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AN ALGORITHM FOR THE WEIGHTING MATRICES IN THE SAMPLED-DATA
OPTIMAL LINEAR REGULATOR PROBLEM

Ernest S. Armstrong and Alper K. Caglayan*
Langley Research Center

SUMMARY

The sampled-data optimal linear regulator problem provides a means whereby a
control designer can use an understanding of continuous optimal regulator design to pro-
duce a digital state variable feedback control law which satisfies continuous system per-
formance specifications. A basic difficulty in applying the sampled-data regulator theory
is the requirement that certain digital performance index weighting matrices, expressed
as complicated functions of system matrices, be computed. This report presents infinite
series representations for the weighting matrices of the time-invariant version of the
optimal linear sampled-data regulator problem. Error bounds are given for estimating
the effect of truncating the series expressions after a finite number of terms and a method
is described for their computer implementation. A numerical example is given to illus-
trate the results.

INTRODUCTION

Optimal linear quadratic regulator theory, currently referred to as the Linear
Quadratic Gaussian (LQG) problem (ref. 1), has become one of the most widely accepted
methods for determining optimal control policy. In the continuous dynamics version of
the LQG problem, the system to be controlled is modeled as a system of first-order
vector-matrix ordinary differential equations linear in the state and control variables.

An optimal linear state variable feedback control law is obtained from the minimization

of an integral performance index whose integrand is composed of weighted quadratic terms
in the state and control. The user adjusts the weights to cause the closed loop response of
the dynamic system to satisfy required design specifications. (See refs. 2 and 3.) A dis-
crete dynamics analog of the continuous LQG problem also exists (ref. 4) in which the state
equations are first-order vector-matrix finite-difference equations linear in the state and
control variables evaluated at distinct time points. Both the continuous and discrete ver-
sions of the LQG problem provide the control designer with a rigorous tool for developing
linear state variable feedback control laws for multi-input multi-output dynamical systems.

*Virginia Polytechnic Institute and State University, Blacksburg, Va.



In many control applications the physical system to be controlled is modeled by using
continuous dynamic equations, and the control design specifications are given in terms of
response criteria for continuous systems, but the control law is to be implemented in a
digital fashion. A typical example is aircraft flight control applications where an onboard
digital computer is used to generate the controller commands. In such cases a problem
arises as to how to find a digital control law which achieves continuous design specifica-
tions. One approach, which is in the context of the LQG methodology, is the Optimal
Sampled-Data Regulator (OSR) problem (refs. 4 and 5). The OSR problem is a continuous
dynamics LQG problem with one additional constraint. The operational time interval is
divided into segments (sampling intervals) within which the control function takes on con-
stant values. In other words, the OSR problem is a continuous LQG problem where the
control is required to be piecewise constant. The OSR problem can easily be transformed
into a discrete LQG problem (ref. 6) and solved by using standard LQG solution algorithms.
The weighting matrices in the continuous OSR performance index are chosen to achieve the
continuous design specifications as if a continuous LQG solution is to be implemented and
then transformed into equivalent weighting matrices for use in the discrete LQG problem
computations. The transformation equations produce extra contrel-state cross-product
terms in the digital performance index and off-diagonal entries in the weighting matrices
for the other terms which have the effect of weighting the state and control variables at
points within the sampling interval as well as at the sampling instants. The OSR approach
provides a means whereby the users' intuitive understanding of continuous design problems
and LQG techniques can be applied to produce digital feedback control laws which satisfy
continuous performance specifications.

A primary difficulty in implementing the OSR problem is that the transformation
equations defining the digital weighting matrices are complicated functions of the continu-
ous system state transition matrix and other matrices appearing in the continuous formu-
lation. In fact, the computation of these matrices for high order systems often discourages
the use of the OSR methodology. In this report this difficulty is eliminated for the time-
invariant version of the OSR problem by presenting a general purpose, numerically attrac-
tive, easy-to-implement algorithm for computing the discrete weighting matrices. For the
time-invariant OSR problem, the transformed weighting matrices are noted to be analytic
functions of the sampling interval. Applying the analyticity property yields infinite series
expressions for the transformation equations. Error bounds are presented that show the
effect of truncating the series solutions after a finite number of terms and a technique is
recommended for implementing the algorithm on a digital computer. Finally, the results
of this paper are demonstrated with a numerical example.




SYMBOLS

A open-loop response matrix for continuous linear system
B control effectiveness matrix for continuous linear system
CQ(j) matrix defined by equation (21)
Cr(@ matrix defined by equation (59)
CW(j) matrix defined by equation (38)
D(j) matrix defined by equation (43)
2(Q+ I)HAH(Q +1) (Ati)(!Z+2)“Qc”e2“A“Ati
E(0) = : where ( is a natural number
2+ 2)!
EQ(n1> ,Ew<n2),Eﬁ<n3> error after truncating Qd, W, and ﬁd series after ny,
ng, and ng terms, respectively
e exponential of argument c
F matrix defined by equation (B2)
f, - functions defined by equations (B3) to (B8)
G(j) matrix defined by equation (62)
a-b aAr
H(a,b) = S\O e"'dTB where a and b are parameters
I n X n identity matrix
i, indices
K positive integer satisfying condition (71)

L(7)

matrix defined by equation (58)



A s |

number of sampling points

order of matrix A

number of terms at which summation index for Q4, W, and Rd series are
truncated, respectively

constant nonnegative definite symmetric matrix .
matrix defined by equation (6) or (11)
matrix defined by equation (11)

constant symmetric positive definite matrix
matrix defined by equation (8) or (13)
matrix defined by equation (13)

matrix defined by equation (54)

number of columns in matrix B

constant symmetric nonnegative definite matrix

final value of time

time variable, 0=t =T

ordered set of points within [O,T:} so that t <t <. ..<ty
T, final time

0, initial time

control vector

matrix defined by equation (34)

matrix defined by equation (7) or (12)




W(Ati) matrix defined by equation (12)

X(7) matrix defined by equation (17)
x(t) state vector

Y(3j) matrix defined by equation (25)
zZ,T,W integration variables

A = at; 2%

aty sample interval, = ti+1 - ti
I a matrix operator norm such that [|C|| = HC'H for a matrix C
Subscripts:

c continuous dynamics

d discrete dynamics

i ith stage

N final stage

0 initial stage

Q related to. Qd computation

R related to Rgq computation

R related to Ry computation
W related to W computation

Primes denote a matrix transpose.

A dot denotes differentiation with respect to {.



THE TIME-INVARIANT SAMPLED-DATA OPTIMAL
LINEAR REGULATOR PROBLEM

If the linear time-invariant system
% = AX + Bu (x(O) = Xo) (1)

is given where the matrices A and B are constant and of order nXn and nXr,
respectively, the sampled-data regulator problem occurs when the control function u(t)
(0=t =T) is required to minimize the functional J

T
J=x(T) S x(T) + S [x‘('r) Qc x(7) + u'(7) Rcu(TZI dr (2)
0
subject to the restriction that u(t) be constant over subintervals to<ty<. . .<ty of
[:O,’IB where
t0 =0
and
tN =T
That is,
- <t . _q)
u(t) = u(ti> (ti st<t;,, where i= 0,1,.. . N-1, (3)

The matrices S, Q., and R, of equation (2) satisfy

S=82z20

Q.= Q20
and

RC=RE>O

Applying condition (3) to equation (1) gives




Alt-t, t oA
x(t) = e ( l)x( ti) + S; eA(t 7) dr B u(ti> (ti =t< ti+1) (4)
Substituting equation (4) into equation (2) yields

J = x' tN Sx Z E{' Qd(1) x + x'( ) \;V(i) u(ti)
i=0

+ u'(ti> lid(i) u(ti)] (5)

with
Q0 - géiu eA'(T'ti) Q, eA(T‘ti) ar ©)
@ _ S'ti+1 A () Q. H(nt;) dr (1)
4
R, (i) = g:u l:RC 1 (78) Q H(T,tiﬂ dar (8)
and
H(tt,) = ‘gti At g7 B (9)

In terms of

i (10)

equations (8) to (9) become



g

A Aty
we) _ V() 24 an
(e T So AT Q_ H(r,0) dr (12)
. Ati
R, () = Ry (At.l) - go Eac + H'(1,0) Q, H(T,Oﬂd'r (13)
t AT
H@p):j‘e dr B (14)
0

The sampled-data regulator problem then becomes the standard discrete linear
quadratic regulator problem of choosing u(ti (i=0,1.. ., N-1)tominimize equa-
tion (5) subject to equations (11) to (14) and

A At

x(ti+1> =e ! x(ti> + H(Ati,0> u(t.1> (x(to> = x0> (15)

the solution of which can be obtained through well-known methods (ref. 4) once the matri-
ces Q d (Ati), W(Ati), and Rd (Ati) are computed. The following sections of this paper
present an algorithm for efficiently computing Qd (Ati), W (Ati), and Rd (Ati) for arbi-
trary (constant) A, B, Q. Ry, and at,.

EVALUATION OF Q (Ati)

Recall from equation (11) that

At
Qq (at;) = go Y X(7) dr (18)
where
X(7) = eA'TQc AT (17)

et et ez L



is analytic in 7 and hence can be expanded in a convergent Taylor series about 7= 0

Noting that

d——”;_(: = A'X(1) + X(1) A

gives

j+1 i j
d’" X(1) _ A dX(.T) + dX('T) A

. (=01,
ari+l ar! ar
and equation (18) can be rewritten as
X(7) = i Cq i) o)
T) = Q] -j—!-
=0
where
CQli + 1) = A" Cuj) + Cul) A (o = Q)

From equations (16) and (21),

_—
Qo) = " xe a

s - (2 J+1
Q(aty) = jgo CQW) T:I)L.

For computational purposes, let

(18)

(19)

(20)

(21)

(22)

(23)

(24)



Y() = Q(]) G: D1
From equation (22)
Al At. A At,
Y(G+1)= |- 1>Y(j> + Y — (i=0,1,.. 5 YO =Q aty)  (26)
j+ 2 j+2 ¢ 1
whereby
Qq(at;) = Y(O) + Y(1) +. . . (27)

In practice, equation (24) or (27) is truncated after a finite number of terms, for
example, n;. From equation (22),

|cq + b= 2iiall |jcqW)| (”cQ(ol [ H) (28)
whereby

HCQ@ =2 “AHjHQcH G=0,1,...) (20

Also, with equation (28)

Z “q (]+1)'

]n+1

J+1

off > o'

Jn1

R R s e e

J_=0(j+n1+2)!

(Equation continued on next page)

10

j+1 .
(At ) 5)

ug’ o
- T




] 2(n1+1)“A“(nﬁl)(Ati)(% )HQc“ Z ZJIIAH At ( +2)

(n1+2)! (]+ 1+2>.

(n1+1)“ H(n +1)( )(n 1+2)

Il 2llalat

(30)
(r1+2)!
Therefore, by denoting the terms in Qd (Ati) after term ny by E(nl),
ny ] j+1
+ C (])(At.)
At.) = Z Q L + Ep(n (31)
%2 Ly G+ Q)
with
(n +1> <n +1) (n +2
[al (a6 IRl aya
E “ Eln c [|Al| Aty (32)
[Eqfon)] < Eor) - O :
The function e(n1> provides an upper bound on the error obtained by truncating the
Qd(Ati> series after n, terms.
EVALUATION OF W/(at,)
Since, from equation (12),
W (At At
( 1) = g V() dr (33)
2 0
with
A T Az
V(T) = e ch e " Bdz (34)
0
analytic in 7, V(7) can be written as
11



o0 - .
< Al ]
V(7) = 2: Q;!%Q. %%
=0 dr :
7=0

Differentiating V(7) from equation (34) gives

dV(T) _ A' v(n) + X(1) B

ar
where X(7) is given by equation (17). Recursively,

j+1 i J

d_ a Vi) = A & V(.T) + 4 X("r) B

arl® arl ar!
Defining

i
arl 7=0

gives, from equation (34),

< j
V’T=ZC I—
(1) | W(])]!
j=0
where for j=0,1,. . .,

Cwl + 1) = A' Cy(i) + Culi) B

Equation (33) yields

W————(zAti> = S\OAti V(7) d7

12

(35)

(36)

Ll

(37)

(38)

(39)

(cw© = 0; cq) = Q) (40)

(41)



or

- j+1
W(At) (at
Vo) ol - (42)
2 . G+ 1!
=1
For computational purposes, let
j+1
) = oyl 1) -
WG+ 1y
Then for j=10,1,. . .,
- A' A i) <B Ati>
D(j + 1) = D(j) + Y(j (D='Y= )
j T2 () +Y() T2 (0) = 0; Y(0) = Q, Aty (44)
where Y(j) is computed from equation (26). In terms of D,
w(at;) = 2[D(1) + D) + . . ] (45)

The computation of an upper bound on the error in truncating equation (42) after a
finite number of terms, for example, j = ng z 1, is somewhat more complicated than the
corresponding computation for Qd (Ati) but can still be carried out by using the same
general approach. From equations (29) and (40),

HA

lowa + o]l = [lal] lewwl| + [lcqo]] |le]

A

ol lewoll « 2llall o] [fe] )
Rearranging equation (46) and assuming that [|A]| 20 yields

Jall?flew + ol - Jall ™ owo]| = 2!l lls] @)

A

Summing inequality (47) from j=0 to j- 1 yields

7 fewo | - 1] flewo |

[ell (- )

Q

13



or
1
lewl| = llecll ol lall ™ (21 - 1) =
Writing
o o0 j
w (at,) _ Z Cli + D )"fz ) Z Cyw + 1)<At)]+2 o
2 i=0 (j+2)! j=n2+1 (j + 2)!
and employing equation (48) gives
| i Cyrli + () 2l Z [[Cwt + 1Ii (a)
]=n2+1 G+ 2! ) ]=n2+1 G+2)
i w2 | 2 2 2| Al] at,
HA“ ]2]+1(Ati)l+ _ z<n2+ )HAH<H2+ >( )( >|| Sﬂe ‘ M 50
i (i +2)! ] (nz ¥ 3) llall
Thus
n, ) j+1
W(At, Cyw/(J) (At
<2 .- j; W(j +< 1)11> + By (ng) (51)
where
“EW ny H = (nz + 1)“%“ (52)

for HAH #0 and ngz 1.
EVALUATION OF Ry (Ati>

The relation Rd (Ati> can be written as

14

.



R, (at;) = R, Aty + Ry (at;)

where

_ At
Ry (at,) = So " H'(1,0) Q, H(7,0) dr

Definc L(7) as
T A T
L(7) = B'[‘g eA Z 4z QC[S eAw d\xE]B
0 0

from which

dL(7)

I = B'V(7) + V(1) B

with V(7) defined from equation (34). Recursively,

j+1 j iy
I 1 =8 () +IX (B
dari+tl dr! drl

The function L(7) may alternately be expressed as

o0 . .
L(7) = z dim) o
. darl il
]=O =0
With
i
Cr() = d———L(jT)
a7 7=0

(i

0,1,. ..

(53)

(54)

(55)

(56)

(57)

(58)

(59)

15



equation (57) gives

Crli+1)= B'Cy,(§) + Cywl) B (60)
with
CR(O) = CR(I) =0
Then
_ At 2 at)i+1
Rd(Ati> = §O ! L(t) d7 = Zz Cr( %—jlm— (61)
J'_'

For computational purposes, let

Co(j)(at,)i*+1
G+ 1)1
with
/B‘ At B At
G+ 1) =1- D(j) + D'(j)| - i=0,1,...) (63)
\] + 2 j+ 2
from which
Ry <Ati) = G(2) + GB3) +. . . (64)

By following the same procedure as in the previous sections, an upper bound on the
error in truncating equation (61) after j = ng 2 2 terms can also be found as follows:

ng £ j+38
ﬁd (Ati) = Z CrG +2) ﬂL + Ef{(ng,) (65)

i+ 3)!
<o (G +3)

16
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lewolf = lod] |13 Nall (22 - 2) (60

V|| <Eog + z)<“§”> (67)

“E n3

if A=#0.
SUMMARY OF RESULTS

In the previous sections it has been established, for ||A|| # 0, that

Qq(at;) = gOAti eMTQ e dr = YO0 + Y(D) +. . .+ ¥(ny) + Eq(ny)

A' At. A At
Y+ 1) = < >Y(J) +Y<1)< 1> (Y(o) Q, At)
j+2 i+2

<n1+1) <n1+1> At <n1+2 ZHA”At
T
W(ji) - VfoAtl AT Q 5(; eAZBdzdr=D(1) + D(2) +. . .+ D(ny) + Ey(ng)

A' At
DG+ 1) =
i+ 2

[mwiea)] <=+ D2y

. B At,
>D(j) + Y(J')(_ 21> (D(O) =0; Y(0) =Q, Ati)

]+

17



R, (at) = R, at, + Ry (at;)

~ Aty T, T
Rd(Ati)=B'§ IS\ eAzsz ‘§ AV qw dr B
C
0 Yo 0
=G@2)+G@B) +. ..+ G(n3) + E§<n3>
B' At) B At Q B At.2
G(i+ 1) = D(j) + D'(j) L D(1) = - .
j+ 2 j+ 2

The absolute error bounds for EQ<n1), Ew<n2), and Eﬁ(n3) can, in each case, be
written in terms of the error function E. Relative accuracy requirements, however,
generally require different values for ny, ng, and ng.

For the trivial case in which ||Al| = 0,

Qd<Ati> = Q, At; 68)

W(Ati> - Q, B(Ati>2 (69)
3

Rd<Ati> = R, At + B'Q, BQAE—> (70)

COMPUTER IMPLEMENTATION

The infinite series representations summarized in the previous section, when
,numerically evaluated, yield Qd (Ati)’ W(Ati> , and ﬁd(Ati) for general A, B, Qc’
and RC matrices and sampling intervals At.,. In practice, numerical difficulties can
occur unless the matrix A is preconditioned to avoid large numbers of terms in the
series solutions and excessive roundoff error. One preconditioning approach and its
implementation are presented in this section.

18




If the matrix A and sample time At.1 are given, find an integer K 2z 0 such that

a4 1 (11)
2% lal|
By defining
At .
A= "3 (72)

inequality (71) gives
||aa]| <1 (13)
whereby the eigenvalues of AA are within the unit circle in the complex plane and

Jim (Asa) =0 (74)

jc0

Next, replace At, by A and compute the corresponding Qd(A), W(A), and f{d(A)
matrices by the series solutions. Convergence should be rapid because of conditions (73)
and (74). If~ K > 0, the required solutions for At, may be constructed from Qd(A),
w(A), and Rd(A) by applying the equations derived in appendix A as follows. In equa-
tions (A5), (A7), (A8), and (A9) replace A by 2)A to give

Qu (27 1a) = Qd(ZjA) . A2l Qd(sz) A2l (75)
w(21a) = (1 - eA'ZjA> w(2ia) + 2eh'2la Qd(ZjA>H<2jA,O> (76)
ﬁd(23+1A) = Zf{d(sz> + v_viz_z_jﬁ H(ZjA,0> + m(zh,o)mgj‘k—)

+ H'(ZjA,O) Q (2%) H(ZjA,O) 7)

. i ,
H(21+1A,o) = (1 + B2 A)H(ZJA,O> (78)
\

i+l i i
oA A L A2lA A2iA (79)

19



Recursively evaluating equations (75) to (79) from j=0 to j= K- 1 yields Qd (Ati),

AA

W(Ati>, and ﬁd (Ati> at the final stage. Algorithms for computing e and H(A,0)

to initialize the recursive process are given by Kéllstrom. (See ref. 17.)

Software for the theory presented in this paper is available in the ORACLS program.
(See refs. 8 and 9.)

AN EXAMPLE COMPUTATION

In this section a particular set of (A, B, Qc’ Ati) is chosen and results from the
algorithms presented in the foregoing sections are illustrated. The computation was
performed by using the subroutine SAMPL of the ORACLS program (ref. 9) on a CDC
6600 digital computer in single precision. The SAMPL subroutine employs the method of
computer implementation described in the preceding section. Numerically, convergence
was assumed to have occurred in the Qd’ W, and R d series when the improvement in
the element of largest magnitude (measured relatively if the magnitude was less than unity,
and absolutely otherwise) of each of the matrices was past the eighth significant digit. Let

2 1 1
A=i1 2
1 1 2
1 0
B = 1
0 O
1 0 O
Qc= 1 0
0 0 1
1 0
R =
c 0 1
and
At, = 1/2

20




Taking
m

max Z|
] |

i=1

<]
for some given m Xn matrix C with elements Ci; gives

j
[Jall = 1] afl

cij“ (1sj=n)

4

and

I
-

5] =1l=) -
The condition

At

2% a]

gives K=2 and A =1/8. The results of the series computations are

0.166270 0.0242575 0.0242575
Qd(1/8) =10.0242575 0.166270 0.02425%5
0.024255 0.0242575 0.166270

0.0102932 0.00142899
%(1/8) - 10.00142899  0.0102932
0.00142899  0.00142899

- 0.000798547 0.0000827449
Ry(1/8) = 140000827449  0.000798547

with truncation error bounds

[EQ(y)|| < E(ny) = 7.09 x 10-10 (ny = 10)



“EW(n2>H < E(nz + 1) %3—{% = 1.77 x 10-10 (n2 = 9)

B2 (ms)

' 2
< E(n3 + 2)(:-:—%%) = 4.43 x 10-11 (n3

I
o]
~—

Relative accuracies are

[Eafns)]

TaRe] <3.30 x 1079
M <1.35 x 1078
oo

sl

P

Since K = 2, two passes through equations (75) to (77) were required which generated the
sequence

0.482451 0.158090 0.158090

Q4(1/4) = 0.158090  0.482451  0.158090
0.158090  0.158090  0.482451
0.0576453  0.0173101

-‘52-’-(1/4) = 10.0173101  0.0576453
0.0173101  0.0173101

N (0.00815427  0.00184446

R,(1/4) =
0.00184446  0.00815427

(2.80602  1.94688  1.94688
Qq(1/2) = |1.94688  2.80602  1.94688
1.94688  1.94688  2.80602

22



0.565488  0.355069
%Vu/z) - |0.355069  0.565488
0.355069  0.355069

- 0.124575 0.0628764
R4(1/2) =
0.0628764  0.124575
0.624575 0.0628764
Rd(1/2) =

0.0628764 0.624575

These final results agree with the closed form solutions shown in appendix B.

CONCLUDING REMARKS

A computational procedure for generating the weighting matrices needed in the time-
invariant optimal linear sampled-data regulator problem has been presented. This pro-
cedure makes use of an analytical property of the defining equations to produce general
purpose numerically attractive infinite series expansions which can be easily summed on
a digital computer. Error bounds for truncating the series expansions after a finite num-
ber of terms were derived and gave good agreement with intended accuracy for the numeri-
cal example considered. It is felt that the results of this paper eliminate a basic and
major difficulty in optimal sampled-data regulator methodology and open the way to a
wider application of the theory.

Langley Research Center

National Aeronautics and Space Administration
Hampton, VA 23665

November 11, 1976
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APPENDIX A

EVALUATION OF SAMPLED-DATA WEIGHTING MATRICES FOR
DOUBLED VALUES OF SAMPLING INTERVAL

For the purposes of this appendix, let the sampling interval be denoted by A and
the weighting matrices defined by equations (11), (12), and (54) be denoted by

A t
Qq(8) = fo eA'TQ AT ar (A1)
W) - ‘YA A'TQ H(70) dr (42)
2 ) N c Y
_ A
R, (a) = SO H'(r,0) Q, H(7,0) dr (A3)

with, as before,
T A
H(T,0) = f e*?dz B (A4)
q..O . .

Here equations for Qg4(24), W(24), and ﬁd(ZA) are derived in terms of Q4(4), W(a),
f?d(A), eAA, and H(A,0). These equations are used in the body of the paper in the section
dealing with a computer implementation of the algorithms for Qd (Ati>, W<Ati>, and

R (Ati>.
For Qd,

24 4, A L
Q4(24) = 50 oA Tq, AT 4 - Qa) + So QAT (T+2) Q, GA(T+8) o

= Qqa) + &4 qya) A4 | (45)

Additionally,
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APPENDIX A

H(7+4,0) = §T+A e®% B dz - H(A,0) + ST eA(Z"'A) B dz
0 0
= H(a,0) + e® H{r,0)

from which

H(T+A,0) = H(4,0) + ¢ H(7,0) = H(r,0) + 27 H(a,0) (A6)
and

H(24,0) = (1 + eAA) H(A,0) (AT)

For W,
w2a) _ §2A eA'TQ H(7,0) dT = wa) SWA- A (T+4) Q. H(7+A,0) dt
2 0 c 2 J0 c
I »
= W;A) + eA'A tSO eA'T Qc H(7,0) d7 + gO eA'TQc eAT ar H(A,O):l

whereby

I

W(2a) <1 . eA'A>W(A) + 2¢A"4 Q(a) H(a,0) (A8)

Finally for Ry,

~Rd(ZA)

24 - A
(7 w0 @ H(r,0) a7 = Ry(a) + fo H'(1+4,0) Q, H(T+4,0) d7
0 (%

~ A A
Ry(@) + | 7 B(1,0) @ H(m0) a7 + | “H(1,0) Q, AT ar H(a,0)

(Equation continued on next page)
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A A A
+ H'(4,0) go AT Q, H(7,0) dr + H'(4,0) g eA'TQ, AT drH(4,0)
0

or

Ry(24) = 2R, (8) + 5 (A) H(A,0) + H'(A,0) W(A) + H'(A,0) Qq(A) H(A,0)  (A9)
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APPENDIX B
A CLOSED FORM SOLUTION FOR COMPUTATIONAL EXAMPLE

A closed form solution is given for the numerical example presented in the body of

this paper. These results are useful in determining the validity of the numerical
computations.

For

2 1 1
A =11 2 1
1 1 2
At = otr o -;—(e4t - et>F (B1)

where I is a 3 X 3 identity matrix and

F=A-1I (B2)

With equation (B1),

1
B=10 1
0
1 0
QC=O 1 0
0 0 1
and
1 0
R =
lo 1

equations (10), (11), and (12) yield
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where
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Qq (Ati> =| i

APPENDIX B

-

£y £y
f1 + f2 f2

f2 fl + fz

—h
w
1}
Pl
(o]
[\
B
—+
-
]
=
1
[ ]
/(D\
e
—+
t
Pk
~—

(92}
1

(B3)

(B4)

(B5)
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f

6=

8At.
e b 1)
384

96
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4AtL. 2At.
<e 1-1)—%<e 1—1>+
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