194437	2.212740	2.232789	2.254476	2.278722	2.305025	2.350000	2.151959	2.147716	2.146056	2.146803	2.149560	2.154197	2.160789	2.169363	2.179588	2.191432	2.204982	2.220453	2.237548	2.256310	2.276847	2.299110	2.323785	2.350517	2.191633	2.186092	2.183077	2.182582	2.184235	2.187803	2.193227	2.200640	2.209830	2.220629	2.233054	2.247247	2.263199	2.280756
POINT	12	13	14	15	16	17	18	19		2	ŝ	4	S	6	~	œ	6	10	11	12	13	14	15	16	17	18	-1	2	r n	3 1	<u>م</u> ،	o,	-	80	6	10	11	12	13	14
RAY	57	57	57	57	57	57	57	57	58	58	58	58	28	58	58	58	58	58	58	58	58	58	58	58	58	58	59	64	65	56	201	50	50	56	59	59	59	59	59	59
REG	-4	-		~1	-1		4	-4		-	-1	-							~4			-1	٦	-4		-1	1			-4 -	-4,	4.			 1		~ 4	-4		-

^{03/12/65}

03/12/65

CASE 14A 12.5 DEGREE CONE M=3.00

PT/PTINF	0.993759	0.993705	0.993746	0.993925	0.993517	0.993878	0.993647	0.993511	0.993476	0.993509	0.993568	0.993625	0.993667	0.993691	0.993706	0.993715	0.993717	0.993742	0.993758	0.993723	0.993733	0.993873	0.993609	0.993673	0.993957	0.988128	0.988128	0.988128	0.994014	0.993759	0.993575	0.993492	0.993494	0.993542	0.993601	0.993649	0.993681	0.993700	0.993712	0.993717
MACH NO.	2.701608	2.711061	2.720473	2.730598	2.732215	2.605795	2.608600	2.612749	2.617867	2.623879	2.630561	2.637667	2.644995	2.652728	2.660774	2.669028	2.677315	2.685964	2.694878	2.703975	2.713369	2.722745	2.732509	2.734436	2.723283	2.469550	2.469550	2.469550	2.605165	2.607049	2.610434	2.615024	2.620425	2.626663	2.633383	2.640510	2.647822	2.655561	2.663516	2.671696
DELTA(DEC)	6.250602	5.969798	5.702784	5.434423	5.357317	12.118441	il. 420635	10.793489	10.231133	9.718844	9.250800	8.817527	8.419069	8.045261	7.694669	7.361832	7.049425	6.748302	6.459077	6.17784i	5.903613	5.642434	5.380031	5.311926	5.629099	•0	•0	-0.	12.500000	11.771947	11-119132	10.531857	10.002596	9.519062	9.072640	8.659451	8.278127	7.919931	7.580873	7.259276
P/PINF	1.563954	1.541308	1.519247	1.496086	1.491766	1.813266	1.804994	1.793203	1.779007	1.762608	1.744608	1.725664	1.706323	1.686125	1.665357	1.644317	1.623461	1.602023	1.580223	1.558215	1.535896	1.514150	1.491230	1.486924	1.513028	2.227472	2.227472	2.227472	1.815280	1.809534	1.799752	1.786871	1.772018	1.755101	1.737077	1.718147	1.698920	1.678788	1.658341	1.637574
æ	0 92725	0.952455	0.981814	1.010541	1.037571	0.508880	0.540033	0.571577	0.603263	0.635005	0.666782	0.698594	0.730269	0.761761	0.793091	0.824278	0.855196	0.885776	0.916056	0.946056	0.975656	1.004885	1-03495	1.059226	1.000000	1,00000	0.990817	0.995408	0.501574	0.532492	0.563870	0.595476	0.627179	0.658937	0.690762	0.722509	0.754106	0.785535	0.816847	0.847927
,	3 300004	2.321129	2 242807	100070-2	2.40000	2.225090	2.220842	2.219046	2.219498	7.221997	2.226382	2.232652	2.240698	2.250478	2.261871	2.274954	2.289632	2.306050	2.324097	2.343930	2.345480	2.388564	2-414113	2.45000	2 275000		2.40000	2-410368	2.264711	2.259208	2.256231	2.255433	2.256768	2.260116	2.265370	2 272302	200052	2,5002.5	007502 2	2.316983
OT MT		15		- 1	01		• ^	1 (*	n -1	• ሆ	. .c	~	• 60) I	2	10	3 F	0 T	- G	14	24			6 T	01		J -		• •	J (*	4	ru	- 4	, , ,	- a	• •	× 0	0	12
0		500		50			0.0			09	09	0.0	09	0 9				00	200	0.4	004		2 4	00	004	00	-4		7 [3	1 4	5 5	15		10	10	10	10	10	1.	19 91
	ייט	-1 -	4.	-	4 -	-	4 -	4 -	-	4	4	4	4	4	4	4	4~	- 1	-4	-1 ~		4-		-4	-1 -	-1 (N (u (N -	4 -	-	4 -	4 -		-	-	-1 -	- 4	-	

Figure 8. - Continued.

I

CASE 14A 12.5 DEGREE CUNE M=3.00

PT/PTLNF 0.993733 0.993733 0.993733 0.993735 0.993730 0.993830	0.993685 0.993663 0.993563 0.993572 0.993572 0.993576 0.993579 0.993579 0.993739 0.993742 0.993742 0.993663 0.993563 0.993568 0.993568 0.993767 0.9937767 0.9937767 0.9937767 0.9937767 0.9937767 0.9937767 0.99377767 0.99377767 0.99377767 0.99377767 0.99377767 0.99377777777777777777777777777777777777	0.98/875
MACH NU. 2.659911 2.688511 2.697283 2.706303 2.715657	2.605973 2.605973 2.612454 2.612454 2.612454 2.623079 2.653039567 2.656059545 2.65605934 2.658295 2.658295 2.6500946 2.6500946 2.617397 2.6505934 2.6505934 2.6505934 2.6505934 2.6505934 2.6505934 2.6505934 2.6505934 2.6506346 2.650634 2.650645 2.650634 2.650634 2.650634 2.650634 2.650645 2.650645 2.650645 2.650645 2.650645 2.650645 2.550645 2.550645 2.550645 2.550645 2.550645 2.550645 2.55065555555555555555555555555555555555	2.435251
DELTA(DEG) 6.956556 6.664960 6.382394 6.108050 5.839998	12.131942 11.452056 10.289942 9.791254 9.791254 9.330808 8.510812 8.5108122 8.145975 7.800035 7.800035 7.800035 7.828555 6.368295 6.368295 11.452056 6.368235 6.38942 11.452056 6.39896 6.308900 8.510812 8.905740 8.510812 8.510812 8.161642 7.472855 6.388996 6.388996 6.388996 6.388996 6.388235 7.472855 7.472855 8.161642 7.472855 6.388235 7.472855 6.388235 7.472855 6.388235 7.472855 6.388235 7.472855 6.388235 7.472855 6.388235 7.472855 6.388235 7.472855 6.388235 7.472855 6.388235 8.510812	0+200C+0
P/PINF 1.617009 1.595773 1.552650 1.552660 1.530657	1.812777 1.805186 1.780358 1.780358 1.780358 1.764058 1.764058 1.756747 1.756747 1.756745 1.558784 1.558784 1.558784 1.558784 1.558786 1.558786 1.57477 1.558786 1.57678 1.576786 1.77799 1.558766 1.7764810 1.7764810 1.7764810 1.7764810 1.7661538 1.7661538 1.7661536 1.5589767 1.5589767 1.5589777 1.5589777 1.55897777 1.55897777 1.55897777 1.558977777 1.5589777777 1.558977777777777777777777777777777777777	47740747
R 0.878735 0.909221 0.939460 0.969336 0.998806	0.525070 0.556250 0.651107 0.651107 0.651107 0.651107 0.651207 0.775920 0.777920 0.777920 0.777920 0.777920 0.9226813 0.992565 0.992565 0.992565 0.992565 0.992565 0.992565 0.992565 0.992244 0.962813 0.992244 0.992244 0.992244 0.992264 0.992264 0.992264 0.992264 0.992264 0.992264 0.9922665 0.992266 0.992666 0.992666 0.992666 0.992666 0.9926666 0.99266666 0.99266666666666	
X 2.332129 2.349041 2.367670 2.387929 2.49896	2.298177 2.298001 2.294001 2.294001 2.294661 2.294661 2.304599 2.31492 2.31492 2.392106 2.392106 2.392106 2.392106 2.292012 2.292012 2.292012 2.292012 2.29203 2.29203 2.29203 2.31432 2.332498 2.332499 2.332493 2.332493 2.332493 2.332493 2.332493 2.332493 2.332493 2.332493 2.332493 2.332493 2.332493 2.332493 2.332493 2.332493 2.332493 2.3322000 2.2322000 2.411326 2.3322000	
POINT 13 14 15 15 15	ー こ ち ら の の ら こ ち ら う う ち ら う ら ら ら の の ら ち ら う ら ら ら ら ら ら ら ら ら ら ら ら ら ら ら ら	ŀ
ж 4 4 7 6 6 6 6 7 1 1 1 1 7 1 1 1 1 7 1 1 1 1 7 1 1 1 1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	I
9 м м м м м м Ш К		I

Figure 8.- Continued.

79

03/12/65

ļ

•

03/12/65

CASE 14A 12.5 DEGREE CONE M=3.00

	PT/PTINF	0.988128	0.987968	0.994014	0.993771	0.993594	0.993511	0.993509	0.943552	0.993607	002452		C00C66.0	201686.0	7126660	621666.0	0.993739	0.993743	0.993735	777599.0	0.987820	0.988032	0.987860	00010000	04044400	0.00010	0,2525.0	0.993510	666699.0	0.993583	0.993655	0.993671	0.993694	0.993708	0.993719	0.993733	0.993741	0.993738	0.993763	0.987764	0.988128	0.001000	0.007786	
	MACH NU.	2.469550	2.453328	2.605468	2.607085	2.610273	2.614612	2.619897	2 625703	2.422105	C01760•7	2.038901	2.646080	2.653331	2.660960	2.668790	2.676873	2.684936	2.693319	2.701951	2.445973	207237 6	010977 6	010044.7	+<1000-7	2.608491	2.612185	2.616932	2.622391	2.628324	2.634785	2.641648	2.648772	2.656005	2.663561	2.671371	2.679349	2.687329	2.695650	2 438938	2 427500		201044.2	2.436405
	DELTA(DEG)	•0	0.382463	12.50000	11.792715	11.158252	10 585762	10 066467		7747646	9.154613	8.748989	8.371551	8.019729	7.686342	7.370119	7.069323	6.784001	6.506931	038369	0.660013			0.128285	12.140449	11.481585	10.887348	10.349477	9.856552	9.406620	8.989444	8.602246	8.238698	7.900133	7.578311	7.273025	6.980130	6.702710	6 432708	021764°0	JI 61 61 • 0	0.	0.556954	c140£1.0
	P/PINF	2 227472	2.784115	1 014431	1 800456		1 7000/5	1.722501		1.757723	1.740518	1.722411	1.703496	1.684523	1.664888	1.644934	1.624603	1.604562	1.583981	1 542155		011016.2	2.283983	2.310070	1.812282	1.805355	1.794836	1.781641	1.766709	1.750676	1.733377	1.715168	1.696454	1.677653	1.658237	1.638421	1.618423			L.5/8350	2.45456.2	2.341238	2.309876	2.335427
1	a			370004.0	0°111600		0+0096-0	0.6115.0	0.043280	0.675097	0.706877	0.738591	0.770224	0.801763	0.833087	0.864197	0.895089	0.025780	0.962100 0.066116		011086.0	066976.0	0.993263	0.980197	0.541316	0.572446	0.603848	0.635465	0.667262	0.699054	0.730787	0.762466	101767-0	0.825555	0.856785	0.07010	1010000		074460	0.979487	0.969133	1.000000	0.984875	0.971498
•	,		2.12512	- 11C2+-2	2.33/831	+06266.2	2.329280	2.328323	2.329377	2.332513	2.337465	2.344053	2.352259	2.362217	213804	2 284844	2 401430		100114°7	2.433388	2.455059	2.437932	2.435949	2.444908	2.371374	2.367054	2.364999	2.365006	2 247016	748026 6	274508	000010.2 177885 C		210266-2	2 415360	6476T4•7	178824.2	2.443445	2.460649	2.478990	2.459763	2.450777	2.455082	2.464847
	THE			7		2	m	t	2	9	~	e	• •	10		• •	74	3:	t (۲1	16	ŝ	-4	2		• •	1 4	n 4	t u	n .	7 0	- 0	0 0	,	21	11	12	13	14	15	ŝ		• ~	i w
	2	KAT 2	τη i	÷)	63	63	63	63	63	63	63	5	5.4	2 4	3,4	3:	6	0	69	63	63	ŝ	4	4	44	44	1 4 4	t 0 7	†	† 0	† 0	*0	0	4 ·	4 0	64	64	64	64	64	4	· ur	.	ייט
	0 1 0	KEG K	N	2	٦	-	٦	-1		٦		•	4	4 -	4 -	4,	- 1 •	-	-1	-4	٦	, N	2			4 ~		-1 -	-	-4 -	-4		4	-	-	-	-	1	-1		10	40	4	4 04

Figure 8. - Continued.

....

																					CUALCOLENCE																				
	01 /01 MC	D 002012	0 00034014	10102610	0.003570	0.0025550	0.993561	0.993612	0.993655	0.943685	0.993703	0.993715	0.993728	0.003720	0.993739	0.993754	0.987706	0.988011	0.987820	000104.00	961980.0	0.487007	0.987755	0. 003806	0,02,00,0	0.993567	0.993526	0.993544	0.993590	0.993637	0.993672	0.993695	0.993710	0.993723	0.993735	0.7599.0	0.993749	0.987648	0.988015	0.987817	0.987685
	MACH NO	2 605630	2.607108	2.610127	2.61429R	2.619274	2.624903	2.630928	2.637476	2.644307	2.651406	2.658597	2.666142	2.673858	2.681757	2.689672	2.432123	2.430277	2.439058		2.423198	2.423215	2.432245	2.606271	2.608524	2.612005	2.616465	2.621658	2.627417	2.633557	2.640092	2.646914	2.653982	2.661172	2.668633	2.676278	2.684112	2.425695	2.416146	2.416376	2.425731
3.00	OFLIA(DEG)	12.500000	11.411124	11.195094	10.637625	10.127872	9.660636	9.232529	8.834891	8.462446	8.112971	7.786605	7.476266	7.179332	6.894856	6.624930	0.900787	0.173172	0.728645		•••	0.342571	0.897319	12.151454	11.508277	10.931278	10.403771	9.921300	9.477282	9.069821	8.687848	8.330280	7.993738	7.679424	7.377916	7.089831	6.813205	1.066666	0.167905	0.508877	1.061280
DEGREE CONE M=	P/PINF	1.813975	1.809158	1.800669	1.788942	1.775224	1.759914	1.743696	1.726226	1.708168	1.689589	1.670971	1.651667	1.632165	1.612428	1.592926	2.360270	2.367805	2.335172		2.394384	2.393784	2.359939	1.811963	1.805289	1.795367	1.782955	1.768732	1.753142	1.736672	1.719297	1.701327	1.682900	1.664362	1.645351	1.626091	1.606611	2.383917	2.420601	2.419246	2.383871
ASL 14A 12.5	۲	0.533987	0.564934	0.596192	0.627700	0.659430	0.691217	0.722976	0.754685	0.786375	0.817931	0.849298	0.880457	0.911469	0.942227	0.972701	0.961064	0.991540	0.976201	0.962540	1.000000	0.982787	0.967267	0.557493	0.588604	0.619996	0.651637	0.683375	0.715143	0.746890	0.778619	0.810237	0-841711	0.873016	0.904157	0.935068	0.965722	0.952737	0.991243	0.973767	0.958025
L	×	2.411215	2.405479	2.402227	2.401178	2.402170	2.404947	2.409512	2.415822	2.423795	2.433256	2.444255	2.456870	2.471046	2.486654	2.503724	2.482334	2.469583	2.474962	2.485474	2.488171	2.489129	2.495530	2.444700	2.440092	2.437890	2.437860	2.439653	2443155	2.448420	214004.2	110404.7	2.414000	2.485533	2.498752	2.513374	2.529409	2.505779	2.507500	2.509359	2.516909
	POINT	4	2	ē	4	2	9	~	80	6	10	11	12	13	14	15	4	1	2	ĥ	1	~	'n	-	2	ςΩ, i	4 1	n \	0 1	~ 0	. 0			11	71	13	14	4	7	2	ι.
	RAY	65	65	65	65	65	65	69	65 7	65	65	65	65	65	65	65	n ·	9	6	9	7	۲	~	6 6	66	66	90	0	00	99	00	00	00	00	00	00	9 0	~	80	x (æ
	REG	-1	1	4		-1	-4 ,	-4 -	-4 -			-	-4	-		Ŧ	7	N.	~	2	2	N	N -		-4	- - 1 -	-	-	-		- -	4 -	-	-	-	-4 -	-4 (N	~	N	2

THREE-DIMENSIONAL AXISYMMETRIC METHOD OF CHARACTERISTICS. INTERNAL CASE.

٠

03/12/65

٠

ļ

03/12/65

CASE 14A 12.5 DEGREE CUNE M=3.00

PT/PTINF	0.994014	0.993792	0 003676			0000666	0.993570	0.993617	0.993658	0.993686	0.993704	0.993718	0.993730	0.993737	0.993745	0.987580	0.988128	0.987911	0.987737	0.987611	0 002007	0.002706	001644.0	0.943583	0+4666	643555	0.993597	0.993640	0.993674	0.993697	0.993712	0.993726	0.993735	0.993743	0.987504	0.988017	0.987818	0.987659	0.987529	0 004014	CO8600 0	199600	******
MACH NO.	2.605813	2.607252	201012	101012	2.613970	2.618701	2.624066	2.629971	2.636122	2.642664	2.649468	2.656545	2.663661	2.671060	2.678642	2.419199	2.409318	2.409311	2.409833	2 419227	177717	Z.000411	2.608569	2.611874	2.616035	2.620983	2.626530	2.632471	2.638650	2.645189	2.652014	2.659025	2.666090	2.673430	2.412864	2.402494	2.402768	2 403299	2 412885		004600.2	070017	6+0010*7
061 TA(DEG)	12 50000	11 021220	11-83L337	11-229681	10.684592	10.186045	9.728200	9.306062	8.915225	8.548977	8.205061	7-881235	7.576249	7.284044	7.004200	1.232563		0.332674		100010°0	100177.1	12.161767	11.537162	10.969563	10.455196	9.982756	9.548032	9.143592	8.769369	8.417532	8.086979	7.773066	7.477852	7.194302	1.396611	0 163269		10036100	024000106	1,241446	12.500000	11.851244	11.262812
0 / D I NF	677610	C0+C10•1	c20608.1	1.800670	1.789880	1.776821	1 762209	1.746284	1.729844	1 712607	1 606650	1 676273	1.658001	1.639213	1 620103	2.408035	C C C C C C C C C C C C C C C C C C C	310044.2		2.443880	2.408005	1.811580	1.805187	1.795762	1.784165	1.770598	1.755556	1.739594	1.723133	1.705864	1.688020	1.669887	1.651813	747554.1	2.431772		241214•2	2.11140	2-468/40	2.431757	1.812994	1.808628	1.800943
c	2	0.1022.0	0.581069	0.612346	0.643895	0.675564	0 707207	0 720065	C0067100		0,034053		01400000	010707000	0.96100	610056 N			0.98215	0.964430	0.948561	0.573632	0.604736	0.636196	0.667793	0.699474	0-731222	0.763030	0.794755	0 826356	0 857848	0 880758	0.001662	0 051611	114164.0	110000	696066 0	0.972864	0.954865	0.938898	0.566323	0.597209	0.628524
;	×	2.484578	2.478731	2.475225	2.474078	2 4748R3	007227 0	5 2 1 1 1 T C C	000104*7	2.0101	2.495311	2.504391	2.514938	2.52/080	2.540131	2.222606	C 2 2 4 2 6 2 7 4 2 6 2 7 4 2 6 2 7 4 2 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	2.526613	2.527512	2.530393	2.538900	2.518007	2.513316	2.510909	2.510631	2 512210	2.216617 3 616626	07//// · ·	2,577150	17117C-7		2.244700 2.5544500	161066°7	201000.2	208286.2	2.554600	2.546409	2.548328	2.552032	2.561458	2.557836	2.552027	2.548478
	POINT	-1	2	~	t d	·u	n .	0 1	- (zo -	6	10		12	1 3	14	4	l	2	Ś	4	T	• ~	1 (1		r u	n v	0 1	- 0	ο	ъ.,	01	11	12	13	ŝ	-	2	Ē	4	·	• ~	i m
	RAY	67	67	67	57		2	10	19	67	67	67	67	67	67	67	80	6	6	6	6	68	20	00	0 0	00	80	0 8	68	99	68	68	68	68	68	6	10	10	101	21	14	6 9	, ç 69
	REG S	-1	~			4 -	-4	-	-		7	l	1	-	-1	-	2	2	2	2	1	J	4		4.	-4 -	-4	-	, -	-	-1	-	-1	-	-	2	2		• •	10	u •	4	44

P

I

THREE-DIMENSIONAL AXISYMMETRIC METHOD OF CHARACTERISTICS. INTERNAL CASE.

CASE 14A 12.5 DEGREE CONE M=3.00

																																		COALESCENCE						
PT/PTINF	0.993560	0.993548	0.993578	0.993622	0.993660	0.993688	0.993706	0.993721	167599.0	0.993740	0.987421	0.988128	0.987914	0.987732	0.987578	0.987440	706599.0	0.993719	0.993598	0.993554	0.993565	0.993603	0.993644	0.993676	0.993699	0.993715	0.993727	757599.0	0.987330	0.988018	0.987817	0.987647	0.987489		0.988128	0.987913	0.987725	0.987558	0.987397	0.994014
MACH ND.	2.613743	2.618173	2.623342	2.628955	2.634946	2.641138	2.647711	2.654480	2.661449	2.668462	2.406677	2.395889	2.395955	2.396235	2.396923	2.406690	2.606608	2.608595	2.611698	2.615714	2.620410	2.625677	2.631365	2.637388	2.643630	2.650158	2.656894	2.663818	2.400700	2.389360	2.389425	2.389861	2.390690		2.383048	2.382836	2.383053	2.383629	2.384663	2.606267
DELTA(DEG)	10.727956	10.241255	9.793242	9.377295	8.990464	8.631448	8.293656	7.973580	7.669991	7.383860	1.559167	•0	0.321655	0.654488	0.995921	1.555563	12.172374	11.562111	11.008405	10.502882	10.041982	9.613881	9.216540	8.845808	8.501549	8.174830	7.865614	7.571609	1.718806	0.156885	0.481937	0.814789	1.156781		.0	0.315600	0.640581	0.973893	1.315096	12.50000
P/PINF	1.190536	1.778295	1764194	1.749037	1.732993	1.716548	1.699254	1.681624	1.663667	l.645794	2.455165	2.498653	2.497854	2.496302	2.493234	2.455161	1.811039	1.805139	1.796278	1.785078	1.772185	1.757883	1.742576	1.726497	1.709979	1.692866	1.675386	1.657611	2.477950	2.523981	2.523210	2.521059	2.517395		2.549272	2.549560	2.548211	2.545490	2.540955	1.812190
x	0.660054	0.691683	0.723394	0.755193	0.786958	0.818625	0.850182	0.881675	0.913000	0.944112	0.926767	1.000000	0.981610	0.963284	0.945094	0.929051	0.589792	0.620920	0.652332	0.683914	0.715591	0.747365	0.779132	0.810847	0.842481	0.874043	0.905456	0.936694	0.917785	0.990637	0.972018	0.953494	0.935133	0.918979	1.000000	0.981039	0.962214	0.943510	0.924940	0.582487
×	2.546982	2.547518	2.549894	2.553997	2.559631	2.566823	2.575586	2.585862	2.597498	2.610542	2.579892	2.565990	2.567009	2.569744	2.574232	2.584553	2.591273	2.586652	2.584055	2.583412	2.584764	2.587959	2.592704	2.598931	2.606715	2.616120	2.626879	2.638972	2.605874	2.586376	2.588205	2.591721	2.596965	2.608287	2.606548	2.607355	2.609961	2.614229	2.620329	2.631129
PUINT	t	'n	9	2	80	6	10	11	12	13	S	-	2	ŝ	4	Ś	1	2	ŝ	4	ŝ	6	7	80	6	10	11	12	9	-	2	'n	4	2		2	c,	4	5	1
RAY	69	69	69	69	69	69	69	69	69	69	10	11	11	11	11	11	10	70	70	70	70	70	70	70	70	70	70	70	11	12	12	12	12	12	13	13	13	13	13	11
REG	-4	~	-1	1		-4	-1	~1	-1	-1	7	~	2	, N	7	~	-1	-1	-4	-4	-	~4	-4	-	F	-1	1		~	7	N,	2	2	~	2	2	2	~	(N	

^{03/12/65}

THREE-DIMENSIONAL AXISYMMETRIC METHOD OF CHARACTERISTICS. INTERNAL CASE.

CASE 14A 12.5 DEGREE CONE M=3.00

	ANTIA/14	0.993810	0.993656	0.993575	0.993560	0.993586	0.993626	0.993663	0.993690	0.993709	0.993723	0.993733	0.985931	0.988019	0.987813	0.987634	0.987463	0.986421	0.993911	0.993730	0.993613	0.993567	0.993575	0.993609	0.993647	0.993679	0.993701	0.993717	0.993729	0.985807	0.988128	0.987913	0.987717	0.987538	0.986859	0.985980	0.994014	0.993818	0.993669	0.993588	0.993571
	MACH NO.	2.607438	2.609997	2.613479	2.617809	2.622640	2.628011	2.633753	2.639841	2.646050	2.652556	2.659256	2.377686	2.376536	2.376468	2.376823	2.377601	2.378009	2.606801	2.608618	2.611565	2.615413	2.619918	2.624886	2.630335	2.636159	2.642228	2.648427	2.654906	2.371758	2.370241	2.370175	2.370241	2.370796	2.371181	2.371871	2.606415	2.607631	2.609950	2.613315	2.617381
	DELTA(DEG)	11.867719	11.294180	10.771614	10.293418	9.853622	9.445176	9.064825	8.709652	8.377088	8.061792	7.762644	1.486589	0.157197	0.472630	0.797974	1.130396	1.477630	12.179121	11.585716	11.045134	10.551436	10.095675	9.676632	9.286112	8.922119	8.579345	8.258791	7.954073	1.646731	••	0.312661	0.628357	0.952712	1.291012	1.638704	12.50000	11.882420	11.323871	10.813758	10.343833
- 	P/PINF	1.808400	1.801113	1.791295	1.779315	1.766124	1.751596	1.736193	1.719994	1.703620	1.686626	1.669304	2.565002	2.575055	2.574791	2.572894	2.569326	2.564980	1.810505	1.805096	1.796674	1.785933	1.773551	1.760046	1.745356	1.729779	1.713687	1.697396	1.680534	2.588540	2.600793	2.600495	2.599709	2.596989	2.593642	2.588536	1.811773	1.808013	1.801270	1.791773	1.780512
	æ	0.613413	0.644666	0.676152	0.707800	0.739554	0.771308	0.803035	0.834725	0.866371	0.897859	0.929191	0.908664	0*06600	0.971224	0.952212	0.933290	0.914534	0.606001	0.637084	0.668435	0.70007	0.731748	0.763495	0.795220	0.826930	0.858639	0.890218	0.921631	0.899326	1.000000	0.980581	0.961209	0.941970	0.922855	0.903995	0.598685	0.629583	0.660791	0.692250	0.723932
	×	2.625346	2.621720	2.620013	2.620222	2.622414	2.626274	2.631631	2.638470	2.646905	2.656805	2.668030	2.632441	2.627313	2.628893	2.632247	2.637367	2.644287	2.664633	2.659891	2.657195	2.656373	2.657452	2.660332	2.664823	2.670810	2.678318	2.687258	2.697633	2.659325	2.647862	2.648636	2.650959	2.655162	2.661091	2.668654	2.704579	2.698643	2.694871	2.693096	2.693171
	POINT	~		t.	. 0	9		- 30	6	10	11	12	6	T	2	ŝ	4	5		2	1.00	- -1	ŝ	6	• •-	• ∞		10	1	, -0 +	-	~		4	· .	. - C)	• ~	J (*	h 4	ŗŵ
	RAY	7	12	12	12	11	12	11	17	12	11	11	13	14	14	14	14	4		12	72	17	12	72	12	12	77	12	12	4	15	15			, <u>-</u>	5		25	15		73
	REG) 	•		• ~							14	~		2		1.54	1			•	•	•		•	•	• ~-	•	•	• ~	1 15	10	• ~	• •	40	. .	د	4 ~	4 -	4 -	4

Figure 8. - Continued.

.

٠

THREE-DIMENSIONAL AXISYMMETRIC METHOD OF CHARACTERISTICS. INTERNAL CASE.

CASE 14A 12.5 DEGREE CONE M=3.00

1

DT /DT INC		0.993594	0.993631	0.993665	0.993692	0.993711	0.993725	0.985672	0.988019	0.987810	0.987619	0.987153	0.986343	0.985739	0.994014	0.993818	0.993669	0.993588	0.993571	0.993594	0.993631	0.993665	0.993692	117699.0	0.985524	0.988128	0.987911	0.987708	0.987360	0.986688	0.985985	0.985555	0.993915	0.993741	0.993626	0.993579	0.993584	0.993614	0.993650	0.993681	0.993703
MACH NO.		2.622060	2.627133	2.632687	2.638507	2.644577	2.650760	2.365930	2.363891	2.363953	2.364215	2.364516	2.364988	2.365971	2.606415	2.607631	2.609950	2.613315	2.617381	2.622060	2.627133	2.632687	2.638507	2.644577	2.360244	2.357758	2.357677	2.357931	2.358020	2.358353	2.359002	2.360261	2.606917	2.608702	2.611495	2.615125	2.619404	2.624219	2.629421	2.634986	2.640821
DFITA(DEG)		6 CON 16 . 6	9.509918	9.136594	8.785696	8.455597	8.146149	1.806625	0.153922	0.466772	0.781378	1.111468	1.450115	1.800062	12.500000	11.882420	11.323871	10.813758	10.343833	9.910053	9.509918	9.136594	8.785696	8.455597	1.965293	.0	0.306441	0.618128	0.938327	1.268653	1.609436	i.960780	12.187882	11.607212	11.080808	10.595861	10.149151	9.735376	9.353313	8.993820	8.656250
P/PINF		1.101123	1.153981	1.739059	1.723545	1.707501	1.691310	2.611866	2.626439	2.625628	2.624046	2.621575	2.617493	2.611875	1.811773	1.808013	1.801270	1.791773	1.780512	1.767723	1.753981	1.739059	1.723545	1.707501	2.634781	2.652029	2.651782	2.650186	2.648884	2.645702	2.641137	2.634796	1.810188	1.804881	1.796892	1.786748	1.774977	1.761871	1.747829	1.732920	1.717415
œ	0 766470		0.18/409	0.819127	0.850865	0.882512	0.914022	0.889886	0.990178	0.970558	0.950950	0.931512	0.912284	0.893309	0.598685	0.629583	0.660791	0.692250	0.723932	0.755679	0.787409	0.819127	0.850865	0.882512	0.880314	1.000000	0.980149	0.960286	0.940472	0.920914	0.901563	0.882441	0.622163	0.653215	0.684556	0.716142	0.747846	0.779588	0.811324	0.843077	0.874760
×	2.604066		864869.2	2.103638	2.710307	2.718336	2.727762	2.686697	2.668968	2.670486	2.673653	2.678656	2.685226	2.693469	2.704579	2.698643	2.694871	2.693096	2.693171	2.694966	2.698498	2.703638	2.710307	2.718336	2.714652	2.689860	2.690602	2.692964	2.696922	2.702562	2.709808	2.718821	2.738032	2.733114	2.730300	2.729452	2.730271	2.732745	2.736943	2.742780	2.749986
POINT	¥	,	- (xo i	5	10	11	7	I	2	e	4	ŝ	ę	-1	2	Ś	4	2	6	7	8	6	10	7	-	2	ŝ	4	Δ.	9	-	-1	2	e.	4	ŝ	9	7	8	6
RAY	73	26	2 7	21	5	13	13	15	16	16	16	16	16	16	73	73	73	73	73	73	73	73	73	73	16	17	17	17	17	11	17	17	74	74	74	74	74	74	74	74	74
REG		4 -	4.	- -	-	-4	-	2	~	~	7	2	۲,	5	-1	-	-4	7		-1	, T	-1	-4	-1	2	N I	N	2	~1 :	7	2	N	-1	-		-	-	-			-

CASE 14A 12.5 DEGREE CUNE M=3.00

								CUALESCENCE																																	
PT/PTINF	0.985364	0.988018	0.987804	0.987519	0.986982	0.986279	0.985726		0.988128	0.987907	0.987652	0.987223	0.986581	0.985953	0.985513	0.994014	0.993826	0.993681	0.993601	0.993582	0.993601	0.993635	0.993668	0.993694	0.984526	0.988016	0.987773	0.987420	0.986866	0.986218	0.985691	0.984886	0.993919	0.993752	0.993639	0.993591	0.993592	0.993620	0.993654	0.993683	
MACH NU.	2.354546	2.351555	2.351659	2.351785	2.351912	2.352328	2.353230		2.345569	2.345544	2.345544	2.345733	2.345889	2.346504	2.347484	2.606552	2.607701	2.610021	2.613127	2.617011	2.621461	2.626430	2.631664	2.637260	2.341309	2.339568	2.339449	2.339537	2.339738	2.340035	2.340714	2.341529	2.607024	2.608770	2.611453	2.614859	2.618951	2.623585	2.628608	2.633890	ì
DELTA(DEG)	2.126622	0.150973	0.456159	0.773325	1.093646	1.425988	1.768048		••	0.299098	0.609635	0.926837	1.249050	1.582546	1.929647	12.500000	11.898666	11.351956	10.852178	10.341726	9.966123	9.571403	9.203937	8.858458	2.110882	0.146580	0.450903	0.761372	I.080367	1.403607	1.742202	2.093442	12.196181	11.630634	11.112137	10.638193	10.199992	9.794429	9.415169	9.062436	
P/PINF	2.657924	2.677571	2.676556	2.675255	2.673271	2.669630	2.664373		2.703047	2.702549	2.701851	2.699879	2.697466	2.693160	2.687834	1.811389	1.807832	1.801095	1.792318	1.781551	1.769373	1.755895	1.741812	1.726868	2.711193	2.728219	2.728056	2.726705	2.724317	2.721270	2.716927	2.711253	1.809896	1.804709	1.797031	1.787507	1.776236	1.763607	1.750029	1.735859	
ď	0.870633	0,089969	0.969868	0.949795	0.929853	0.910164	0.890657	0.871418	1.000000	0.979681	0.959365	0.939159	0.919077	0.899223	0.879592	0.614863	0.645707	0.676918	0.708407	0.740031	0.771744	0.803503	0.835283	0.866990	0.860876	0.989710	0.969171	0.948715	0.928364	0.908108	0.888122	0.868388	0.638305	0.669338	0.700717	0.730063	0.763012	0.705654	0.827466	0.85970	10411040
,	251572 5	CCTCH1.2	2 712B62	2.716010	2 720602	2.726914	2.734925	2.744656	2.732483	2.733324	2.735687	2.739468	2.744727	2.751799	2.760520	2.777931	2.771978	2.768062	2.766204	2.766129	2.767651	2.770817	2.775727	2.782116	2.772058	2.754317	2.755930	2.758922	2.763369	2.769383	2,777159	2.786554	2.811337	2 BUA42R	2.000120 2.001505		001209 C	175300 0	110000 0	2,0072375	CT1+10.2
0.01417	ININA	0 -		1 1	n 4	ר ע ר	٦ 4	•		• ~		1	- u*	<u> </u>	~		• •	יי נ	n 4	· ſr	`) r	- 31	• a	r a		4 0	J (*	.	. ر	. .				2	•••	t u	n v	0 P	- (xo
	TAT T		0 a	 -	00	01	01			10	1	10	0		0	15	, r , r	15			ע ע - ר) u - F	- F) u - r		11	200	202	202	20	200	07	2 1		e;	21	92	21	2 i	21	16
	KEG S	N I	v r	u (N r	N P	v e	4 6	v v	J 6	40	4 0	1 0	9.0	4 0	4 -	4 ,-	4		4 -	4 -	-1	-4 ~	-	- - c	v r	N 0	v n	4 0	40	4 C	v (v ,		. ,	-		-4			

Figure 8. - Continued.

03/12/65

• 03/12/65

•

1

THREE-DIMENSIONAL AXISYMMETRIC METHOD OF CHARACTERISTICS. INTERNAL CASE.

CASE 14A 12.5 DEGREE CONE M=3.00

PT/PTINF 0.984379	0.988128	0.987890	0.987585	0.987116	0.986500	0.985910	0.985205	0.984504	0.994014	0.993834	0.993693	0.993613	0.993592	0.993608	0.993639	0.993671	0.984115	0.988007	0.987731	0.987333	0.986774	0.986162	0.985493	0.984777	0.984213	0.993923	0.993761	0.993651	0.993602	0.993601	0.993625	0.993657	0.983884	0.988128	0.987865	0.987520	0.987027	0.986430	0.985775
MACH NU. 2.335745	2.333785	2.333489	2.333477	2.333579	2.333879	2.334207	2.334836	2.335840	2.606679	2.607821	2.609984	2.613012	2.616665	2.620974	2.625687	2.630778	2.330299	2.327722	2.327543	2.327556	2.327734	2.328029	2.328363	2.329101	2.330342	2.607179	2.608793	2.611350	2.614668	2.618574	2.622989	2.627791	2.324843	2.321890	2.321797	2.321655	2.321737	2.321877	2.322197
DELTA(DEG) 2.273182	0.	0.296762	0.600919	0.913063	1.232984	1.561176	1.903563	2.257718	12.50000	11.914834	11.379098	10.887893	10.437399	10.020257	9.631015	9.267290	2.435096	0.148611	0.445106	0.750824	1.063772	1.388526	1.720362	2.065525	2.422346	12.204787	11.651094	11.144118	10.677667	10.249297	9.849372	9.476477	2.599969	••	0.295339	0.593281	0.899684	1.21732i	I.545603
P/PINF 2.734338	2.753313	2.753927	2.753128	2.751382	2.748373	2.745323	2.740663	2.734417	1.811034	1.807512	1.801218	1.792659	1.782523	1.770716	1.757921	1.744204	2.757125	2.779207	2.779206	2.778030	2.775684	2.772687	2.769356	2.764154	2.757212	1.809469	1.804661	1.797340	1.788053	1.777286	1.765242	1.752247	2.780099	2.805017	2.804676	2.804319	2.802563	2.800253	2.796992
R D. R50993	1.000000	0.979195	0.958509	0.937903	0.917372	0.896976	0.876880	0.857079	0.631020	0.661851	0.693075	0.724531	0.756117	0.787810	0.819616	0.851400	0.841014	0.989484	0.968526	0.947684	0.926891	0.906215	0.885700	0.865528	0.845621	0.654467	0.685515	0.716838	0.748351	0.779996	0.811764	0.843552	0.830924	1.000000	0.978812	0.957690	0.936656	0.915711	0.894912
X 2.801326	2.775938	2.776705	2.778945	2.782599	2.787800	2.794510	2.802953	2.812957	2.851192	2.845275	2.841395	2.839311	2.839011	2.840404	2.843391	2.847877	2.831110	2.798112	2.799503	2.802401	2.806806	2.812699	2.820069	2.829115	2.839831	2.884605	2.879754	2.876747	2.875451	2.875915	2.878078	2.881671	2.861475	2.820069	2.820697	2.822740	2.826385	2.831476	2.838027
PUINT) 	2	Ē	4	ŝ	¢	7	8	-	2	ŝ	t	ŝ	¢	7	8	6	1	2	ŝ	t	ŝ	4	7	8	-	5	Ē	4	ŝ	9	7	6	1	2	ŝ	4	'n	¢
RAY 20	210	21	21	21	21	21	21	21	17	77	77	11	77	77	11	11	21	22	22	22	22	22	22	22	22	78	78	78	78	78	78	78	22	23	23	23	23	23	23
REG	• ~	1 ~	~	2	Ņ	2	N	2	-	-	-	4			-			N	N	1 ~1	i ~ i	~	2	Ň	2	-)		1			-	N		N		2	2	Ň

L CASE.
INTERNA
CHARACTERISTICS.
00 OF
METH
. AXISYMMETRIC
7

COALESCENCE 0.986951 0.986339 0.9845656 0.9845656 0.9884341 0.983835 0.993663 0.993663 0.993663 0.993663 0.993663 0.993663 0.9936642 0.987639 0.987639 PT/PTINF 0.985065 0.983423 0.983423 0.993840 0.993840 0.993614 0.993614 0.993614 0.983646 0.987695 0.986697 0.986697 0.986697 0.986697 0.986697 0.986697 0.986697 0.986697 0.9866677 0.9866677 0.9866677 0.9866677 0.98666677 0.98666677 0.9866677 0.9866677 0.9866677 0.9866677 0.9866677 0.98666677 0.988128 0.987836 0.987458 0.987186 0.986613 MACH NO. 2.322614 2.3225614 2.322966 2.324865 2.605906 2.605999 2.605999 2.605999 2.615447 2.612447 2.612447 2.612438 2.315982 2.315982 2.315988 2.315988 2.315982 2.315982 2.315962 2.315962 2.315962 2.315922 2.315022 2.316448 2.316428 2.315928 2.316428 2.315928 2. DELTA(DEC) 1.880069 2.5290745 2.590745 12.590745 12.50000 11.928343 12.50000 11.928343 10.480867 10.924028 10.924028 10.924028 10.926939 10.926935 2.765847 0.7401839 0.7401839 0.7401839 0.7401839 0.7401839 0.7401839 0.7402847 1.051367 1.051367 2.0393642 2.0393642 2.0393642 2.393642 -0.300000 0.289985 0.890172 0.890172 0.890172 1.204289 1.527692 1.527692 1.527692 1.670560 11.670560 11.174888 11.670560 11.174898 12.2561264 10.718134 10.718134 10.718134 10.718134 10.718134 10.718134 10.718134 10.718134 10.718134 10.718134 10.718134 10.718134 10.718134 10.718134 11.670560 11.750560 11.750560 11.750560 11.750560 11.670560 11.750560 11.750560 11.750560 11.750560 11.750560 11.750560 11.750560 11.750560 11.670560 11.750560 11.7 M=3.00 2.854111 2.854111 2.852194 2.8448135 2.8448135 2.8448135 2.833748 1.809047 1.809047 1.788613 1.788613 1.788613 1.788613 2.856704 2.8881339 2.8881339 2.8881339 2.8891915 2.879165 P/PINF 2.793154 2.793154 2.7801778 1.800398 1.8003330 1.8003330 1.772057 1.772057 1.772057 1.772057 2.8290986 2.8290986 2.827374 2.820797 2.827374 2.821071 2.8216008 2.810608 2.910116 2.856192 2.854942 DEGREE CUNE 12.5 R 874312 0.8874312 0.8874325 0.6778046 0.678046 0.772204 0.8033936 0.8033936 0.8033936 0.883493 0.883493 0.982457 0.982457 0.982457 0.982457 0.982261 0.992261 0.995457 0.9952261 0.956920 0.956920 0.935435 0.914108 0.872936 0.872936 0.851051 0.851051 0.670665 0.764434 0.796123 0.7764434 0.810546 0.810546 0.988281 0.9454421 0.9454421 0.945469 0.945469 0.945469 CASE 14A POINT

Figure 8. - Continued

03/12/65

88

THREE-DIMENSION/

٠

•

ļ

THREE-DIMENSIONAL AXISYMMETRIC METHOD OF CHARACTERISTICS. INTERNAL CASE.

CASE 14A 12.5 DEGREE CUNE M=3.00

PT/PTINE	0.985953	0.985250	0.984588	0.984028	0.983069	0.994014	0.993846	0.993714	0.993636	0.993611	0.993621	0.982350	0.988128	0.987795	0.987400	0.986876	0.986245	0.985550	0.984860	0.984249	0.983428	0.982566	0.993929	0.993778	0.993673	0.993622	0.993616	0.982043	0.987954	0.987580	0.987120	0.986530	0.985853	0.985150	0.984496	0.983747	0.982884	0.982165	0-994014	0.993852
MACH ND.	2.304327	2.304672	2.305230	2.305986	2.306886	2.607021	2.608006	2.609916	2.612725	2.616147	2.620092	2.301396	2.271149	2.286751	2.298636	2.298589	2.298499	2.298692	2.299047	2.299728	2.300364	2.301486	2.607423	2.608886	2.611210	2.614257	2.617879	2.296109	2.265345	2.280947	2.292875	2.292873	2.292866	2.293051	2.293515	2.294150	2.294908	2.296143	2.607129	2.608062
DELTA(DEG)	1.357569	1.683073	2.021795	2.363468	2.732086	12.500000	11.940462	11.429538	10.959241	10.522989	10.118013	2.926238	-0.700000	-0.017938	0.579752	0.884245	1.192379	1.510782	1.841790	2.184386	2.536619	2.903821	12.217504	11.688348	11.204367	10.755342	10.339054	3.097842	-0.563358	0.124822	0.727041	1.033542	1.343488	1.667225	2.001943	2.349941	2.705577	3.080322	12.50000	11.953820
P/PINF	2.876803	2.873200	2.868769	2.863744	2.856929	1.810075	1.807015	1.801444	1.793496	1.783986	1.773156	2.879467	3.036792	2.962543	2.906797	2.905463	2.904019	2.901096	2.897453	2.892570	2.887285	2.879697	1.808796	1.804434	1.797769	1.789228	1.779224	2.902476	3.063962	2.988925	2.932287	2.930542	2.928563	2.925627	2.921562	2.916442	2.910427	2.902684	1.809775	1.806869
ĸ	0.902638	0.881329	0.860162	0.839198	0.818627	0.663374	0.694210	0.725340	0.756719	0.788325	0.820031	0.800212	0.998373	0.977103	0.956188	0.934316	0.912579	0.891003	0.869541	0.848269	0.827232	0.806599	0.686823	0.717804	0.749066	0.780575	0.812213	0.789812	0.987047	0.965744	0.944796	0.922811	0.900921	0.879186	0.857611	0.836261	0.815152	0.794448	0.679546	0.710335
×	2.900929	2.907958	2.916553	2.926650	2.938493	2.997899	2.991872	2.987804	2.985568	2.985042	2.986027	2.955211	2.906359	2.908291	2.912354	2.915690	2.920375	2.926623	2.934394	2.943662	2.954393	2.966887	3.031318	3.026218	3.023034	3.021662	3.021831	2.987332	2.928757	2.931632	2.936553	2.940472	2.945840	2.952824	2.961262	2.971160	2.982536	2.995724	3.071226	3.065185
POINT	ŝ	9	2	8	6	-	7	m	4	S	¢	10	-	2	m	4	2	9	-	æ	6	10	-	2	ŝ	4	Ś	11	-	2	m	4	Ś	ð	2	8	6	10		2
KAY	26	26	26	26	26	81	81	81	81	81	81	26	27	27	27	27	27	27	27	27	27	27	82	82	82	82	82	27	28	28	28	28	28	28	28	28	28	28	83	83
REG	2	2	2	~	~		-4	1	4	-	-	2	v	2	N	2	5	2	7	2	~	~	-1		-			~ 1 (2	2	~	N	2	~	2	ŝ	~	, -1	-1

NTERNAL CASE.
CHARACTERISTICS. 1
METHOD OF
AXISYMMETRIC
THREE-DIMENSIONAL

M=3.00
CONE
DEGREE
12.5
14A

																																LUALESCENCE									
	PT/PTINF	0.993723	0.993646	0.993619	0.981722	0.988128	0.987755	0.987325	0.986802	0.986155	0.985452	0.984767	0.984045	0.983214	0.982425	0.981791	0.994014	0.993852	0.993723	0.993646	0.981387	0.987939	0.987521	0.987030	0.986449	0.985760	0.985056	0.984339	0.983539	0.982721	0.982016		0.988128	0.987723	0.987250	0.986697	0.986068	0.985360	0.984638	0.983861	0.98303/
	MACH NO.	2.609985	2.612585	2.615865	2.290858	2.244211	2.259499	2.275154	2.287178	2.287249	2.287218	2.287495	2.287952	2.288676	2.289497	2.290868	2.607129	2.608062	2.609985	2.612585	2.285636	2.238328	2.253663	2.269420	2.281566	2.281602	2.281645	2.281933	2.282478	2.283218	2.284165		2.217256	2.232454	2.247880	2.263764	2.275929	2.276021	2.276078	2.276459	2.276989
3. 00	DELTA(DEG)	11.452968	10.991376	10.563309	3.271787	-1.100000	-0.424456	0.268617	0.874410	1.182618	1.497725	1.825010	2.164948	2.516199	2.879172	3.260295	12.500000	11.953820	11.452968	10.991376	3.448320	-0.964867	-0.284649	0.412385	1.021485	1.334721	1.653211	I.985539	2.328552	2.686961	3.056113		-1.500000	-0.828956	-0.144991	0.555738	1.171489	1.487983	1.811338	2.146565	2.496529
DEGREE CONE M=3	P/PINF	1.801271	1.793903	1.784778	2.925468	3.167567	3.091502	3.015364	2.957588	2.955319	2.953357	2.950026	2.945754	2.939926	2.933806	2.925625	1.809775	1.806869	1.801271	1.793903	2.948465	3.196259	3.119135	3.041639	2.982597	2.980356	2.978030	2.974520	2.969572	2.963664	2.957156		3.304067	3.225075	3.146631	3.067646	3.007876	3.005281	3.002809	2.998652	2.993660
ASE 14A 12.5 (×	0.741470	0.772879	0.804434	0.779382	0.997740	0.975533	0.954221	0.933277	0.911135	0.889079	0.867224	0.845564	0.824136	0.802945	0.782210	0.679546	0.710335	0.741470	0.772879	0.768925	0.986084	0.963849	0.942564	0.921584	0.899272	0.877089	0.855142	0.833396	0.811881	0.790648	0.769888	0.997282	0.974251	0.952023	0.930726	0.909702	0.887259	0.864976	0.842937	0.821096
J J	×	3.061006	3.058711	3.058059	3.019856	2.951042	2.951591	2.955386	2.961110	2.965713	2.971809	2.979454	2.988516	2.999057	3.011117	3.024926	3.071226	3.065185	3.061006	3.058711	3.052787	2.973374	2.974830	2.979494	2.986125	2.991454	2.998205	3.006468	3.016166	3.027387	3.040060	3.054496	2.996776	2.996104	2.998419	3.004055	3.011637	3.017620	3.024981	3.033875	3.044245
	PUINT		t (. 2	11	-	2		t	ŝ	0	~		• •	10	11	-	- 2	•	4	12	-		5	4	ŝ	9	~	8	6	10	11	-	2	1 (**	t i	ι. Γ	· •0	-	. 60	6
	A A C) (r 2	83	28	29	50	29	29	562	56	29	50	60	29	50	83	83		83	66	. U &	30	30	30	00	30	30	30	30	30	30	31	16	16	- I C	16	1.6	1.00		31
	50	5 - -	4	• ~	N	1~	1	IN	L N	10	• ~	1.5	• •	10	10	10	i	•	•	4 ~~	• •	10	1	• •	1 ~	10	I N	10	1	10	- ~	2	I N	1 ^	• •	10	10	4 ~	1 ~	• •	10

Figure 8.- Continued.

03/12/65

ļ

•

THREE-DIMENSIONAL AXISYMMETRIC METHOD OF CHARACTERISTICS. INTERNAL CASE.

l

CASE 14A 12.5 DEGREE CONE M=3.00

PT/PTINF	0.982277	0.981623	0.993932	0.993786	0.993683	0.980218	0.987927	0.987473	0.986938	0.986329	0.985672	0.984946	0.984180	0.983362	0.982565	0.981861	0.980660	0.994014	0.993858	0.993732	0.979830	0.988128	0.987698	0.987186	0.986588	0.985939	0.985262	0.984502	0.983693	0.982876	0.982124	0.981089	0.980035	0.993935	693793	0.979418	0.987913	0.987434	0.986858	0.986207
MACH NO.	2.277834	2.278887	2.607508	2.608949	2.611186	2.273111	2.211351	2.226631	2.242167	2.258068	2.270346	2.270450	2.270604	2.270954	2.271561	2.272510	2.273304	2.607226	2.608164	2.609961	2.267912	2.186600	2.205493	2.220872	2.236406	2.252419	2.264772	2.264975	2.265090	2.265494	2.266191	2.267015	2.267963	2.607635	2.608971	2.262746	2.180696	2.199697	2.215058	2.230679
DELTA(DEG)	2.860943	3.236728	12.224300	11.707793	11.230536	3.453164	-1.367896	-0.693315	-0.005884	0.701875	1.322562	1.643784	1.969864	2.311836	2.667604	3.038466	3.421001	12.500000	11.967223	11.475519	3.635352	-2.000000	-1.236179	-0.558362	0.135844	0.848950	1.476077	1.799890	2.132509	2.480082	2.842085	3.219487	3.610257	12.231459	11.724738	3.820314	-1.872667	-1.105287	-0.420951	0.278361
P/PINF	2.987390	2.980483	1.808566	1.804273	1.797854	3.003246	3.334071	3.253785	3.173891	3.093961	3.033051	3.030324	3.027237	3.023068	3.017750	3.011110	3.003692	1.809501	1.806595	1.801354	3.026584	3.466457	3.363997	3.282289	3.201505	3.120205	3.058354	3.055025	3.051963	3.047502	3.041851	3.034731	3.026976	1.808216	1.804224	3.049872	3.497870	3.393748	3.311194	3.229087
×	0.799533	0.778264	0.702964	0.733931	0.765231	0.758433	0.985311	0.962270	0.940009	0.918693	0.897668	0.875121	0.852737	0.830596	0.808700	0.787095	0.765767	0.695699	0.726479	0.757632	0.747834	0.996318	0.973185	0.950091	0.927790	0.906500	0.885506	0.862853	0.840361	0.818157	0.796211	0.774540	0.753170	0.719124	0.750111	0.737230	0.984019	0.960854	0.937702	0.915404
×	3.056076	3.069365	3.104602	3.099518	3.096259	3.086173	3.019001	3.019179	3.022454	3.029104	3.037571	3.044162	3.052149	3.061707	3.072680	3.085124	3.099108	3.144469	3.138468	3.134333	3.119941	3.042058	3.041565	3.042693	3.046967	3.054570	3.063879	3.071095	3.079738	3.089893	3.101471	3.114603	3.129258	3.177856	3.172836	3.154103	3.064050	3.064563	3.066677	3.071891
POINT	10	11	1	2	ŝ	12	1	2	m	4	5	9	2	8	6	10	11	1	2	m	12	1	7	ŝ	4	ŝ	9	7	8	6	10	11	12	1	2	13	Ч	2	£	t
RAY	31	31	84	84	84	31	32	32	32	32	32	32	32	32	32	32	32	85	85	85	32	33	33	33	33	33	33	33	33	33	33	33	33	86	86	33	34	34	34	34
REG	2	2	٦	T	-	2	~	~	2	7	2	.4	2	2	2	N.	7	-	-	-1	2	2	7	2	2	2	2	2	2	2	2	2	2	٦	-1	2	2	2	2	2

CASE.
INTERNAL
CHARACTERISTICS.
٩
METHOD
AXISYMMETRIC
THREE-DIMENSIONAL

ç	-	,
ς	2)
	1	,
¢	ſ	١
1	I	
2	E	
L	L	J
ż	2	
ē		1
č		1
1		
L	ı	1
ĩ	ī	į
2	•	,
ĩ	,	1
ĩ	ŧ	
ž	2	1
1		
	•	•
	1	
		Ī
Ĵ,	2	•
1		
1	2	
1	1	٢
•		
1	4	
5	,	

ç		THEND	, ,		P/PINF	DELTA(DEG)	MACH NG.	PT/PTINF	
ۍ د		a de la composición de la comp	3.080404	0-894174	3.146612	0.998329	2.246770	0.985530	
v n	1 4	. .	3.090576	0.873212	3.083326	1.629805	2.259295	0.984828	
10			3.098445	0.850447	3.080037	1.959994	2.259458	0.984028	
1 0	. 4	- ac	3.107677	0.827883	3.076720	2.298009	2.259609	0.983201	
1 1 1	t 1 n (. .	3.118430	0.805622	3.071962	2.651604	2.260085	0.982412	
• ~	. 4	10	3.130689	0.783602	3.065873	3.019912	2.260739	0.981469	
10	. 4	2 =	3.144487	0.761883	3.058448	3.405331	2.261595	0.980405	
•	40	12	3.159760	0.740503	3.050160	3.803824	2.262752	0.979520	
1	87	-	3.217750	0.711861	1.808971	12.500000	2.607416	0.994014	
	87	2	3.211766	0.742675	1.806448	11.978385	2.608220	0.993863	
• ~	. 46	13	3.188660	0.726627	3.073111	4.008189	2.257605	0.978972	
1 2	35	-	3.086209	0.994552	3.635439	-2.500000	2.156178	0.988128	
•	35	2	3.086468	0.971507	3.529146	-1.746310	2.174848	0.987668	
1	35	5	3.088022	0.948305	3.423945	-0.972099	2.193840	0.987131	
. ^	5.6	• •	3.091065	0.925137	3.340104	-0.282904	2.209268	0.986494	
10	35	5	3.097175	0.902877	3.256878	0.423030	2.224942	0.985803	
1 0	35	0	3.106621	0.881708	3.172719	1.147790	2.241212	0.985099	
• ~	35	÷ -	3.117686	0.860776	3.108621	1.787410	2.253776	0.984366	
• ^	. 5	. 66	3.126142	0.837936	3.105092	2.122834	2.253965	0.983540	
10	35	0	3.135966	0.815307	3.101518	2.466657	2.254169	0.982723	
• •	35	10	3.147391	0.792964	3.096360	2.826326	2.254649	0.981825	
10	35	11	3.160307	0.770887	3.090011	3.202402	2.255286	0.980789	
•	35	12	3.174720	0.749151	3.082087	3.595329	2.256298	0.979825	
	5	61	3.190616	0.727770					CUALESCENCE
• ~		1	3.108063	0.981867	3.668260	-2.378003	2.150280	0.987893	
• ~	9 e 9		3.109336	0.958768	3.560923	-1.617838	2.168938	0.987388	
• ~	96	1 m	3.111877	0.935573	3.454187	-0.838425	2.188000	0.986790	
1~	36	• •	3.115806	0.912424	3.369268	-0.142859	2.203459	0.986101	
•	36	5	3.122838	0.890202	3.284406	0.567629	2.219287	C/EC86.0	
1	36	9	3.133245	0.869093	3.199194	1.300971	2.235606	0.984642	
10	36	7	3.145140	0.848234	3.133971	1.947636	2.248274	0.983883	
• •	36	. 69	3.154185	0.825324	3.130202	2.288697	2.248502	0.983052	
1 ~	2.4		3.164672	0.802605	3.126270	2.638365	2.248733	0.982172	
1 e	9 C 9 C	10	3.176747	0.780197	3.120893	3.005553	2.249183	0.981174	
. ~	5 4	2	3.190271	0.758095	3.114091	3.388888	2.249921	0.980168	
•	2 C	11	3.205300	0.736351	3.105625	3.789726	2.251085	0.979285	
J			3.251190	0.735321	1.807865	12.235949	2.607762	0.993938	
• •	4		3.223670	0.716014	3.128307	4.02952i	2.245322	0.977579	
4 0	2 4	1 -	3.130838	0.992650	3.833676	-3.100000	2.122224	0.988128	
v (4 (3.130358	0.968947	3.701640	-2.254067	2.144317	0.987629	
v	5	J	~~~~						

Figure 8.- Continued.

03/12/65

٠

i

•

THREE-DIMENSIONAL AXISYMMETRIC METHOD OF CHARACTERISTICS. INTERNAL CASE.

CASE 14A 12.5 DEGREE CONE M=3.00

PT/PTINE		0-901009 0-986615	0.085681	10040400	0.984162	0.983395	0.982522	0.981554	0.980535	0.979594	0.978097	0.977618	0.965893	0.965893	0.965893	0.987876	0.987331	0.986714	0.986008	0.985233	0.984442	0.983668	0.982877	0.981933	0.980917	0.979932	0.978610	0.977966	0.988128	0.987594	0.986996	0.986322	0.985570	0.984758	0.983946	0.983150	0.982310	0.981309	0.980296	110610.0
MACH ND.	700671 0	2.182132	2.197722	2.213578	2.230010	2.242796	2.243059	2.243261	2.243772	2.244642	2.245512	2.245623	1.922596	1.922596	1.925665	2.116200	2.138360	2.157099	2.176326	2.191924	2.207870	2.224427	2.237342	2.237584	2.237821	2.238435	2.239154	2.245647	2.110581	2.110177	2.132361	2.151213	2.170451	2.186118	2.202164	2.218864	2.231862	2.232127	2.232438	2.232987
DELTA(DEG)	#1 480047	-0.702910	-0.003036	0.715773	1.456625	2.110764	2.457485	2.814422	3.188620	3.579606	3.989014	4.036556	12.499998	12.499998	12.487751	-2.981100	-2.129975	-1.358588	-0.567768	0.140153	0.866225	1.615027	2.276682	2.630468	2.994165	3.375754	3.775013	3.996249	-3.100000	-2.862227	-2.004383	-1.228674	-0.429443	0.285480	1.019255	1.776054	2.446648	2.806987	3.177813	3.567383
P/PINF	3.592791	3.484726	3.398206	3.312359	3.225766	3.159388	3.155281	3.151174	3.145388	3.138093	3.129031	3.126958	5.113204	5.113204	5.088972	3.868955	3.735157	3.625011	3.515076	3.427625	3.340458	3.252448	3.184790	3.180529	3.176059	3.169825	3.161987	3.127954	3.904070	3.904428	3.769079	3.657086	3.545962	3.457241	3.368724	3.279162	3.210375	3.205773	3.200906	3.194179
ď	0.945838	0.922686	0.899555	0.877371	0.856366	0.835589	0.812583	0.789791	0.767350	0.745230	0.723453	0.714367	0.718524	0.728827	0.726126	0.979527	0.955828	0.932744	.0.909634	0.886522	0.864419	0.843528	0.822812	0.799729	0.776894	0.754427	0.732264	0.721451	0.990014	0.966195	0.942538	0.919477	0.896412	0.873360	0.851348	0.830551	0.809918	0.786788	0.763918	0.741399
×	3.132593	3.136079	3.140919	3.148897	3.160206	3.172938	3.182643	3.193771	3.206447	3. 220578	3.236310	3.229116	3.247866	3.247866	3.255782	3.152495	3.153034	3.156189	3.160647	3.166422	3.175289	3.187505	3.201146	3.211489	3.223210	3.236485	3.251309	3.241152	3.174763	3.174525	3.176041	3.180145	3.185596	3.192249	3.202011	3.215209	3.229738	3.240671	3.252983	3.266941
POINT	m	4	5	6	7	8	6	10	11	12	13	14	I	2	-1	-1	2	'n	4	ŝ	¢	7	80	6	10	11	12	13	-4	2	ŝ	4	ŝ	9	7	80	6	10	11	12
RAY	37	37	37	37	37	37	37	37	37	37	37	37	-1	-	2	38	38	38	38	38	38	38	38	38	38	3.8	38	38	39	66	39	9.0	39	39	39	39	39	39	39	39
REG	2	2	7	2	2	2	2	2	2	2	2	~	ŝ	ŝ	n n	7	~	2	5	2	ŝ	2	2	2	2	. 1	2	2	NI (2	2	~	2	2	2	~	2	2	2	2

CASE 14A 12.5 DEGREE CUNE M=3.00

																																			CUALESCENCE						
	PT/PTINF	0.978462	0.967111	0.965893	0.966361	0.987855	0.987279	0.986622	0.985897	0.985103	0.984262	0.983426	0.982592	0.981704	0.980682	0.979520	0.978940	0.96/835	0.966034	0.967444	668785°	0.987279	0.986622	0.985897	0.985103	0.984262	0.983426	0.982592	0.981/04	0.980682	0.070700	0.968908	0,965895	108006.0		140004.0	061104-0	971886.0	0.00102	0.980922	0.980212
	MACH NU.	2.239262	1.918609	1.928721	1.918710	2.104578	2.104108	2.126404	2.145249	2.164561	2.180305	2.196471	2.213271	2.226394	2.226711	2.227004	2.233089	1.914598	1.921491	1.914752	2.104578	2.104108	2.126404	2.145249	2.164561	2.180305	2.196471	2.213271	2.226394	2.226711	2.221004	1.910768	1.914047	1.917299		1.909816	C05519.1	2.073149	2.098535	2.098074	2.120362
1	DELTA(DEG)	3.781765	12.190910	12.500000	12.240392	-2.982135	-2.742042	-1.879505	-1.095776	-0.289150	0.433209	1.174722	I.940952	2.620002	2.987251	3.365771	3.573670	11.937198	12.251738	11.972726	-2.982135	-2.742042	-1.879505	-1.095776	-0.289150	0.433209	1.174722	1.940952	2.620002	2.987251	3.365771	11.689152	12.500000	11.982349		12.227958	11.718637	-3.800000	-2.863006	-2.622760	-1.751838
	P/PINF	3-160973	5.151339	5.064955	5.146537	777929.5	075040.5	3.802903	3.689764	3.577095	3.487076	3.397078	3.306113	3.235974	3.230998	3.225693	3.193225	5.187274	5.122699	5.183944	3.939777	3.940370	3.802903	3.689764	3.577095	3.487076	3.397078	3.306113	3.235974	3.230998	3.225693	5.221716	5.181279	5.160447		5.219326	5.196608	4.139135	3.975960	3.976267	3.837397
	a	130767	0.731088	0 722550	0 729449	0 076601	0.957685 0.057685	0.02000	0.006032	0.883054	0.860072	0.838129	0.817450	0.796936	0.773766	0.750834	0.739366	0.742134	0.725825	0.740239	0.976691	0.952685	0.929067	0.906032	0.883054	0.860072	0.838129	0.817450	0.796936	0.773766	0.750834	0.752631	0.724289	0.736560	0.751424	0.735041	0.747688	0.987355	0.963189	0.938982	0.915408
5	,	3 366130	3,251066	00676306	3.200200	0.272729C	2100010	3.1900/0 2 100/07	20144196	210866	3.218400	2,229129	3.243289	3.258663	3.270185	3.283170	3.271722	3.265224	3.269674	3.270560	3.196605	3.196878	3.199402	3.204472	3.210864	3.218400	3.229129	3.243289	3.258663	3.270185	3.283170	3.279025	3.274105	3.280942	3.282365	3.285241	3.292702	3.219076	3.218768	3.219577	3.223124
	THEOR		.			.		2	n 4	1 u	~ ~	• •	-α		, o t	2 -	: 1		·	• ~		+ ~	ب ۱	4	r ur	. .	~	- α		01	:=		· -	• •	1 (*	·	• •	 ۱	• ~		• 4
		KAY 2.5	י ע רי		n r	n (4	4	0 4				00	04	04	4	40	2 11	14	r J	101	0 C	4	1			0 C	•		1	04	4	ru	. .	` "	• •) (1 1	14	14
		א הנ	7	n (n r	n ·	~ `	2	7	N C	v e	u n	4 0	4 0	.	4 0	4 0	4 0	יי ר	יה ח	ייר	u	u n	4.0	J 6	4 0	4 0	4	4	10	1 0	4 1	n n	ה ח	, ,	י ר	ייר	n r	4 0	4 0	U • U

Figure 8. - Continued.

03/12/65

•

IHREE-DIMENSIONAL AXISYMMETRIC METHOD OF CHARACTERISTICS. INTERNAL CASE.

CASE 14A 12.5 DEGREE CUNE M=3.00

																																							CUALESCENCE	
PT/PTINF	0.985440	0.984611	0.983742	0.982870	0.981992	0.981080	0.979955	0.969385	0.965893	0.967495	0.968689	0.987836	0.987227	0.986533	0.985767	0.984953	0.984094	0.983190	0.982275	0.981366	0.980386	0.970034	0.966713	0.968447	0.969544	0.988128	0.987518	0.986861	0.986103	0.985290	0.984438	0.983546	0.982600	0.981648	0.980682	0.970627	0.965893	0.967625		0.966776
MACH NO.	2.139262	2.158654	2.174496	2.190742	2.207682	2.220954	2.221277	1.909453	1.904398	1.905888	1.909788	2.067019	2.092525	2.091945	2.114286	2.133247	2.152742	2.168645	2.185008	2.202106	2.215511	1.905867	1.900403	1.902325	1.906158	2.039331	2.060925	2.086425	2.085775	2.108174	2.127216	2.146782	2.162782	2.179275	2.196527	1.889775	1.930784	1.896775		1.926917
DELTA(DEG)	-0.961099	-0.146634	0.583183	1.333867	2.109066	2.796945	3.171645	11.388659	12.50000	11.961589	11.461815	-3.686690	-2.744816	-2.500909	-1.622580	-0.824398	-0.002071	0.736631	1.496039	2.280595	2.977842	11.147678	12.229127	11.702100	11.205689	-4.400000	-3.574527	-2.624115	-2.377676	-1.491490	-0.685866	0.145763	0.892910	1.661432	2.455882	10.594448	11.500000	11.965146		11.239714
P/PINF	3.722749	3.608500	3.517058	3.425735	3.333129	3.261570	3.256183	5.237077	5.259149	5.255752	5.230605	4.177662	4.012104	4.012915	3.872260	3.756072	3.640111	3.547408	3.454520	3.360195	3.287146	5.269716	5.296197	5.289969	5.264681	4.363294	4.216214	4.049004	4.050003	3.907526	3.789669	3.672153	3.577948	3.483424	3.387303	5.405630	5.048805	5.330984		5.083763
¥	0.892442	0.869562	0.846627	0.824777	0.804252	0.783869	0.760632	0.763548	0.729946	0.746190	0.759289	0.973614	0.949492	0.925084	0.901597	0.878709	0.855904	0.833041	0.811320	0.790962	0.770687	0.774759	0.741063	0.757815	0.771235	0.984662	0.959667	0.935599	0.911025	0.887636	0.864802	0.842097	0.819341	0.797761	0.777549	0.782502	0.735741	0.752662	0.769787	0.747127
×	3.229111	3.236449	3.244940	3.256616	3.271696	3.287917	3.300108	3.293465	3.299754	3.296865	3.305043	3.240531	3.241276	3.242627	3.247151	3.254059	3.262415	3.271841	3.284423	3.300425	3.317575	3.308413	3.311196	3.309069	3.317837	3.263961	3.262322	3.264133	3.265973	3.271480	3.279379	3.288734	3.299054	3.312546	3.329552	3.318797	3.326207	3.323216	3.321722	3.338548
PUINT	ŝ	6	*	30	6	10	11	ŝ	-1	2	£	1	2	ŝ	4	5	9	7	8	6	10	4	1	2	¢1	I	2	r,	4	ŝ	9	-	8	6	10	4	~	2	¢,	1
RAY	41	41	41	41	41	41	41	ę	7	7	7	42	42	42	42	42	42	42	42	42	42	7	æ	8	8	43	43	43	43	43	43	43	43	64	43	80	6	6	6	10
REG	2	2	2	~	2	1	7	m	m	ŝ	'n	2	~1	~1	~	2	i N	2	2	2	c v	۳	ŝ	ŝ	m,	2	2	2	7	2	2	7	2	~	2	m	m	e	m	ĥ

THREE-DIMENSIONAL AXISYMMETRIC METHOD OF CHARACTERISTICS. INTERNAL CASE.

CASE 14A 12.5 DEGREE CONE M=3.00

	PT/PTINF	0.968536	0.970182	0.987823	0.987167	0 004657	0.4004.01	000000000000000000000000000000000000000	0.984/80	0.983893	0.982963	0.981975	0.980968	0.971239	0.965893	0.967677	0.969168	0.970847	0.988128	0.987488	0.986779	0.986016	0.985134	0.984238	0.983313	0.982343	0.981303	0.971902	0.966792	0.968286	0.969803	0.971616	0.987797	0.987119	0.986353	0.985538	0.984598	0.983663	0.982697	0.981678	0.972609	0.965893	
	MACH ND.	1.893118	1.889935	2.033176	2.054733		2.080282	2.07938	2.102031	2.121130	2.140804	2.156909	2.173530	1.869956	1.944989	1.923032	1.876811	1.870016	1.995062	2.026919	2.048493	2.074092	2.073304	2.095835	2.115016	2.134806	2.151017	1.850707	1.940938	1.906359	1.856782	1.850719	1.988695	2.020609	2.042195	2.067862	2.066976	2.089597	2.108874	2.128782	1.831821	1.958871	
	DELTA(DEG)	11.700758	10.641674	040000 /-	190090		-2.502088	r -2.252830	-1.358785	-0.544291	0.296222	1.052206	1.830368	9.939851	10.850000	10.979037	11.130676	9.976870	-5.300000	-4.183873	-3.344556	-2.378506	-2.126613	-1.223260	-0.400311	0.449488	1.214816	9.290863	10.590085	10014.017	10.459667	9.317068	-5.198305	-4.073878	-3.227707	-2.253617	-1.997828	-1.085551	-0.253759	0.605835	8.644814		
	P/PINF	5.366777	5.401816		4.403476	610662*4	4.086352	4.087571	3.943135	3.823777	3.704449	3.608674	3.512442	5.576888	4.938898	5.119193	5.506513	5.574125	4.674635	4.445620	4.295547	4.124188	4.125567	3.979335	3.858215	3.736997	3.639589	5.748511	4.974632	5.256222	5.682742	5.746703	4.719559	4.487852	4.336055	4.162457	4.164246	4.015942	3.892986	2 769807	5 00001	12022606	
	œ	0 744507	0.770635		0.970515	c1cc+6*0	0.921544	0.896805	0.873490	0.850736	0.828168	0.805530	0.784068	0.789927	0.741311	0.758835	0.772625	0.787300	0.980800	0.956159	0.931191	0.907327	0.882391	0.859177	0.836538	0.814121	0.791577	0.798509	0.752861	0.766570	0.780305	0.796474	0.966140	0.941621	0.916695	0.892915	0.867800	0.844723	0 822213	CT3370*0	0,00000		0.144100
5	34			3.320000	3.285119	3.284450	3.287283	3.289613	3.296172	3.305043	3.315358	3.326577	3.341057	3.328857	3.354506	3. 351 324	3-344103	3.335234	3.307001	3.306604	2 206863	20000C.E	03101C.C	001102 2	2 321005	200776 C	3.354479	21707°C	367628	2.350821	3.352246	3.345315	3.327643	3.328366	3 370559	3,334520	227075 5	211110000	11010-0	3.35/201	3.369583	3.353885	3.383809
	DINT		V (•	4	2	e.	4	5		~	- a			· _	• •	1 6	4			4 6	n 4	t u	n 4	0 P	- 0		r u	n	-4 (N 10	•	t -	4 0	4 6	n <	- u	n ·	01	~	80	Ś	1
	24.0	KAT 	01	10	44	44	44	44	44	44	44	44		; -	2 -	::	::	4	4 U 4 V	1 u 1 4	n u t :	n u † 1	n u 7 v	1 u 1 v	n u † •	n 1 * 1	1 u	1 ·		1	7	7 7	15		;	0 ×	0 . 7	0 ·	4	46	40	12	13
		۲ ۲	m i	m	2	~	2		•••	10	• •	4 0	u r	4 7	n (1	, (ח ה	n n	n (, ,	1	v 1	7	N	7		2	7	n r	n (n (n a	n (v (2	7	7	2	2	2	7	'n	ŝ

CASE 14A 12.5 DEGREE CONE M=3.00

CDALESCENCE		
PT/PTINF 0.967387 0.968886 0.970569 0.956474 0.956474	0.987437 0.9857437 0.985712 0.9959886 0.9959038 0.985023 0.985023 0.985050 0.972051 0.972051 0.972051 0.972051 0.972450 0.987767 0.985264 0.985264 0.985264 0.985264	0.984472 0.983416 0.983416 0.972779 0.966467 0.966467 0.966467 0.966467 0.98128 0.988128 0.988128 0.986378 0.986436 0.986436 0.986436 0.986436
MACH ND. 1.923977 1.885912 1.837407 1.837407 1.941617 1.903203 1.866119	1.982269 2.014235 2.015548 2.0051556 2.061556 2.083321 2.083321 1.946259 1.946756 1.946756 1.946756 1.946773 1.975773 2.02784	2.055203 2.054179 2.077000 1.773085 1.926982 1.926982 1.926982 1.926911 1.773061 1.773061 1.934155 1.934155 1.934155 1.934155 1.934259 2.001277 2.002277
DELTA(DEG) 10.020095 9.739501 9.793166 9.628913 9.348141 9.073928	-5.095994 -3.962783 -3.962783 -3.109817 -2.126235 -1.867107 -0.945500 9.500000 8.955367 8.955367 8.955367 8.955367 8.955367 8.955367 8.955367 8.359623 -4.95976 -3.850878 -3.850878	$\begin{array}{c} -1.996991\\ -1.734306\\ -1.734306\\ -0.802882\\ 7.548372\\ 8.825023\\ 8.825023\\ 8.825023\\ 8.2271306\\ 7.652340\\ 7.652340\\ 7.652349\\ -5.111542\\ -5.111542\\ -5.737000\\ -2.868016\end{array}$
P/PINF 5.110177 5.428191 5.859145 4.967767 5.280164	4.765200 4.530739 4.530739 4.571093 4.201420 4.052963 4.052963 5.135780 5.135780 5.135780 5.259494 5.135780 5.254488 5.254488 5.083772 4.41893 4.41893	4.240889 4.240889 4.243115 6.47980427 5.081628 5.081628 5.081628 5.477542 5.477542 5.477542 5.477542 5.477542 5.477542 4.618641 4.618641
R 0.7760342 0.773914 0.773914 0.783308 0.753389 0.767395 0.782559	0.951288 0.926903 0.926903 0.878325 0.878325 0.873058 0.853058 0.853058 0.853058 0.853054 0.877744 0.755264 0.755264 0.755264 0.950932 0.950932 0.911969 0.887102	0.863582 0.815367 0.815367 0.8261367 0.7568725 0.7568725 0.7568725 0.8015203 0.815547 0.920973 0.8926973 0.872048
X 3.375854 3.367964 3.3561885 3.3561554 3.3362154 3.377645 3.377645	3.348553 3.350404 3.355404 3.355596 3.358637 3.358637 3.358637 3.358637 3.358880 3.359457 3.369047 3.369047 3.375945 3.3759452 3.3759452	3.383034 3.387405 3.3987405 3.398079 3.398079 3.409432 3.4094436 3.4094436 3.3992469 3.3992469 3.3992469 3.3912126 3.3912126 3.391212
0 1 0 0 4 0 1 0 0 4	こうゆうらてりらしこうゆうしこうみ	ちゅてもえるみらしこうみら
₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4 4 4 4 7 7 7 7 7 8 8 8 8 4 4 8 8 8 8 4 4 4 6 6 6 6 6 6 6
	N 22 N 12 N 12 N 18 M 16 M 16 M 10 N 10 N	N N N M M M M M M N N N N N N N N N N N

Figure 8.- Continued.

03/12/65

•

•

03/12/65

CASE 144 12.5 DEGREE CONE M=3.00

	PT/PTINF	0.983883	0.982763	0.973547	0.965893	0.967153	0.968513	0.970160	0.971534	0.972880	0.987736	0.986952	0.986129	0.985245	0.984253	0.983253	0.974240	0.966586	0.967947	0.969228	0.970768	0.972136	0.973740	0.988128	0.987314	0.986485	0.985608	0.984673	0.983625	0.975026	0.965893	0.967394	0.968674	0.969895	0.971381	0.972979	0.974534	0.988128	0.987314	0.986485	0.985608
	MACH NO.	2.048802	2.047700	1.747566	1.904916	1.906382	1.880059	1.840007	1.800734	1.747339	1.886004	1.927450	1.962538	1.994683	2.016368	2.042344	1.744549	1.884403	1.886223	1.856351	1.816866	1.774516	1.744426	1.862408	1.879134	1.920628	1.955788	1.988020	2.009747	1.715952	1.887480	1.864349	1.862358	1.832926	1.790311	1.771378	1.715694	1.862408	1.879134	1.920628	1.955788
	DELTA(DEG)	-1.865747	-1.599229	6.719050	9.500000	8.155394	7.621888	7.257032	6.906011	6.778835	-7.415710	-6.016970	-4.784062	-3.621790	-2.744609	-1.732315	6.536884	8.824619	7.488784	6.859827	6.509091	6.062096	6.582487	-8.000000	-7.331772	-5.921162	-4.677847	-3.505122	-2.619337	5.616896	8.800000	8.151798	6.725093	6.110092	5.663089	5.870035	5.651333	-8.000000	-7.331772	-5.921162	-4.677847
1	P/PINF	4.280877	4.283356	6.741662	5.254937	5.249883	5.475313	5.833342	6.204017	6.739366	5.533012	5.185579	4.906968	4.663745	4.504467	4.321425	6.777439	5.427925	5.420330	5.683142	6.047929	6.461416	6.775226	5.740199	5.589560	5.238136	4.956012	4.709578	4.548233	7.083252	5.398346	5.602991	5.627623	5.895499	6.302650	6.498022	7.082444	5.740199	5.589560	5.238136	4.956012
	æ	0.848691	0.823095	0.835333	0.753007	0.764760	0.777948	0.794074	0.810695	0.828511	0.955058	0.929917	0.905490	0.881533	0.856834	0.833614	0.847540	0.760861	0.773753	0.786474	0.802873	0.820056	0.841940	0.965000	0.939023	0.914064	0.889823	0.866060	0.841422	0.856996	0.755981	0.769847	0.782100	0.794928	0.811845	0.833189	0.852187	0.965000	0.939023	0.914064	0.889823
	×	3.407707	3.412627	3.392150	3.418794	3.418803	3.420400	3.414833	3.409786	3.404880	3.409680	3.409860	3.412996	3.418375	3.423450	3.432720	3.409617	3.427777	3.429600	3.430650	3.425253	3.420693	3.419958	3.431389	3.429177	3.430693	3.435028	3.441567	3.447665	3.423196	3.439149	3.438159	3.439724	3.440922	3.435982	3.436145	3.431516	3.431389	3.429177	3.430693	3.435028
	POINT	9	~	9		2	ŝ	t	2	•				4	5	0	2	-		1 (7)	. 4	0	. •o	-	•		4	· ·		• •	4		1 (**	4	· ſſ	c	• •		• ~	1.00	• 4
	RAY	64	64	16	17	17	17	11	17	17	50	50	50	50	50	50	17	18	81	18	18	18	18	5	:5	15	15	51	51	18	19	61	61	01			1		5		15
	RFG	2 ^	•	1 17	, m	ŝ	ŝ				•	i N		I N	1	N	1 17	1 (11		1 (11	. ന	1	1 (11)	•	10	• •	• ~	10	• ~	1 (1	م ، (، ۱	•	, 4	, ע) (*	ب ر	• •	10	• •	101

•

•

THREE-DIMENSIONAL AXISYMMETRIC METHOD OF CHARACTERISTICS. INTERNAL CASE.

CASE 14A 12.5 DEGREE CONE M=3.00

	COALESCENCE
PT/PTINF 0.956855 0.9668145 0.96668145 0.96668145 0.975465 0.975465 0.975465 0.975465 0.9766455 0.9766455 0.9766425 0.9766425 0.9766425 0.977693 0.977693 0.977693 0.977269 0.977269 0.977269 0.977269 0.977263 0.97727263 0.9772727263 0.977272727272727272727272727272727272727	0.979994 0.975994 0.972090 0.975344 0.965893 0.965893 0.975998 0.970590 0.971627
MACH 1.998020 1.691241 1.867263 1.867263 1.867263 1.865793 1.8656946 1.8656946 1.787041 1.787041 1.913716 1.913716 1.913716 1.913716 1.913716 1.917693 1.8702135 1.817154 1.817603 1.817603 1.8650338 1.8650338 1.8650338 1.817760 1.9657037 1.817760 1.9657037 1.817760 1.9657037 1.817760 1.9657037 1.8167760 1.9657037 1.8167760 1.9657037 1.8167760 1.9657037 1.8167760 1.9657037 1.8167760 1.9657037 1.8167760 1.9657037 1.8167760 1.9657037 1.8167760 1.9657037 1.9657037 1.8657037 1.8657037 1.8657037 1.8657037 1.8657037 1.8657037 1.8657037 1.8657037 1.8657037 1.8657037 1.8657037 1.8657037 1.8657037 1.8657037 1.865754 1.8557545554 1.855754 1.8557545554 1	1.808341 1.772637 1.772637 1.731900 1.681337 1.882557 1.882591 1.781004 1.778139
DELTA(DEC) -3.505122 4.811986 8.124633 7.382150 5.261805 5.261805 5.472600 4.938302 4.938302 4.938302 4.938302 4.938302 4.938302 4.938302 4.530542 3.708198 8.100000 7.352501 6.121976 5.072893 4.538264 4.538264 4.538264 4.538264 4.538264 7.324509 6.76258 5.716268 5.71600000 5.716268 5.716268 5.716268 5.716268 5.71768 5.71768 5.71668 5.71768 5.71688 5.7176858 5.7176858 5.7176858 5.717685858 5.717685858 5.717685858585858585858585858585858585858585	4.135738 4.135738 3.706921 3.006926 5.5731640 5.5733186 5.5733186 5.5733186 5.5733186
P/PINF 4.709578 7.358410 5.573787 5.573787 5.573787 5.8159550 6.147557 6.3399550 6.147557 6.339793 6.185209 5.799277 7.7630988 5.647528 5.543739 5.543739 5.543739 5.75309 6.185209 6.185209 6.185209 5.75358 5.75328 5.75572 5.75572 5.291590 6.2915904	6.128767 6.479631 6.479631 6.904973 7.465225 5.731884 5.731884 6.329464 6.329464 6.422453
R 0.866060 0.764793 0.764793 0.764793 0.764793 0.764793 0.8678170 0.867814 0.8848177 0.8848174 0.8848177 0.877221 0.877221 0.877221 0.877221 0.877221 0.874448 0.877221 0.874448 0.874448 0.874448 0.759336 0.874448 0.874246 0.958675 0.958675 0.958675 0.958675 0.8816615 0.767246 0.767246 0.767246 0.767246 0.767246 0.767246 0.767246 0.767246 0.767246 0.767246 0.767246 0.767246 0.767246 0.767246 0.767246 0.767246 0.767246 0.767246 0.764903 0.794804 0.794804	0.811439 0.825104 0.825104 0.863958 0.864931 0.762346 0.775108 0.775108 0.807654 0.807654
<pre>X 3.441567 3.4441567 3.4441567 3.4449361 3.4449361 3.4451458 3.4451458 3.4450354 3.4450354 3.4450354 3.4450354 3.4450252 3.4450252 3.4450252 3.4450252 3.4450252 3.4450252 3.4450252 3.4450252 3.4450711 3.44504115 3.445041 3.44504 3.445041 3.44504 3.445041 3.44504 3.44504 3.44504 3.44504 3.44504 3.44504 3.44504 3.44504 3.4450 3.44504 3.4450 3.4450 3.4450 3.4450 3.4450 3.445 3.44</pre>	3.476123 3.478278 3.478254 3.478254 3.472835 3.472835 3.481045 3.481045 3.481088 3.478155 3.488095
L I F M の – こう 4 ら 9 て – こう 4 ら – こう 4 の – こ 4 の – 1 の – こ 4 の – 1 0	チラウアヨーミタチラ
**************************************	, , , , , , , , , , , , , , , , , , ,
ാ ് നെ നെ നെ നെ നെ നെ വ ് പ് നെ നെ നെ നെ നെ നെ നെ വ് ് ് ് നെ നെ ന ഡ ജ	

03/12/65

CASE 14A 12.5 DEGREE CONE M=3.00

PL/PLINF	010100	610716*0	0.974451	0.976200	0.987679	0.986773	0.985795	0.980108	0.966656	0.968120	0.969957	0.971256	0.972411	0.973573	0.975246	0.977920	0.988128	0.987207	0.986242	0.980768	0.965893	0.967418	0.969236	0.970642	0.972061	0.973085	0.974311	0.976472	0.979429	0.987652	0.986699	0.981365	0.966682	0.968583	0.969939	0.971461	0.972741	7973797	0.975270	0.978012	0.980571
MACH ND.		T. (468UU	1.695830	1.642535	1.842225	l. 841264	1.857827	1.599353	1.824671	1.795161	1.789444	1.756930	1.752141	1.710303	1.656595	1.597550	1.835941	1.835079	1.833991	1.578043	1.827157	1.797294	1.791899	1.759209	1.731073	1.715437	1.670630	1.610856	1.576989	1.828798	1.827825	1.574026	1.799638	1.794024	l.761489	1.733213	1.694480	1.675549	1.624282	1.590073	1.573458
DEL TA(DEG)		1+cc16.6	2.601202	1.801929	-7.919299	-7.759764	-7.077285	0.385840	6.534506	5.699114	5.537059	4.628659	3.173500	2.192536	1.391624	0.399980	-8.000000	-7.838638	-7.679592	-0.249388	6.500000	5.669042	5.501841	4.588552	3.800503	2.047626	0.978059	-0.016566	-0.248658	-7.918899	-7.757988	-0.369592	5.631651	5.470769	4.549662	3.757400	2.668764	0.829855	-0.436666	-0.666386	-0.372851
0 / 0 1 NE		6.744879	7.297419	171919171	5.918475	5.921786	5.767165	8.478366	5.950694	6.235120	6.301747	6.630750	6.687148	7.133339	7.746817	8.482055	5.978588	5.980924	5.985071	8.755548	5.923371	6.210320	6.273497	6.603625	6.901930	7.074658	7.578242	8.304037	8.757196	6.041584	6.044761	8.812913	6.183392	6.248952	6.575999	6.875332	7.299449	7.518506	8.129909	8.57720	8.813152
<i>.</i>	×	0.835621	0.854181	0.873721	0.942269	0.915737	0.889556	0.896180	0.770027	0.783024	0.801936	0.816263	0.830367	0.844299	0.863376	0.883710	0.952315	0.925643	0.898868	0.907402	0.765015	0.777740	0.795764	0.810304	0.826630	0.838782	0.852933	0.872704	0.896216	0.935712	0.908797	0.919302	0.772526	0.790430	0.803874	0.820459	0.835036	0.847132	0.861610	0.884785	0.909755
3	×	3.491510	3.487611	3.484679	3.490847	3.489000	3.489111	3.481101	3.490182	3.489576	3.493607	3.493460	3.500048	3.502522	3.499074	3.496881	3.512433	3.510112	3.508644	3.498706	3.500148	3.499451	3.505003	3.503754	3.506116	3.510829	3.513584	3.510791	3.512241	3.531530	3.529588	3.517442	3.509201	3.514859	3.514867	3.516192	3.516465	3.521631	3.524792	3.526057	3.528896
	PUINT	9	7	- 00	,	~		. 0	•	• ~	1 11	4	·	0	•	• • •	-		1 17	• •	·	• ~		• •	·ur	• • c	~	- 60	• •	·	•••	- 01		• •	4 (*	1 - 1	r ur	• •		- 0	5 G
	RAY	23	23		1 4	. 4	54		24	24	. 4	24	. 4	24	24	. 4	55	5	\ \	40	. v . v		, r , r	50	, c , c	, <u>,</u>	1 C	1 C	1 C	, c	0 4 6	, v v v		4 C	2 4	2 C	240	0 4 7 6	24	24	26
	REG	•		• •	• •	10	10		, 4	•		•				۳	• •	10	10	1 (7	ب ر	, 4	.	• •	ה ו	י ר	יי ר	ה ר	ה ו) 0	• •		י ר	י ז ר	יי ה	י ר	ח מ	n r	n n	n n	0.00

Figure 8.- Continued.

4

•

•

1

THREE-DIMENSIONAL AXISYMMETRIC METHOD OF CHARACTERISTICS. INTERNAL CASE.

CASE 14A 12.5 DEGREE CONE M=3.00

PT/PTINF 0.088128	0.987155	0.981971	0.965893	0.967905	0.969302	0.970782	0.972134	0.973454	0.974655	0.976681	0.979396	0.981468	0.987626	0.982603	0.967172	0.968640	0.970167	0.971455	0.972830	0.974281	0.975986	0.978145	0.980517	0.982262	0.982601	0.977806	0.977806	0.977806	0.965893	0.967935	0.969531	0.970845	0.972139	0.973596	0.975592	0.977457	0.979424	0.981460	0.982339
MACH NO. 1.822456	1.821555	1.570021	1.770990	1.796364	1.763460	1.735347	1.696424	1.654686	1.628918	1.603162	1.586574	1.569658	1.815214	1.565953	1.767924	1.765646	1.737194	1.698352	1.656420	1.608105	1.607625	1.599580	L.582794	1.565707	1.565922	1.306637	1.306637	1.304451	1.826091	1.737339	1.739255	1.700020	1.658126	1.609577	1.586916	1.603994	1.595771	1.578811	1.565743
DELTA(DEG) -8.000000	-7.837771	-0.494375	6.50000	5.432450	4.515383	3.715209	2.621566	1.445063	-0.589068	-1.087836	-0.788141	-0.498088	-7.918393	-0.620068	6.291726	4.473904	3.678046	2.574882	1.393296	0.019841	-1.241572	-1.207110	-0.910961	-0.623761	-0.619179	-7.999999	666666°1-	-8.009601	4.700000	5.325401	3.633736	2.533788	1.341595	-0.037522	-0.638112	-1.360036	-1.327461	-1.034245	-0.623113
P/PINF 6.103568	6.105986	8.870533	6.454513	6.22228	6.551993	6.848324	7.273551	7.754711	8.068889	8.401164	8.633884	8.870720	6.168543	8.929529	6.493314	6.525766	6.824851	7.247375	7.729644	8.319306	8.339797	8.458529	8.692158	8.929664	8.929924	12.846466	12.846466	12.884805	5.933067	6.807659	6.799082	7.224619	7.704453	8.295316	8.596011	8.397480	8.517500	8.751811	8.929887
R 0.945931	0.916890	0.931398	0.766961	0.785165	0.798316	0.813801	0.828579	0.843381	0.855479	0.873272	0.898081	0.923523	0.929134	0.943668	0.779825	0.792828	0.808046	0.821613	0.836613	0.851714	0.866946	0.886328	0.911600	0.937503	0.945160	0.943184	0.928909	0.934050	191077.0	0.787433	0.802361	0.815592	0.829314	0.844583	0.863354	0.879909	0.899600	0.925324	0.939206
X 3.553217	3.550836	3.536482	3.519611	3.524594	3.524477	3.527065	3.526221	3.526830	3.532519	3.539956	3.542891	3.545846	3.572351	3.555794	3.534473	3.533971	3.536466	3.536746	3.536235	3.537258	3.547581	3.556968	3.560019	3.563063	3.558142	3.572204	3.572204	3.577926	3.552463	3.543306	3.545755	3.545844	3.546377	3.546244	3.551907	3。564644	3.574273	3.577414	3.565161
POINT 1	2	10	ы	7	ē	4	ŝ	¢	-	80	6	10	ł	11	1	7	÷	t	ŝ	9	7	8	6	10	11	-1	2	4	-1	2	ē	4	ŝ	¢	2	8	6	10	11
RAY 57	57	26	27	27	27	27	27	27	27	27	27	27	58	27	28	28	28	28	28	28	28	28	28	28	28	1	-	2	29	29	29	29	29	29	29	29	29	29	29
REG 2	2	ς η	m	'n	س	m	'n	'n	ŝ	ŝ	c,	'n	~	ĥ	ŝ	ŝ	m	ŝ	'n	m	ŝ	'n	n	n,	m	4	4	4	m	m	'n	ς η	ŝ	γ,	n,	en.	رب	ŝ	e.

								CUALESCENCE																								LOAL FOLGADE	LUALCOUCAUE								
	PT/PTINF	0.966617	0.968876	612020	C7CT/6.0	0.972864	0.914828		669696.0	cfc196.0	0.969588	0.970894	0.972225	0.974035	0.976303	0.978801	226086.0	1/5186.0	0.976340	0.977806	0.977003	0.965893	0.967535	0.969588	0.970894	0.972225	0.974035	0.976303	0.978801	0.980522	0.972750	00+116-0		000116.0	0.910201	0.00000	0.958211	16201610	0.971579	0.973361	0.975468
	MACH NU.	1.794678	1.711119	1.701904	1.659604	1.611015	1.588227		1.762210	1.767692	1.673882	1.661298	1.612268	1.589507	1.584637	1.600173	1.591757	1.578858	1.318920	1.302368	1.319192	1.762210	1.767692	1.673882	1.661298	1.612268	1.589507	L.584637	1.600173	1.591757	1.329700	1.86/16.1		1.332104	1.328082	1.135452	1.729606	1.633366	1.613740	1.590635	1.585854
• 00	DELTA(DEG)	3.735604	4.476816	2.485584	1.296107	-0.095359	-0.697894		4.700000	2.891201	3.320839	1.243542	-0.146228	-0.758401	-0.823571	-1.479577	-1.448296	-1.033204	-8.519188	-8.000000	-8.480235	4.700000	2.891201	3.320839	1.243542	-0.146228	-0.758401	-0.823571	-1.479577	-1.448296	-8.947079	-8.469479		-8.00000	-8.909961	3.846823	1.734714	2.070842	-0.204147	-0.811604	-0.884102
DEGREE CONE M=3	P/PINF	6.230039	7.090180	7.199452	7.682551	8.271402	8.572661		6.541380	6.498040	7.504773	7.658105	8.250610	8.549485	8.631286	8.456771	8.577650	8.752195	12.613644	12.921414	12.617514	6.541380	6.498040	7.504773	7.658105	8.250610	8.549485	8.631286	8.456771	8.577850	12.414102	12.654533		12.395716	12.454388	6.819639	6.889893	7.979693	8.227111	8.529336	8.608416
ASE 14A 12.5 1	~	0.777103	0.796998	0.809642	0.823004	0.836894	0.856041	0.876597	0.771657	0.785909	0.804210	0.816768	0.830247	0.848157	0.869232	0.893086	0.913072	0.927003	0.923190	0.940878	0.927422	0.771657	0.785909	0.804210	0.816768	0.830247	0.848157	0.869232	0.893086	0.913072	0.910341	0.934053	0.912824	0.939272	0.919290	0.780515	0.792294	0.811263	0.823676	0.841342	0.861292
7 7	×	3.561333	3.554519	3.554833	3.555141	3.555929	3.560715	3.568602	3.570716	3.572768	3.563041	3.563802	3.564296	3.570204	3.577401	3.582000	3.591844	3.579543	3.577154	3.585500	3.582059	3.570716	3.572768	3.563041	3.563802	3.564296	3.570204	3.577401	3.582000	3.591844	3.588282	3.589738	3.591261	3.595760	3.599016	3.581549	3.581137	3.571445	3.572563	3.578400	3.586879
	DINT		~	5		5	- 40	-			ı (*	t, i	·	. . C	~	8	6	01	•	ı	• ~	J L	• ~	J (*	1 - 1	۰ ur	<i>.</i> د	2	œ	. 0		-	1	l	~ ~	-	• ~) (f	• 4	F 12	סו
	A A		0.6	06	30	90	30	30	Ĩ	16			1.6		31		I.E		; `	1 (*	יי ר	<u>ء</u>	1.5	1.4			110	1 6	15		• r"	1 4	4	ر	۰ ۲	C 15	3.6	1.0	20	20	32
	() U 8	יי ט ע	• •	، ۱) T		ا م (1 (*	י מ	۳ ۱	1 (1	הח	۳ () (r) (T	۱ ۳	۲ ۳	14	1 1	• 4	•	ה ה	יה ה	יז ו	ה ה	ה ר	יה ר	n (1	יי ר	h 4	• •	- 4	. 1	- 4	• ~	יור	יי	م م	n n	יי הי

Figure 8.- Continued.

03/12/65

. 03/12/65

.

-

-

THREE-DIMENSIONAL AXISYMMETRIC METHOD OF CHARACTERISTICS. INTERNAL CASE.

CASE 14A 12.5 DEGREE CONE M=3.00

PT/PTINF	0.977732	0.979978	0.974392	0.976724	0.975393	0.965893	0.967532	0.968876	0.970989	0.972696	0.974762	0.976906	0.979040	0.973172	0.977806	0.976003	0.974057	0.966537	0.968215	0.969518	0.972138	0.974074	0.976195	0.978268	0.972164	0.977140	0.974784	0.972920	0.965893	0.967182	0.968871	0.970633	0.973548	0.975495	0.977586	0.971274	0.977806	0.976081	0.973718	0.971899
MACH NU.	1.581002	1.596158	1.331309	1.343454	1.331579	1.744706	1.697505	1.688259	1.585842	1.591993	1.586929	1.582192	1.577203	1.309342	1.355560	1.347020	1.309707	1.706427	1.656294	1.639906	1.564245	1.588238	1.583232	1.578396	1.309222	1.359142	1.325586	1.309502	1.707634	1.664868	1.608027	1.617704	1.560727	1.584501	1.579427	1.309058	1.363687	1.338169	1.325492	1.309296
DELTA(DEG)	-0.947601	-1.599603	-9.179201	-8.433612	-9.097837	3.600000	2.682386	0.482860	0.614656	-0.871810	-0.937314	-1.008125	-1.072030	-8.692949	-8.000000	-8.617427	-8.626003	2.430724	1.422487	-0.977601	-0.060654	-0.997466	-1.061321	-1.132531	-8.788451	-8.179443	-8.140574	-8.734197	2.400000	1.165219	-0.046505	-1.647913	-0.193009	-1.121396	-1.185697	-8.873642	-8.000000	-7.698229	-8.243603	-8.829601
P/PINF	8.690424	8.517441	12.376172	12.199742	12.384283	6.717770	7.227331	7.338884	8.569045	8.506418	8.588535	8.667860	8.750954	1.2.738494	1.2.010200	12.130773	12.743721	7.123361	7.694427	7.895909	8.856654	8.565890	8.648246	8.728696	12.727371	11.942485	12.478941	12.732412	7.105662	7.588111	8.274073	8.170825	8.915478	8.625875	8.709351	12.718565	11.875321	12.281018	12.466908	12.722623
œ	0.882641	0.906460	0.902810	0.924638	0.910730	0.772771	0.786840	0.798450	0.818071	0.834600	0.854428	0.874647	0.896252	0.891026	0.935679	0.916172	0.897689	0.778695	0.792930	0.804234	0.829190	0.847636	0.867734	0.888200	0.881782	0.927238	0.903546	0.887168	0.773389	0.784353	0.798618	0.814416	0.842597	0.860890	0.881239	0.873791	0.933559	0.915169	0.893197	0.878071
×	3.594378	3.599621	3.594812	3.605402	3.604415	3.594267	3.589350	3.589289	3.579610	3.586501	3.595066	3.603844	3.611619	3.605000	3.618716	3.610998	3.612636	3.601696	3.596931	3.597019	3.592999	3.603161	3.612021	3.621073	3.612914	3.624510	3.619338	3.619108	3.609730	3.608859	3.604066	3.610731	3.609161	3.620111	3.629239	3.619743	3.632263	3.632789	3.626030	3.624678
POINT	7	8	ŝ	-	2	-1	2	Ś	4	5	9	7	æ	ŝ	1	2	ŝ	ч	2	ŝ	4	5	6	7	4	-1	~	æ	1	2	m	4	ŝ	6	7	4	1	2	£	t
RAY	32	32	ŝ	Q	6	33	33	33	33	33	33	33	33	¢	7	7	1	34	34	34	34	34	34	34	7	8	8	8	35	35	35	35	35	35	35	8	6	6	6	6
REG	ۍ ا	r n	4	4	4	ŝ	r,	ŝ	e	ŝ	τ ή	ŝ	ſ	4	4	4	4	ŝ	'n	ŝ	ň	'n	ŝ	e	4	4	4	4	ŝ	e	'n	Ś	ŝ	r i i	ŝ	4	4	4	4	4

INTERNAL CASE.
CHARACTERISTICS.
METHOD OF
AXI SYMMETRI C

COALESCENCE 0.972898 0.969347 0.965893 0.967735 0.967735 PT/PTINF 0.966511 0.9760801 0.971094 0.975004 0.975004 0.975004 0.976798 0.976798 0.976798 1.323638
1.323638
1.3281960
1.338170
1.328170
1.6096321
1.6096321
1.559665
1.5596551
1.55966531
1.55966532
1.32359565
1.32469171
1.5746551
1.324935
1.324935
1.324935
1.324935
1.324935
1.324935
1.324935
1.324935
1.324935
1.324935
1.324935
1.324935
1.324935
1.324935
1.324935
1.324935
1.324935
1.324935
1.324935
1.324935
1.324935
1.324935
1.324935
1.324935
1.324935
1.324935
1.324935
1.324935
1.324935
1.324935
1.324935
1.324935
1.324935
1.324935
1.324935
1.324935
1.324935
1.324935
1.324935
1.324935
1.324935
1.324935
1.324935
1.324935
1.324935
1.324935
1.324935
1.324935
1.324935
1.324935
1.324935
1.324935
1.324935
1.324935
1.324935
1.324935
1.324935
1.324935
1.324935
1.32493
1.32493
1.324935
1.32493
1.32493
1.32493
1.32493
1.32493
1.32493
1.32493
1.32493
1.32493
1.32493
1.32493
1.32493
1.32493
1.32493
1.32493
1.32493
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249
1.3249 MACH NU. 1.665881 1.616227 1.616227 1.616038 1.653666 1.5557229 1.5557229 1.5567229 1.530674 1.3342902 1.3342902 1.3325380 1.309449 1.349166 1.571166 1.552455 1.552455 DELTA(DEG) 1.130228 1.130228 1.130248 -0.310942 -0.313525 -1.768807 -1.245680 -1 -8.000000 -7.612580 -8.43222 2.40020 2.40000 -0.351189 -0.351189 -0.351189 -0.351189 -0.454278 -1.887987 -1.887987 -1.652913 -7.652913 0.909982 -1.034061 -1.118207 -0.979443 -2.007554 -8.000000 -8.184559 -7.787419 -7.205409 -9.309135 1.000000 0.217086 -1.160783 M=3.00 12.551144 12.197549 12.452758 8.0647245 8.0647245 8.0647245 8.0647245 8.0647245 8.0647245 8.0647245 8.0647245 8.07935522 12.5404442 12.5404442 12.5404442 12.5404442 12.553863 8.5733048 8.5733048 8.5733048 12.012321 8.2733048 8.9710587 8.494104 P/PINF 7.571336 8.558217 8.558217 8.251505 8.974794 8.687555 12.705653 12.209982 12.209982 12.456493 DEGREE CUNE 12.5 144 CASE 3.651461 3.640973 3.629002 3.635648 3.64979 3.650354 3.659373 3.659355 3.654631 3.654884 3.654884 3.654884 3.654884 3.652164 3.666690 .662543 3.647371 とてちらすららららららしょうですらのらすらくでもなです ちょうしょう o とう POINT 1 0 0 0 0 0 0 v 0 4 44 * 4 *****************

Figure 8. - Continued.

03/12/65

104

THREE-DIMENSIONAL

1

i

THREE-DIMENSIONAL AXISYMMETRIC METHOD OF CHARACTERISTICS. INTERNAL CASE.

CASE 14A 12.5 DEGREE CUNE M=3.00

																													COALESCENCE											
PT/PTINF	0.971882	0.974342	0.968049	0.976982	0.975206	0.973760	0.970778	0.968797	0.967170	0.969305	0.971236	0.973327	0.966764	0.977806	0.976153	0.974809	0.971578	0.970336	0.967372	0.967170	0.969305	0.971236	0.965943	0.976973	0.975803	0.972489	0.971177	0.969038		0.977806	0.976658	0.973427	0.972119	0.969923	0.968189	0.965893	0.968771	0.970851	0.966166	0.977519
MACH NO.	1.586404	1.574746	1.315514	1.324870	1.323675	1.314539	1.361595	1.315862	1.549146	1.549047	1.587091	1.582491	1.322177	1.326048	1.325018	1.294844	1.366251	1.328919	1.322378	1.549146	1.549047	1.587091	1.321741	1.326185	1.296408	1.346566	1.333853	1.335452		1.327577	1.297760	1.347733	1.314019	1.340376	1.335069	1.582695	1.545772	1.545611	1.290156	1.299332
DELTA(DEG)	-1.243060	-1.106085	-8.485009	-8.084775	-8.277864	-7.018246	-8.836235	-8.424502	0.304496	0.079855	-1.285638	-1.368183	-8.791702	-8.000000	-8.176397	-7.511233	-8.641531	-7.951543	-8.747576	0.304496	0.079855	-1.285638	-8.863994	-8.090208	-7.410350	-9.137396	-7.757320	-8.266235		-8.000000	-7.324762	-9.029906	-8.255698	-8.068279	-8.341615	-0.700000	0.166103	-0.055327	-7.287860	-7.235223
P/PINF	8.569811	9.740570	12.564994	12.519378	12.517143	12.655986	11.824344	12.568720	9.008872	9.030064	8.555422	8.632281	12.434318	12.509682	12.506226	13.014253	11.757640	12.365241	12.438693	9.008872	9.030064	8.555422	12.431188	1.2.496668	1.2.999884	1.2.094694	1.2.292214	12.238160		12.483435	12.987384	12.086829	12.643646	12.166416	12.233881	8.563772	9.068486	9,090090	12.981132	12.971092
æ	0.825561	0.848691	0.836441	0.919182	0.902331	0.889656	0.859341	0.842119	0.784600	0.802453	0.819475	0.838825	0.825304	0.926022	0.910259	0.898264	0.865916	0.854708	0.829438	0.784600	0.802453	0.819475	0.818331	0.917102	0.906610	0.873272	0.861682	0.842036	0.821548	0.923885	0.913809	0.880909	0.869376	0.848986	0.834241	0.775000	0.798017	0.816075	0.814344	0.920943
×	3.661800	3.667339	3.651843	3.672526	3.669112	3.662329	3.669725	3.658376	3.646464	3.656905	3.668971	3.678879	3.661468	3.680416	3.678300	3.671719	3.678014	3.672839	3.666335	3.646464	3.656905	3.668971	3.667495	3.686220	3.680654	3.687292	3.680903	3.681145	3.671288	3.694065	3.688356	3.696784	3.689814	3.689363	3.686255	3.657946	3.662168	3.672975	3.670934	3.695985
POINT	4	ŝ	6	1	2	ŝ	t	ŝ	•	2	ſ	4	¢	-1	2	£	4	S	9	н	2	ę	2	, 	2	ŝ	4	ŝ	¢	1	2	ŝ	4	ŝ	9	7	2	ŝ	2	1
RAY	39	39	13	14	14	14	14	14	40	40	40	40	14	15	15	15	15	15	15	40	40	40	15	16	16	16	16	16	16	17	17	17	17	17	17	41	41	41	17	18
REG	'n	m	4	4	4	4	4	4	ŝ	ŝ	'n	ŝ	4	4	4	4	4	4	4	œ	۳	ŝ	4	4	4	4	4	4	4	4	4	4	4	4	4	ē	'n	ŝ	4	4

^{03/12/65}

CASE.
INTERNAL
CHARACTERISTICS.
METHOD OF
AXI SYMMETRIC
THREE-DIMENSIONAL

CASE 14A 12.5 DEGREE CONE M=3.00

																				CUALESCENCE																					
	PT/PTINF	0.974233	0.973101	0.970849	0.969121	0.967908	0.967530	0.970342	0.965544	0.977806	0.975033	0.973944	0.971842	0.970056	0.968846	0.967374	0.965893	0.969109	0.964014		0.977806	0.974780	0.972689	0.971070	0.969828	0.968292	0.965818	0.967430	0.961874	0.977674	0.973524	0561/6.0	0.970913	0.969245	0.966759	0.963493	0.961772	0.959732	0.959732	0.959732	0.977806
	MACH NO.	L.348747	1.315429	1.320439	1.340037	1.291121	1.579030	1.542367	1.286114	1.271086	1.349973	1.316649	1.321800	1.320024	1.296474	1.286877	1.638287	1.575315	1.319935		1.372811	1.318081	1.322977	1.321395	1.276180	1.292262	1.320315	1.633971	1.379197	I.341920	1.324362	1.3225/6	1.277919	1.271840	1.325420	1.379211	1.377290	1.171103	1.171103	1.169645	1.310815
>	DELTA(DEG)	-8.938573	-8.148877	-8.570317	-8.141472	-7.131029	-0.830671	0.029798	-7.213564	-8.000000	-8.843192	-8.058237	-8.460460	-8.646053	-6.932510	-7.071238	-2.600000	-0.959355	-8.247902		-8.000000	-7.963637	-8.367246	-8.534451	-7.439154	-6.871310	-8.115839	-2.715431	-10.074808	-7.124442	-8.270066	-8.439779	-7.329151	-7.380139	-7.910354	-9.950872	-10.126744	-4.699999	-4.699999	-4.704359	-8.000000
	P/PINF	12.079858	12.632047	12.516635	12.162043	12.987540	8.624804	9.128572	13.043965	13.480148	12.069270	12.621890	12.506076	12.513531	12.906034	13.055223	7.885418	8.686335	12.437111		11.725276	12.607990	12.496798	12.503089	13.278788	12.972622	12.453894	7.948979	11.431760	12.237520	12.483775	12.493905	13.262514	13.348592	12.379031	11.450779	11.461086	15.092338	15.092338	15.120668	12.773418
	æ	0-887504	0.877468	0.856312	0.841228	0.830943	0.787896	0.811665	0.809250	0.923206	0.894054	0.884452	0.864319	0.848387	0.838506	0.825236	0.773721	0.801015	0.797120	0.895286	0.916553	0.891383	0.871230	0.856404	0.846177	0.832888	0.810504	0.785937	0.780327	0.915199	0.878094	0.863323	0.854858	0.840474	0.817795	0.790388	0.772564	0.771697	0.783049	0.776330	0.916220
	×	3.704966	3.699025	3.698037	3.694534	3.688409	3.674167	3.678161	3.675332	3.698405	3.713079	3.706965	3.707360	3.703028	3.696342	3.691989	3.690986	3.690681	3.685778	3.714602	3.740910	3.714837	3.715394	3.712379	3.704414	3.699934	3.701172	3.708420	3.700414	3.741867	3.723365	3.720438	3.713355	3.707837	3.709523	3.714061	3.707267	3.717814	3.717814	3.721188	3.743038
	POINT	~	J (P	t	Ś	9	T	2	1	Ţ	0	e,	4	ŝ	9	7	-	2	8	1	1	2	ŝ	t	ŝ	9	7	1	æ	1	2	ŝ	4	2	. 9	7	- 00	-	2		
	RAY	a l	81	18	18	18	42	42	18	19	19	19	19	19	19	19	43	43	19	20	21	21	21	21	21	21	21	44	21	22	22	22	22	22	22	22	22	, 1			23
	RFG	• •	r 4	4	4	t.		• ••	4	t	• •	4	4	4	4	4	ŝ	~	4	t	t	4	t	4	4	• •	4	ŝ	4	t	4	t	4	t.	· .1	t.	· .t	· ur	• •	l v	+ +

Figure 8.- Continued.

03/12/65
03/12/65

٠

ŧ

i

THREE-DIMENSIONAL AXISYMMETRIC METHOD OF CHARACTERISTICS. INTERNAL CASE.

CASE 14A 12.5 DEGREE CONE M=3.00

										CUALCOLENCE																		COALESCONCE													
	DT/DTINE		10+016•0		0.070300	000777000	00104.0	04440440	000704 • 0	0.0770.6	0.975672	0.972732	0.971271	0.968694	0.965335	0.963690	0.962048	0.959732	0.961399	150779.0	0.975542	0.972183	0.969597	0.966388	0.964468	0.962919	0.960936		0.959732	0.961962	0.977806	0.976825	0.975069	0.970483	0.967776	0.965518	0.964124	0.960459	0.963427	0.977552	0.976348
	MACH NO.		1 232046		1 27251	1 305115	1.383886	000000-1		1.324894	1.347731	1.281109	1.275140	1.306599	1.363719	1.381845	1.180243	1.168283	1.179824	1.324435	1.305824	1.276873	1.307883	1.364766	1.361536	1.156988	1.178144		1.277168	1.154789	I.325153	1.281987	1.301835	1.309376	1.365669	1.362580	1.158445	1.256677	1.158001	1.282747	1.277893
1	DELTA(DEG)	-7 616207	-8-341146		-7-260046	-8.422040	-9.737108	-10.002898		-8.000000	-7.479299	-7.139087	-7.175034	-8.306312	-10.251980	-9.786302	-4.402714	-4.700000	-4.429820	-8.065436	-6.297386	-7.077230	-8.208223	-10.129045	-10.304380	-4.938016	-4.423581		-6.800000	-4.953687	-8.000000	-6.892715	-6.230755	-8.106250	-10.024688	-10.179174	-4.797203	-7.310636	-4.833509	-6.832323	-6.828249
	P/PINF	12 11 8232	12.480959	13.748368	13.331781	12.739288	11.387960	11.474140		12.529530	12.114742	1.3.230290	13.317177	1.2.727409	11.723351	11.410999	14.951492	15.147164	14.949492	12.527482	12.830937	13.298610	12.716984	11.719041	11.748451	15.419003	14.974759		13.123069	15.447000	12.525072	13.270198	12.894596	12.702705	11.715059	11.744172	15.409559	13.499349	15.407169	13.266460	13.337234
	ď	0.901951	0.870197	0-862342	0.849231	0.824578	0.797048	0.781791	0.902513	0.912950	0.894241	0.869770	0.856779	0.832836	0.802732	0.788501	0.791785	0.771587	0.787149	0.905046	0.895686	0.864273	0.839962	0.810176	0.794040	0.798531	0.782523	0.795197	0.769659	0.790398	0.911062	0.907337	0.890528	0.847045	0.816608	0.801510	0.807577	0.775614	0.801668	0.913816	0.902105
	×	3.751040	3.728435	3.721061	3.716761	3.717307	3.723053	3.719768	3.751698	3.763932	3.756378	3.728707	3.724451	3.726610	3.730726	3.728817	3.726602	3.723557	3.729034	3.769063	3.755381	3.732083	3.734627	3.740635	3.736282	3.733412	3.731454	3.734985	3.738149	3.737249	3.775993	3.767581	3.758824	3.742587	3.749175	3.746211	3.742307	3.744160	3.745128	3.774204	3.770830
	PUINT	2	Ē	4	5	6	7	80	٦	1	2	ŝ	4	ŝ	9	7	2	1	~	1	2	n,	4	ŝ	\$	m,		2	-	~	-1	~	n n	4	ŝ	¢	m	-1	2	-	2
	KAY	23	23	23	23	23	23	23	24	25	25	25	25	25	25	25	2	'n	ŝ	26	26	26	26	26	26	, ,	4	4	ŝ	νļ	27	27	21	27	27	27	ŝ	9	\$	28	28
	K L C	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	<u>م</u>	n :	-n -	4	4	4	4	4	4 1	<u> </u>	n 1	ب	^ 1	Ω.	t •	4	4	4	4	4	<u>م</u> ،	ų	<u>م</u>	t.	4

																JUNICO NCC	CUALLUCTIVE												CUALESCENCE									COALESCENCE				
	PT/PTINF	0.973385	0.968138	0.966414	0.965182	0.959732	0.961624	0.964699	0.977806	c10116.0	0.974584	0.971019	0.96/292	0.966220	0.960904	+02024.0		261969.0	0.961940	0.963698	0.9//806	0.977075	0.974584	0.971019	0.971464	0.960700	0.963009	0.968735		0.977806	0.975281	0.972108	0.972752	0.959732	0.961676	0.968075	0.970228		0.977806	0.972787	0.973532	- - - -
	MACH NO.	1.333272	1.306778	1.363489	1.161072	1.234468	1.258489	1.160754	1.239575	1.278668	1.309346	1.388947	1.364610	1.163889	1.236477	1.260081		1.283865	1.238242	1.261886	1.239575	1.278668	1.309346	1.388947	1.378322	1.285209	1.240226	1.285170		1.233421	1.309942	1.364958	1.350294	1.285216	1.286763	1.264510	1.260462		1.297470	1.365260	1.348580	
• 00	DELTAIDEGI	-7.236413	-9.916294	-10.072920	-4.708846	-6.800000	-7.190704	-4.732876	-8.000000	-6.767345	-7.836993	-9.011247	-9.962644	-4.616782	-6.678994	-7.089352		-8.000000	-6.576898	-6.984899	-8.00000	-6.767345	-7.836993	-9.011247	-8.677085	-7.894368	-6.471833	-6.176576		-8.000000	-7.772669	-9.615476	-9.152184	-8.000000	-7.785573	-5.661477	-6.797392		-8.000000	-0.545720	231210 0-	L01110*6-
EGREE CUNE M=3	141070	17 220022	11 707419	11.740205	15.274716	13.893775	13.482991	15.373264	14.059879	13.333202	12.756898	11.383900	11.732555	15.335810	13.873735	13.468711		13.004963	13.856329	13.450755	14-059879	13.333202	12.756898	11.383900	11.559885	12.994433	12.835146	13.103816		14.175045	12.755718	11.785251	12.035689	12.981228	12.980312	13.464397	12 567745		702200 61		11. (88)44	12.0131
SE 14A 12.5 D	1	R 6 672200	0.012016	110570°0	0.015307	0.768221	0.784760	0.811335	0.911683	0.908633	0.882726	0.846368	0.814397	0.823137	0.77776	0.792653	0.820898	0.766361	0.786016	0.800516	0.911683	008633	0.00010	0.006160	0.051268	010277 0	0.110116	0.831340		0.010535	0.888904	0.855201	0.862371	0 764673	0.781445	0 0 0 2 4 5 6 6 6	0.01010	010148.0	0.889586	0.905957	0.860803	0.869180
CA		×	3.770933	3.12/001	00/4C/ C	3.149900 2 768631	2 752174	751077	2 772025	20116062	007111.C	2. 788530	2763270	3 757585	3. 757237	3.760950	3.758684	3.763655	2 764847	3 768605		20711.6	0.4111.0	201201.07	5. 100030U	3.150211 7.77777	3. 111 UT	3.112411		3.11491U	700460 C	000036	0°700000	040661.6	507111°5	3.119131	66TZN8 6	3.809267	3.790418	3.808606	3.807537	3.802208
		POINT	ŝ	4 1	<u>~</u> '	~ -	-4 (4	^ -	-	20	n 4	r u	0 4	+ -	• •	5 6	n -	- 1 (v r	n <i>-</i>	- 1	7 .	- 1	t.	4.	-	(N (n ,			2	n .	t .		2	Ē	4	-1	-1	N	Υ
		RAY	28	28	28	01	- 1	~ 1	- 00	67	67	67	62	5 r V	~ a	0 0	0 0	• •	יי	, (י י	29	29	29	29	6	10	10	10	30	31	16	31	10	11	11	11	11	32	EE .	33	11
		REG	4	4	4	ιΩ i	יע	n (۰ م	4	4	4	t .	3 1	n u	n u	n .	n u	n	n 1	n	4	4	4	4	ŝ	ų	ŝ	ۍ	4	4	4	4	S	ŝ	ŝ	ŝ	5	• •	• •	• •	r un

THREE-DIMENSIUNAL AXISYMMETRIC METHOD UF CHARACTERISTICS. INTERNAL CASE.

03/12/65

Figure 8. - Continued.

CASE.	
INTERNAL	
CHARACTERISTICS.	
METHOD OF	
AXISYMMETRIC I	
THREE-DIMENSIONAL	

CASE 14A 12.5 DEGREE CONE M=3.00

•

. 03/12/65

	CDALESCENCE	CDALESCENCE
PT/PTINF 0.9660715 0.9660715 0.966209 0.974823 0.974823 0.975924 0.955131 0.965131 0.975627 0.97594	0.975979 0.975979 0.975979 0.964052 0.966473 0.966473 0.965473 0.965755 0.955755 0.975979 0.975979 0.975979	0.957722 0.95772 0.957328 0.957477 0.971011 0.971076 0.975979 0.975979 0.966293 0.966293 0.966293 0.966293 0.966293 0.966293
MACH NO. 1.286766 1.3086366 1.239487 1.239487 1.239487 1.239487 1.2808854 1.2808888 1.2283988 1.2283988 1.2283988 1.2249487 1.2249487 1.2249467 1.2249147 1.2249147 1.22491467 1.22491467 1.22491467 1.22491467 1.22491467 1.22491467 1.23303667 1.23303667 1.23303667 1.23303667 1.23303667 1.23303667 1.23303667 1.23303667 1.23303667 1.2330367 1.23303667 1.23303667 1.23303667 1.23303667 1.23303667 1.23303667 1.2330367 1.233057 1.2330567 1.233057 1.233057 1.233057 1.233057 1.233057 1.233057 1.233057 1.233057 1.233057 1.233057 1.233057 1.233057 1.233057 1.233057 1.233057 1.233057 1.233057 1.233057 1.235	1.291437 1.291437 1.281437 1.284423 1.308604 1.284714 1.284714 1.284479 1.283608 1.284479 1.248094 1.248094 1.248094	1.289625 1.289408 1.289479 1.289479 1.200619 1.200619 1.204315 1.299505 1.299505 1.299505 1.202355
DELTA(DEG) -7.888978 -6.953248 -6.953248 -6.285607 -6.285607 -6.733840 -9.072492 -9.072492 -7.044602 -7.044602 -7.278275 -6.971139 -9.072492	-7.999999 -7.9999999 -8.009051 -7.142751 -7.613572 -7.511306 -7.75920 -7.75920 -7.75920 -7.75920 -7.75920 -7.75920 -7.75920 -7.75920 -7.75920 -7.75920 -7.75920 -7.971138 -6.943370 -6.949370	-8.00000 -7.775920 -7.75920 -7.768913 -7.791398 -6.942050 -8.000000 -7.742582 -8.650226 -7.7425812 -7.7425812 -7.7425812 -7.7625812 -7.05812 -7.05812
P/PINF 12.967293 13.944015 13.944015 13.956497 12.032796 12.412716 12.952485 12.952485 13.109481 13.939765 13.837455 13.642550 12.412716	13.090233 13.1260133 13.1260133 13.1098219 13.098519 13.0985113 13.098619 13.3938619 13.837453 13.856631 13.256031 13.256031 13.256031	12.295726 13.085313 13.085313 13.99619 13.99619 13.99619 13.9712735 14.000219 14.797046 14.797046 13.549711 12.745988 13.550223 13.520223
R 0.772214 0.811412 0.836856 0.8848266 0.887883 0.887883 0.887883 0.8843876 0.887583 0.887583 0.887583 0.887583 0.887583 0.887583 0.887683 0.887683 0.887683	0.8763311 0.876331 0.876333 0.876333 0.826994 0.826994 0.881588 0.881588 0.881588 0.8843988 0.8865213 0.8968213 0.8968213 0.8968213 0.8970802	0.754342 0.801588 0.801588 0.84588 0.844437 0.892054 0.892054 0.897407 0.868582 0.868582 0.868582 0.834507 0.834507 0.834507 0.834507
X 3.785325 3.811627 3.811627 3.812635 3.815652 3.815652 3.815696 3.81713 3.81569 3.817439 3.817444 3.817439 3.817439 3.817439 3.817439 3.817444 3.817439 3.817444 3.817439 3.817449 3.817449 3.817449 3.817449 3.817444444444444444444444444444444444444	3.827744 3.827744 3.822506 3.822506 3.822506 3.8235506 3.8335504 3.8335540 3.8333912 3.8333915 3.833355 3.833355 3.833355 3.83345468 3.8345468 3.8345468 3.8345468 3.8345468 3.8345468 3.8345468 3.8345468 3.8345468 3.8345468 3.8345468 3.8345468 3.8345468 3.8345468 3.8345468 3.8345468 3.834548 3.834548 3.834548 3.8345468 3.834548 3.8345468 3.8345468 3.8345483.834548 3.834548 3.8345485483.834548 3.83454854854548545485454546555555	3.848787 3.848787 3.88467912 3.8846557 3.8846557 3.858196 3.858196 3.858196 3.858196 3.857038 3.857038 3.857038 3.857038 3.857038 3.857038 3.857094
5 10 7 1004151084500. 7 100415	- ろー こう チョ こう チョ こ	ーこうゆうーこーこしこうう
RAY 122 123 123 123 123 123 123 123 123 123		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
ი ლ ეირია აკირა ი ი ი ი ი ი ი ეირი ი აკი ი ი ი ი ი ი ი ი	o o o o o o o o o o o o o o o o o o o	ດທຸທູທູດດູດດູດູດູດູດູດູດູດູດູດູດູດູດູດູດ

THREE-DIMENSIONAL AXISYMMETRIC METHOD OF CHARACTERISTICS. INTERNAL CASE.

CASE 14A 12.5 DEGREE CUNE M=3.00

	COALESCENCE																																								
PT/PTINË		0.975979	0.972763	0.959732	0.961701	0.968743	0.968801	0.975179	0.971778	0.960684	0.963977	0.964005	0.975979	0.974298	0.967178	0.959732	0.963024	0.963033	0.975111	0.969912	0.966399	0.962041	0.962058	0.975979	0.970823	0.969296	0.965459	0.962058	0.962058	0.962058	0.962058	0.971756	0.970267	0.968399	0.965443	0.965470	0.962058	0.964950	0.971756	0.970267	
MACH NO.		1.247285	1.263757	1.271751	1.300039	1.270101	1.262583	1.246917	1.263550	1.272456	1.285269	1.285086	1.247784	1.246675	1.278471	1.271722	1.257672	1.257615	1.247544	1.261248	1.251292	1.256819	1.249106	1.248637	1.262050	1.234138	1.250231	1.256717	1.246880	1.246880	1.245555	1.263048	1.235155	1.232999	1.250394	1.240519	1.236951	1.240318	1.263048	1.235155	
DELTA (DEG)		-8.00000	-7.828744	-8.000000	-8.572507	-7.963104	-8.160408	-8.085477	-7.925395	-7.921240	-8.827837	-8.831012	-8.000000	-8.181347	-8.776307	-8.000000	-8.177639	-8.178620	-8.094040	-9.027382	-8.123921	-8.256285	-8.457939	-8.000000	-8.931385	-8.374992	-8.192576	-8.258062	-7.999999	-7.999999	-8.006380	-8.828251	-8.277911	-8.442839	-8.198524	-7.938595	-8.000000	-7.981919	-8.828251	-8.277911	
D D INE		13.890482	13.543282	13.219163	12.748928	13.372900	13.509364	13.885889	13.533310	13.219723	13.037706	13.041317	13.881247	13.877820	13.201665	13.219679	13.517396	13.518543	13.873341	13.549061	13.680879	13.519009	13.659170	13.865481	13.547224	14.038361	13.686923	13.521094	13.699739	13.699739	13.723915	13.542120	14.033499	14.046533	13.683725	13.865114	13.881674	13.861349	13.542120	14.033499	
	7 2122333	0.842348	0.854123	0.752354	0.767802	0.824702	0.825098	0.882677	0.849222	0.758970	0.783208	0.783400	0.890330	0.872547	0.806468	0.750658	0.775023	0.775084	0.880207	0.828128	0.799454	0.766562	0.766672	0.888216	0.835581	0.822129	0.791081	0.766672	0.765838	0.772582	0.768240	0.843386	0.829999	0.813591	750057.0	0.791173	0.745238	0.787022	0.843386	0.82000	
, ,	Y STOCK	3.873200 2 805557	3.876865	3.862551	3.864104	3.857337	3.857756	3.900852	3.882550	3.869441	3.881390	3.881605	3.908443	3.906374	3.906992	3.874294	3.886133	3.886197	3.913993	3.930476	3.911003	3.890853	3.890968	3.971950	3.938350	3.933735	3.915610	3.890968	3.896900	3.896900	3.899275	3.946582	3.041402	2 028180	015680	2 015560	110110 5	110116.0	2.71177 2.066587	2010120 0	9.44140
	ININA		- 0	J	• ^	1 (*) r	۱	• ^	4	• ^			2	1 17	۰ <i></i>		1 -1	•	• ^		۱	• •	-	• ~		4	r uf	\	• •	J L	4	• •	,	n 4	• •	v -	- 1 (7.		7
	KAY	.or						- a	5 a	2	9 G 1 C	• «	• •	. 0	. 0	61		. 0	01	01			10	2		12		 -		• -	- 0	1 2	4 -	77	77	71	2	n (n (77	71
	REG	۰۵	0 1	0 · C	י ר	י ר	• •	.	. .	יכ	` '	• •	.	, c) (. .	1.5	.	,	.	0.0	י כ	• •	⊳ 4	0-4	5 4	, c	5 4	0 r	• •	- 1		ο.	0 \	0	0 1	~ '	-	-	0	٩

Figure 8.- Continued.

03/12/65

INTERNAL CASE.
CHARACTERISTICS.
METHOD OF
AXISYMMETRIC /
THREE-DIMENSIONAL

CASE 14A 12.5 DEGREE CUNE M=3.00

, 03/12/65

ł

COALESCENCE	CUALESCENCE
PT/PTINF 0.968399 0.968399 0.968432 0.968432 0.967996 0.975979 0.975979 0.975979 0.975979 0.965965 0.965903 0.965903 0.965903 0.975979	126314.0
MACH NU. 1.229999 1.223267 1.223267 1.223269997 1.2281705 1.2281705 1.2281705 1.22813705 1.2215965 1.22139659 1.22135657 1.2215086 1.2215086 1.2255273 1.2255273 1.22552938 1.22552938 1.22552938 1.22552538 1.22552538 1.22552538 1.22552538 1.22552538 1.22552538 1.22552538 1.22552538 1.22552538 1.2255254 1.22552538 1.2255254 1.22552538 1.2255254 1.22552554 1.22552554 1.22552554 1.2255554 1.2255554 1.2255554 1.2255554 1.22555554 1.22555554 1.22555554 1.225555554 1.225555554 1.225555554 1.225555554 1.225555554 1.225555554 1.225555554 1.2255555554 1.2255555555555555555555555555555555555	1.235707
DEL1A(DEC) -8.4(A (DEC) -8.4(A (DEC) -8.4(A (DEC) -7.5(B 120) -7.5(B 120) -8.5(3 1911 -8.5(3 1911 -8.5(3 1911) -8.5(3 1911) -8.5(3 1910) -8.5(4 33552 -8.5(3 160000 -8.2(4 554 -8.2(4 554 -8.2(4 554 -8.2(4 554 -8.2(4 554 -7.3)00000 -7.3)00000 -7.3)000000 -7.3)000000 -7.3)000000 -7.3)000000 -7.3)0000000 -7.3)0000000 -7.3)000000000000000000000000000000000000	-6.373320
P/PINF 14.026533 14.0265333 14.228766 14.0215266 14.02152669 14.025102 14.025102 14.225336 14.225336 14.225336 14.2223049 14.223049 14.1223049 14.523049 14.533637 14.633393 14.640335 14.640335 14.6233637 14.6253637 14.6253637 14.6253637 14.6253637	14+091311
R 0.813591 0.813591 0.813906 0.764149 0.764149 0.8138263 0.878265 0.878265 0.878265 0.8782856 0.763306 0.763306 0.763306 0.763306 0.763306 0.763306 0.775371 0.875371 0.875371 0.875371 0.875371 0.875371 0.875371 0.875371 0.875371 0.875371 0.875371 0.875371 0.875371 0.875371 0.875371 0.875371 0.875423 0.875423 0.8671472 0.8671472 0.8671472 0.8671472 0.8671472 0.8671472 0.8671472 0.8671472 0.8671472 0.8671472 0.8671472 0.8671472 0.8671472 0.8671472 0.8671472 0.8671472 0.8671472 0.8671472 0.8671472 0.875423 0.8671472 0.875423 0.875423 0.8671472 0.875423 0.876423 0.8764444 0.876444444444444444444444444444444444444	0.869373 0.876422
X 3.938180 3.938180 3.938180 3.949417 3.949417 3.945866 3.945866 3.945866 3.945866 3.945866 3.945866 3.953552 3.953552 3.953552 3.953555 3.953555 3.953555 3.953555 3.953555 3.953555 3.953555 3.953555 3.953555 3.953555 3.953555 3.953555 3.953555 3.953555 3.953555 3.9535555 3.9535555 3.9535555 3.9535555 3.9535555 3.9535555 3.9535555 3.9535555 3.9535555 3.9535555 3.95355555 3.95355555 3.9535555 3.9535555 3.95355555 3.95355555555 3.95355555 3.9535555555555	3.992454 3.997301
2 N N N N N N N N N N N N N N N N N N N	4
₭	16 8
し し ののてててのののててててののてててののでです。 そ	0

END OF BODY HAS EEEN REACHED. CASE TERMINATED.

Figure 8. - Concluded.

Чα	tm l	Q' ∩ A' <		, , , , , , , , , , , , , , , , , , ,	9 1	- [[-	-89 40 40 40 40 40 40 40 40 40 40 40 40 40	5000	0100		
		3.400 7.77	3.750	.750 .772 .768		0.00	3.025 3.375	.997 973	-2.0	5•0 5	
:0NE M=3.0C	0.0	3.375	3.725	.7715 .7715 .7715	10.2	+•- -6.8	2.975 3.325	• 975 • 979	-1.5 -6.3	12.5	
DEGREE C		3.350	3.700	.7405 .7675 .773	10.85	20.7 -4.7	2.925 3.275	984	-1.1 -5.3	5.25	
14A 12.5	23.3	3.325	3.500 3.675	.7355 .765 .75		6.7 -2.6	2.875 3.225	786	- • 7 - 41 - 14	2.60	
CASE	16.0 24.0	3.300	3.475 3.650	.730 .7615 .7515	12.15	7.3	2.825 3.175	1.000 .990		2.75	
	23.0 1.4	5. 2.375	3.450 3.625	4.000 .526 .7575	• (14 • 7325 12•5	1.0 1.0	2.775 3.125	4.000 1.000 .993	.876 0 -3.1	0.02216	
	0.0	0.000001 0.	3.425 3.600	3.775 0 .754	.775 .765 12.5	€ 15.00 14.00	-8.0 2.375 3.075	3.425 1.000 .995	.966 0 -2.5	-8.0 0.1	

Figure 9.- Sample input.

03/12/65 Internal Formula Number(S)
I
SOURCE STATEMENT
ı
NUMBER
) FORMULA
EF3150 External

.

Figure 10.- Sample plot program.

, 33

, 32

¢

	EF3150 External formula number - Source Statement - Intern	03/12/65 Al Formula Nu	JMBER (S	~
	iv=(szxi))—xwin)/sfx(])	043	,42	
	JA-132ALL/-ANLWY 31 ALLY PAN PSCALFIDREX[]].ORGY(J).SFX(J).SFY(J).JX,0,XMIN,0,NTAPE)	SPLOT044	, 43	
	DXP=DRGX(1) + SZX(1)/SFX(1) +1.0	640 470	5 t t	
	0XM=0XP+1.0	240	44	
	DO 49 J=2,4,2	048	.47	
	UTMEUKGY(J) + TRINIJ JIOTIJ J	049	,48	
	UTTELOLITE - TAINIG 111 011101	050	,49	
	CALL PSCALE(DXP,ORGY(J+1),SFX(J+1),SFY(J+1),0,JYP,0,YMIN(J+1),	051	c L	
	I NTAPE)	240	nc '	
	CALL PSCALE(DXM,DYM ,SFX(J),SFY(J),0,JYM,U,YMINUJ),	054	.51	
07	CONTINUE CONTINUE	SPLOT055	, 52	, 53
32	RETURN	SPL01056	• • • • •	
31	K=K-1		, , , , , , , , , , , , , , , , , , ,	53
	WRITE (6,101)K	SPL0T059	5.65	
•	CALL EXII 15 [YV-57Y1]1] 34.34.32	SPL07060	• 60	
2,4	IF (AA-SEALLY STRUTE STRUCE) IF (VV-C7V1)) 35.35.37	SPL01061	,61	
32.4	IF (XX .LT. XMIN) GO TO 32	062	162	• 63
	[=[+]			
	XX=(1)X	5PLU1064	100	
	۲ (I) × ۲	SPL01005	.68	
ì	<pre>IF (I-100) 32,36,36</pre>	SPL01067	• 69	
ŝ		SPLOT068	,70	
	RETURN	SPL01069	27	
4	CALL PLOTWS(ORGX(1),ORGY(1),SFX(1),SFY(1),X,Y,I,NTAPE,17,N)	SPLOTO70	. 73	
	[=0	SPL0T072	• 74	
٦		SPLOT073	, 75	
D	XC([C)=XX	SPL01074	.76	
	IF (XX-SZX(2)) 33,33,38	SPLUI 075		
38	XC(IC)=52X(2)		100	
33	YMC(IC)=YY	SPL01018	.80	
•	<pre>[F (YY-SZY(Z)) 32,32,40</pre>	SPL01079	, 81	
4	THU(11)=341(2) Co to 23	SPL0T080	, 82	
2	90 10 JC YPC(1C)=YY	SPL0T081	69.	
•	IF (YY-SZY(3)) 39,39,41	SPLUI UBZ	, 04 , 85	
4 F	YPC(IC)=SZY(3) IF (IC-500) 32,42,42	SPL01084	,86	

•58

• 64

Figure 10. - Continued.

I

i

	EF3150 EXTERNAL FORMULA NUMBER - SOURCE STATEMENT - INTER	03/12/65 Hal Formula	NUMBER(S)
42	CALL PLOTWS(ORGX(2), ORGY(2), SFX(2), SFY(2), XC, YMC, IC, NTAPE, 15, N)	SPLOT085	,87
	CALL PLOTWS(ORGX(3),ORGY(3),SFX(3),SFY(3),XC,YPC,IC,NTAPE,I6,N)	SPL01086	, 88
		SPL01087	,89
1	G0 T0 32	SPL01088	• 90
æ	[A=]A+]	SPL07089	. 91
	XA(IA)=XX	SPL0T090	, 92
	IF (XX-SZX(4)) 43,43,44	SPLOT091	. 93
4	(1) = 22X(4)	SPL0T092	, 94
4		SPL0T093	, 95
	IF (YY-SZY(4)) 32,32,46	SPL0T094	. 96
46	YMA(IA)=SZY(4)	SPLOT095	76.
	G0 T0 32	SPL0T096	, 98
6	YP4(IA)=YY	SPL01097	· 99
	<pre>LF (YY-SZY(5)) 45,45,47</pre>	SPL01098	.100
47	YP4(IA)=SZY(5)	SPL01099	.101
4 0	IF (IA-500) 32,48,48	SPLOTIOO	,102
48	CALL PLOTWS(ORGX(4),ORGY(4),SFX(4),SFY(4),XA,YMA,IA,NTAPE,15,N)	SPLOTIO1	.103
	CALL PLOTWS(DRGX(5),ORGY(5),SFX(5),SFY(5),XA,YPA,IA,NTAPE,I6,N)	SPL0T102	,104
	I A=0	SPLOT103	,105
001	60 TO 32	SPL07104	,106
101	FORMAT(16HOTHERE IS (ARE) I1,25HFILE(S) ON THE PLOT TAPE.)	105 SPL07106	
	END	SPL07107	,107

.

.

•

Figure 10. - Concluded.

	EF3148 External formula number – Source Statement – Intern	3/12/65 L FORMULA NI	UMBER(S				
51 B.10B	NOGO						
\$1BFTC	EF3148 NODECK	100					
	SUBROUTINE CBODY(1,X,R,DR)	EF314002					
	DIMENSION_XRC(14), RRC(14), THC(14), VV(23), JN(3)	EF314003					
	60 TO (1.2.3.4).I	EF314004	.1				
-		EF314005	• 2				
1		EF314006	6.				
ſ	JJ-7 READ [5.100] (XRC(K).K=J.JJ).RRC(J).(THC(K).K=J.JJ)	EF314007	• •	•5	Ģ.	.7	8
•			• 10	,11	,12		
-	TE (XBC(11) .GT. 0.0) GO TO 6	EF314008	,13	,14	,15		
•		FF314009	.16				
		FF314010	. 17				
		EE214011	81.				
٥		EF314012	0				
	X=XKC[JJ]			16			
	IF (I., EQ. 3) X=XKC(8)	CLJL7013	23	171	176		
	00 6 K=14C						
	THC(K)=TAN(THC(K)+CV)	EFJ14017	• •	č	•		
	IF (K.EQ.I .OR. K.EQ. 8) GO TO 9	016	52.	• 26	174		
	RRC(K)=0.5+{THC(K)+THC(K-1))+(XRC(K)-XRC(K-1))+RRC(K-1)	EF314017	, 28				
	DX=0.24 (XRC(K)-XRC(K-1))	EF314018	,29				
	xx=x6((K-1)	EF314019	,30				
		EF314020	.31				
	Rx=_0_5e(THC(K)-THC(K-1))/(XRC(K)-XRC(K-1))+(XX-XRC(K-1))=+2	EF314021					
	+ (X - X + C + C + C + C + C + C + C + C + C +	EF314022	, 32				
		EF314023	,33				
α		EF314024	,34	, 35			
		EF314025	,36	,37			
•		026	,38				
		EF314027	• 39				
		EF314028	• 40				
2	1=2	EF314029	.41				
ł	(T) N(T) (T)	EF314030	, 42				
13	DD 10 K=1.JJ	EF314031	• 43				
	M=K	EF314032	+ + + +		ŗ		
	IF (X .LE. XRC(K)) 60 TO 12	EF314033	• • • •	•	141		
10	CONTINUE	EF314034	• 48	• 49			
: -	DD= (THC(M)-THC(M-1))/(XKC(M)-XKC(M-1))	EF314035	, 50				
•	DD] = X - X R C (M - 1)	EF314036	,51				
	<pre>getuine = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 =</pre>	EF314037	, 52				
	DR= DD+DD1 + THC(M-1)	EF314038	• 53				
	RETURN CONTRACTOR	EF314039	• 54				
ſ		EF314040	, 55				
•	1 = 1	EF314041	,56				

Figure 11.- Sample body program.

EF3148 External formula number	SOURCE STATEMEN	'	03/12/65 Internal Formula	NUMBER(S
GOTO5 4 J=9 JJ≭JN(3)			EF314042 EF314043 FF314044	5 8 5 8 6 9
GD TO 13 100 FORMAT(TF10.6 / F10.6 / 7F10.6)			EF314045 EF314045	60
END			047	• 61
EF3149 External formula Number -	SOURCE STATEMENI	I N	03/12/65 Internal Formula	NUMBER(S)
SUBROUTINE ABODY(I,X,R,DR) K=1+2			EF314002 FF314003	
CALL CBODY(K,X,R,DR)			EF314004	24
RETURN FND			EF314005	
				+ +

Figure 11. - Concluded.

(b) Deck EF3131 main program.

new region

Figure 12. - Continued.

(c) Deck EF3132 subroutine BODY.

(d) Deck EF3133 subroutine FLOW.

(e) Deck EF3134 subroutine JUGGLE.

(f) Deck EF3135 subroutine PUNT.

(g) Deck EF3138 subroutine SHOCK.

Figure 12. - Continued.

(h) Deck EF3139 subroutine CONIC.

Figure 12. - Continued

(k) Deck EF3142 subroutine FLINT.

(1) Deck EF3144 subroutine ACRAY.

(m) Deck EF3145 subroutine CUBIC.

Figure 12. - Continued.

(o) Deck EF3147 subroutine BSINT.

Figure 12. - Continued.

Figure 12. - Concluded.