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A MODIFIED THEODORSEN E-FUNCTION AIRFOIL DESIGN PROCEDURE

By Raymond L. Barger

Langley Research Center

SUMMARY

The Theodorsen theory of airfoil design for incompressible flow can be used with

the modifications proposed in this paper to design airfoils that satisfy a much wider vari-

ety of pressure variations than are permitted by the original Theodorsen procedure.

Several examples illustrating this method are computed and discussed.

INTRODUCTION

A number of methods are available for the design of airfoils for low speed applica-

tion. (See refs. 1 to 3 and the references therein.) The E -function method of Theodorsen

(ref. 4) has a number of desirable features, not all of which are shared by other methods.

With this method it is possible to specify not only the form of the pressure distribution,

but also various combinations of characteristic parameters such as the design lift coeffi-

cient, the ideal angle of attack, the angle of zero lift, the location of the aerodynamic cen-

ter, and the pitching moment about the aerodynamic center. Since these parameters are

expressed simply in terms of E and its conjugate function 4, the designer can control

them in the design process.

First, an airfoil having a pressure distribution that roughly approximates the one

desired is selected; then a modification to the pressure distribution is prescribed and the

corresponding change in airfoil coordinates is computed. The problem that arises in

applying the Theodorsen method is to find a pressure distribution modification that approx-

imates the one desired and also satisfies two required mathematical constraints. In the

present paper this problem is handled by a device that allows small modifications to be

made in the pressure distribution almost arbitrarily, but there.is a small perturbation in

the pressure distribution on other regions of the airfoil. The Theodorsen design analysis

is simple and direct in application when this procedure is used.

SYMBOLS

A proportionality factor (see eq. (8))

a arbitrary scale parameter



c airfoil chord

ci airfoil lift coefficient

cp airfoil pressure coefficient

PS=(v)2

R, cp polar coordinates of exact-circle transformation of airfoil

r, 8 polar coordinates of near-circle transformation of airfoil

V undisturbed free-stream velocity

v local velocity

X=x-x
0

x,y rectangular coordinates of airfoil in physical plane

x o  value of x at leading edge of airfoil

a angle of attack

A increment

E discontinuity in E -function due to failure to satisfy constraint (see eq. (11))

E function relating angular coordinates of near-circle and exact-circle airfoil

transformations

EA error in integral of variation of E-function due to failure to satisfy constraint

a,E) aa E-functions adjusted to satisfy constraints

EN value of E at airfoil leading edge

e o(0) computed approximation to desired E -function before adjustments are made

to satisfy constraints
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ET - value of E at airfoil trailing edge

4P function relating radial coordinates of near-circle and exact-circle airfoil

transformations

po average value of -

A prime with a symbol indicates derivative with respect to 0.

An asterisk with a symbol denotes dummy integration variable.

THEORETICAL CONSIDERATIONS

The Theodorsen airfoil theory (ref. 3) involves a conformal transformation of the

airfoil (defined by rectangular coordinates x,y) into a shape approximating a circle (see

fig. 1). In the transformed plane this near circle is described by polar coordinates r,0.

The approximate circle is then transformed into an exact circle having coordinates R,cp.

The function 4, and the constant to are defined by r = ae o and R = aeo, respec-

tively. Theodorsen shows that ,o is the average value of 4', that is,

1 27
/o = Y , d<

and that the functions 4 - /o and E p - 0 are related by the equations

1 2~ * - ()
e 27 = cot p(

4 - 2-- E cot 2 d4p* (2)

The function 4, is directly related to the airfoil coordinates in the physical plane

by

x = 2a cosh p cos 0 (3a)

y = 2a sinh , sin 0 (3b)
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With the use of these equations, 4/ can be written

= In + (4)
2a cos + 2a sin 0)

The relation between 0 and the airfoil coordinates (see ref. 5) is given by

2 sin2  = k + k2( (2 (5a)

where

k = 1 2 2(5b)

Expressions (4) and (5) are sufficient to compute V1 as a function of 0. Then e (0) is

obtained from k(0) by replacing yp* and (p in equation (1) with 0* and 0, respec-

tively. Henceforth in this paper, E will refer to E(8) which, according to reference 6,

is a close approximation to the exact function defined by equation (1). This approximation

yields a very slight error in the velocity equation; that is,

v [in(a + E + 0) + sin(a + ET)(1 + )e (6)
- = (6)

V (sinh2 4 + sin2 0)(1 + 42)

In reference 4 Theodorsen argues that the quantity

Ps = = (i - cp) (7)

can be written

Ps = A(1 + E')2  A(1 + 2e') (8)

where A is a function of position only. Then

Ap s =2 ACp 2A E' = 2A dAE (9a)
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and

Ap 2A d AE
_P5  do 2 d AE (9b)

Ps A(1 + 2') do

Solving for d AE and integrating gives the variation in E as

AE () = 8 As do (10)

where 81 is the initial angular coordinate of the region of change. The error in this

approximation arises primarily in equation (9), in which the quantity A does not remain

constant when E is varied, as assumed. However, A is not as sensitive to variations

in E as is E' and, consequently, such an approximation appears to be a good one.

The problem that arises in the use of equation (9) is that the desired variations in

pressure AP s cannot be arbitrarily prescribed, but are subject to two strict constraints.

First, the E-function is to remain unchanged outside the prescribed region of change.

Furthermore, within the region of change,

5 02 As
81 Ps

where the integration is over the entire region of change. The second constraint is that

02 AE do = 0

where again the integral is over the region of change.

In general, desired variations in the pressure distribution do not satisfy these con-

straints and a straight-forward trial-and-error process to find an approximation to the

desired variation that satisfies the constraints can lead to many time-consuming iterations.

Therefore, the possibility of violating the constraints needs to be explored.

These constraints arise, in the first place, from the fact that the E-function of any

airfoil can be expressed as a Fourier series without a constant term. As a result, the

E -function must satisfy two conditions:

(1) It must be periodic and consequently E(27) = E(0).

(2) Its integral over (0, 21T) must be zero.
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Inasmuch as the original E-function satisfies these two conditions, any variation in e

must satisfy the constraints stated by Theodorsen in order that the revised E -function

correspond to an actual airfoil.

Now, assume that an arbitrary small variation APs is prescribed such that both

constraints are violated; then the integral

= 2 Ps d -27 AP

1 Ps Psdo s s

Consequently,

E(2r) - (0) = E (11)

A simple way to eliminate this discontinuity is to alter the entire revised e -function with

a linear adjustment expressed as

Ea(0) = Eo(0) E
27r

where Eo(0) is the originally computed E-function which violates the constraints.

Now the first constraint is satisfied by the function Ea(0), but the velocity has been
altered slightly outside the originally prescribed region of change. However, small
changes in E influence the velocity primarily through changes in e', which for this
variation equals -E/2fr. Because this quantity is quite small and constant, the altera-
tion in the velocity outside the prescribed region of change should be slight and smooth.

At this point the second constraint is still violated; that is,

EA = 2 dO 2= 27 dO* 0 (12)

where now

AE = a(0) - Eo(0)

The simplest way to restore this constraint is to subtract a constant from Ea:

Eaa(0) = Ea(0) -A
27r
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This adjustment has an insignificant effect on the basic shape of the pressure distri-

bution since Ea = Ea . It is interesting to note that this adjustment also alters the angle

of attack zero lift, which is -ET, and the ideal angle of attack EN + T but not the

design lift coefficient which depends on ET - EN.

Thus, for arbitrary small prescribed changes in Ps, the constraints on E can be

satisfied with simple adjustments that result in smooth slight variations in the pressure

distribution outside the region of change.

The 4' - io function corresponding to the adjusted E-function Eaa is determined

from equation (2), and then the coordinates of the revised airfoil are given by equations (3).

CALCULATION PROCEDURE

The design calculation proceeds according to the following steps:

1. Compute distribution of cp and E(8) for the original airfoil.

2. Prescribe desired pressure distribution and compute the difference Acp

between the desired and original distributions.

3. From cp and Acp, compute APs/Ps with the use of equations (7) and (9).

4. Compute AE(0) from equation (10) and add this function to the original E-function.

to obtain the revised e(O).

5. Adjust this function to satisfy the required contraints.

6. Compute the revised 4'(O) according to equation (2).

7. Compute the new airfoil coordinates by means of equations (3).

8. Return to step 1 and iterate the calculation.

EXAMPLES

In the first example (see fig. 2), the original airfoil was 12 percent thick with

maximum thickness at 0.40 chord, leading-edge radius equal to 0.055, design cl = 0.2,

and maximum camber line ordinate at 0.35 chord. The variation in the pressure distri-

bution on the lower surface shown in figure 2(a) was prescribed to reduce the suction near

the leading edge, and within the prescribed region of change, the desired distribution is

very nearly attained (see fig. 2(b)). Outside the prescribed region of change, the new

pressure distribution deviates somewhat from the original distribution bedause the pre-

scribed change did not satisfy the constraints. Nevertheless, the pressure distribution

obtained has the desired form, and the pressure near the leading edge on the lower sur-

face is now positive. Figure 2(c) gives a comparison of the pressure distributions of the
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original and modified airfoils computed by the method discussed in reference 7. This

method includes the boundary-layer calculation. Figure 2(c) also depicts the original and

modified airfoil sections.

The results presented in figure 3 demonstrate that the method is also applicable at

a high angle of attack. A modification was prescribed in the pressure distribution at

a = 100. Again the prescribed distribution is not obtained exactly, but a reasonable

approximation is obtained. The capability to design for performance at a large angle of

attack is a feature which is potentially useful in the design of airfoils for high maximum

lift values.

A somewhat different type of problem is illustrated by the example shown in

figure 4. Here the goal was to modify the airfoil in such a way as to keep the basic form

of the pressure distribution and to maintain the same maximum thickness but to increase

the lift by 20 percent. This purpose could be accomplished by using the method described

in reference 8. However, the procedure to be used here, which is based on the Theodorsen

airfoil modification analysis, is applicable to larger variations than the method of refer-
ence 8. A linear variation 0.2 - )1 , where 0 < 0 < 7, is added to the E-function for

the upper surface, and a similar linear function 0.2ET3 - , where i < 0 < 27, is

added to that part of the E -function corresponding to the lower surface. This variation

satisfies the conditions that it is continuously periodic and that its integral over (0, 21T) is
zero. Furthermore, Theodorsen's argument that local variations in pressure are propor-

tional to local variations in E' indicates that the variation in cp should be nearly con-

stant where cp varies gradually. The results shown in figure 4 indicate that such is

the case except for the regions very near the leading and trailing edges. Thus, the basic
character of the pressure distribution is retained, while the lift is increased. A compari-

son of the airfoil profiles is given in figure 4(a), and the e and p functions for the
original and modified airfoils are shown in figures 4(b) and 4(c), respectively.

The effect of this modification is to decrease the angle of zero lift -ET by 20 per-

cent and thus increase the lift at zero angle of attack by 20 percent. The design lift coeffi-
cient is increased by 20 percent, but the ideal angle of attack is unchanged.

CONCLUDING REMARKS

The Theodorsen theory of airfoil design for incompressible flow can be used, with
modifications proposed herein, to design airfoils that satisfy a much wider variety of pres-
sure variations than permitted by the original Theodorsen procedure. This method starts
with an airfoil whose pressure distribution roughly approximates that desired and revises
fhe airfoil shape so that the resulting pressure distribution is a better approximation to
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the desired distribution. The four examples which have been computed and discussed

illustrate this method.

Langley Research Center,

National Aeronautics and Space Administration,

Hampton, Va., August 5, 1974.
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Exact circle

Approximate circle

Figure 1.- Transformed planes used to derive airfoils

and calculate pressure distributions.
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6- Original pressure distribution

---- Desired pressure distribution

(lower surface modification only)
Upper surface

-.4

Cp -.2

Lower surface

.2 I

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0

X /c

(a) Original airfoil section, original pressure distribution, and desired modification.

Figure 2.- Illustration of application of the method at zero angle of attack. Thickness ratio = 0.12.



Modified airfoil - -

-6 Desired pressure distribution

Pressure distribution obtained

-.4 -

, Upper surface

Cp -.2 - // Lower surface

.2 I I I I I I I I I

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0
X/c

(b) Modified airfoil and comparison of desired pressure distribution with that obtained.

Figure 2.- Continued.



-6 - Original

Upper surface Modified

-. 2 L. ower surface

CP

.4
0 .1 .2 .3 .4 .5 .6 .7 .8 9 1.0

X /Ic

(c) Comparison of original and modified airfoils and their pressure distributions

as evaluated by the viscous flow method of reference 7.

Figure 2.- Concluded.



-5.0-

Distribution obtained
-4.0 ------- Prescribed distribution

Distribution on original airfoil

-3.0 -

Cp -2.0-

-1.0

1.0

I I I I I I I

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0

X /c

Figure 3.- Illustration of application of the. method to pressure distribution modification at a = 100



-. 6 Upper surface -- Original (ce=0.156)

---- Modified (c~=0. 187)

-A

Cp -.2

Lower surface

O

.2
0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0

X/c

(a) Comparison of airfoil sections and of pressure distributions.

Figure 4.- Illustration of application of the method to obtain an

increase in lift without an increase in thickness.



- .08

-. 06-

- .04

-. 02 -

.02 - --- Modified

.04 -

.06 -

.08 Leading edge to trailing edge Leading edge to trailing edge

Upper surface Lower surface

.10 1 2 3 45 6 7

9, rod

(b) Comparison of E functions.

Figure 4.- Continued.



.18

.14-

.08

.0- Original

--- Modified

.04

.02 - -Leading edge to trailing edge Leading edge to trailing edge-

Upper surface Lower surface
0 I I I I

O0 1 2 3 4 5 6 7

9, rod

(c) Comparison of ip functions.

Figure 4.- Concluded.


