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AN ALGORITHM FOR THE WEIGHTING MATRICES IN THE SAMPLED-DATA 

OPTIMAL LINEAR REGULATOR PROBLEM 

* 
Ernest  S. Armstrong and Alper K. Caglayan 

Langley Research Center 

SUMMARY 

The sampled-data optimal linear regulator problem provides a means whereby a 
control designer can use  an understanding of continuous optimal regulator design to pro­
duce a digital s ta te  variable feedback control law which satisfies continuous system per­
formance specifications. A basic difficulty in applying the sampled-data regulator theory 
is the requirement that certain digital performance index weighting matrices,  expressed 
as complicated functions of system matrices,  be computed. This report  presents infinite 
s e r i e s  representations for the weighting matrices of the time-invariant version of the 
optimal linear sampled-data regulator problem. E r r o r  bounds a r e  given for estimating 
the effect of truncating the series expressions after a finite number of t e rms  and a method 
is described for  their computer implementation. A numerical example is given to illus­
t ra te  the results.  

INTRODUCTION 

Optimal linear quadratic regulator theory, currently referred to as the Linear 
Quadratic Gaussian (LQG) problem (ref. l),has become one of the most widely accepted 
methods for determining optimal control policy. In the continuous dynamics version of 
the LQG problem, the system to be controlled is modeled as a system of first-order 
vector-matrix ordinary differential equations linear in the state and control variables. 
An optimal l inear s ta te  variable feedback control law is obtained from the minimization 
of an integral performance index whose integrand is composed of weighted quadratic t e rms  
in the state and control. The u s e r  adjusts the weights to cause the closed loop response of 
the dynamic system to  satisfy required design specifications. (See refs. 2 and 3.) A dis­
crete  dynamics analog of the continuous LQG problem also exists (ref. 4)  in which the state 
equations a r e  first-order vector-matrix finite-difference equations linear in the s ta te  and 
control variables evaluated a t  distinct t ime points. Both the continuous and discrete  ve r ­
sions of the LQG problem provide the control designer with a rigorous tool for developing 
linear s ta te  variable feedback control laws for multi-input multi-output dynamical systems. 

~-..* Virginia Polytechnic Institute and State University, Blacksburg, Va. 
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In many control applications the physical system to be controlled is modeled by using x
b 

continuous dynamic equations, and the control design specifications are given in t e r m s  of j 


response c r i te r ia  for continuous systems, but the control law is to be implemented in a 

digital fashion. A typical example is aircraf t  flight control applications where an onboard 

digital computer is used to generate the controller commands. In such cases  a problem 

arises as to how to find a digital control law which achieves continuous design specifica- 1 

tions. One approach, which is in the context of the LQG methodology, is the Optimal 11 


8 
Sampled-Data Regulator (OSR) problem (refs. 4 and 5) .  The OSR problem is a continuous i 

dynamics LQG problem with one additional constraint. The operational t ime interval is d 
divided into segments (sampling intervals) within which the control function takes on con­
stant values. In other words, the OSR problem is a continuous LQG problem where the 
control is required to be piecewise constant. The OSR problem can easily be transformed 
into a discrete  LQG problem (ref. 6) and solved by using standard LQG solution algorithms. 
The weighting matrices in the continuous OSR performance index are chosen to achieve the 
continuous design specifications as if a continuous LQG solution is to be implemented and 
then transformed into equivalent weighting matrices for u se  in the discrete LQG problem 
computations. The transformation equations produce extra  control-state c ros s  -product 
t e r m s  in the digital performance index and off-diagonal entr ies  in the weighting matrices 
for the other t e rms  which have the effect of weighting the s ta te  and control variables a t  
points within the sampling interval as well as a t  the sampling instants. The OSR approach 
provides a means whereby the use r s '  intuitive understanding of continuous design problems 
and LQG techniques can be applied to produce digital feedback control laws which satisfy 
continuous performance specifications. 

A primary difficulty in implementing the OSR problem is that the transformation 
equations defining the digital weighting matrices are complicated functions of the continu­
ous system state transition matrix and other matrices appearing in the continuous formu­
lation. In fact, the computation of these matrices for high order  systems often discourages 
the use of the OSR methodology. In this report  this difficulty is eliminated for the t ime-
invariant version of the OSR problem by presenting a general purpose, numerically attrac­
tive, easy-to-implement algorithm for computing the discrete  weighting matrices.  For the 
time-invariant OSR problem, the transformed weighting matrices are noted to be analytic 
functions of the sampling interval. Applying the analyticity property yields infinite series 
expressions f o r  the transformation equations. E r r o r  bounds are presented that show the 
effect of truncating the series solutions after a finite number of t e r m s  and a technique is 
recommended for implementing the algorithm on a digital computer. Finally, the results 
of this paper a r e  demonstrated with a numerical example. 
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SYMBOLS 


A open-loop response matrix for continuous linear system 

B control effectiveness matrix for continuous linear system 

CQ(j) matrix defined by equation (21) 
I 

CR(j) matrix defined by equation (59) 

Cw(j) matrix defined by equation (38) 

D(j) matrix defined by equation (43) 

EQ(nl) 7EW(n2),E8(n3) e r r o r  af ter  truncating Qd, W, and iid s e r i e s  after nl ,  
"2, and n3 t e r m s ,  respectively 

ec exponential of argument c 

F matrix defined by equation (B2) 

f l y  , . . f6  functions defined by equations (B3) to (B8) 

G (j)  matrix defined by equation (62) 

H(a,b) e A r d r  B where a and b a r e  parameters  


I n X n identity matrix 


i,j ind ices 


K positive integer satisfying condition (71) 


L ( d  matrix defined by equation (58) 
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N number of sampling points 


n order  of matrix A 


n1 ’n2’n3 number of t e r m s  at which summation index for Qd, W, and Rd series a r e  


truncated, respectively 

QC constant nonnegative definite symmetric matrix 

Qd (i) matrix defined by equation (6) or (11) 

Qd (ati) matrix defined by equation (11) 

R C  
consta1.t symmetric positive definite matrix 

kd(i) matr ix  defined by equation (8) o r  (13) 


Rd (“‘i) matrix defined by equation (13) 


’d (%) matrix defined by equation (54) 


r number of columns in matrix B 


S constant symmetric nonnegative definite matrix 


T final value of time 


t t ime variable, 0 5 t 5 T 


b 

. 


ordered s e t  of points within [O,T] so  that to < t i  < 

T, final time 

0, initial t ime 

control vector 

matr ix  defined by equation (34) 

W(i) matrix defined by equation (7) o r  (12) 
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W(Ati) matrix defined by equation (12) 


X(T) matrix defined by equation (17) 


x(t) state vector 


Y (j) matrix defined by equation (25) 

b 

=,r,w integration variables 

A = Ati/2 K 

Ati sample interval, = ti+l - t, 

I1 II a matrix operator norm such that llCll = IlC'lI for a matrix C 

Subscripts : 

c 

d 

i 

N 

0 

Q 

R 

-
R 


W 

continuous dynamics 


discrete dynamics 


ith stage 


final stage 


initial stage 


related to. Qd computation 


related to Rd computation 


related to Ti, computation 


related to W computation 


P r i m e s  denote a matr ix  transpose,  A dot denotes differentiation with respect  to t. 
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THE TIME-INVARIANT SAMPLED-DATA OPTIMAL 

LINEAR REGULATOR PROBLEM 

If the linear time-invariant system 

i 
i!

x = A x + B u  (do)  = xo) (1) I 
I) 

is given where the matrices A and B are constant and of o rde r  n X n and n X r, i
respectively, the sampled-data regulator problem occurs when the control function u(t) .
(0 5 t 5 T) is required to minimize the functional J 

J = x'(T) Sx(T)+ 

subject to the restriction that u(t) be constant over subintervals to C: t l <  . . . < tN of
E,9 where 

to = 0 

and 

t N  = T 

That is, 

u(t)  = "(ti) ( t i  5 t ' t i+l where i = 0, 1, . . ., N - 1, (3) 

,.The matrices S, Q,, and RL of equation (2) satisfy 

S = S ' Z O  

Q
C 

= Q ' 2 0
C 

and 

Rc = R' > 0
C 

Applying condition (3) to equation (1) gives 
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x(t) = e 
A(t-ti) 

x( t i )  + $' dT B u(t i )  (ti 2 t < tifl) (4) 
i 

Substituting equation (4) into equation (2) yields 

with 

A' (T-ti) A (T-ti) dTQc e 

and 

In t e r m s  of 

Ati = ti+l - t i  

equations (6) to (9) become 
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t 

H(t,O) = 1 eATd7  B 


0 


The sampled-data regulator problem then becomes the standard discrete linear 
quadratic regulator problem of choosing u(ti) (i = 0, 1, . . ., N - 1) to minimize equa­
tion (5) subject to equations (11) to (14) and 

(.(to)= xo) (15) 

the solution of which can be obtained through well-known methods (ref. 4) once the matr i ­
ces Qd (Ati), W (Ati), and Rd (Ati) are computed. The following sections of this paper 
present an algorithm for efficiently computing Qd (Ati), w (at,), and Rd (Ati) for arbi­
t r a ry  (constant) A, B, Qc, Rc, and Ati. 

EVALUATION O F  Qd (a$) 

Recall from equation (11) that 

where 

X(T) = eA' T 
Qc e 

AT 

8 
, 



is analytic in T and hence can be expanded in a convergent Taylor series about T = 0 

Noting that 

I 

dX0 = A'X(T) + X(T) A
dT 

r 

gives 

( j  = 0, 1, . . .) 

and equation (18) can be rewritten as 

where 

CQ( j  + 1) = A' CQ(j) + CQ(j) A 

From equations (16) and (21), 

For computational purposes, let 
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From equation (22) 

whereby 

Qd(Ati) = Y(0) + Y(1) + . . . (27) 

In practice, equation (24) or (27) is truncated after a finite number of t e rms ,  for  
example, nl. From equation (22), 

whereby 

( j  = 0,  1, . . .) (29) 

Also, with equation (28) 

j +  1 j +  1 
(‘ti) j (Ati) 

j=n1+1 ( j  + l)! ( j  + 1)! 

(Equation continued on next page) 
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Therefore, by denoting the t e r m s  in Qd (Ati) af ter  t e r m  n1 by E(nl) ,  

n1 c 	 (1) (At 
( j  + I)!Qd(ati) = &+ EQ@l) 

j = O  

with 

The function e (n l )  provides an upper bound on the e r r o r  obtained by truncating the 
Qd(Ati) s e r i e s  after n1 terms.  

EVALUATION OF 

Since, from equation (12), 

i with 

7 
V(7) = eA' Qc loeAzB dz 

analytic in 7, V(7) can be written as 

W (Ati) 

(34) 

-11 




Differentiating V( T )  f rom equation (34) gives 

a 
= A' V(T)+ X(T) B (36)

dT 

where X(7) is given by equation (17). Recursively, 

d j +  1 dJV(T) dJX(T)V ( T )= A' -+ -B ( j  = 0, 1, . . . )  (37)
dTj+1 d T j  d 7J 

Defining 

gives, f rom equation (34), 

where for j = 0, 1, . . ., 

Equation (33) yields 

12 


0 



.-
I 

or  

For  computational purposes, let 

Then for j = 0, 1, . . ., 

where Y(j)  is computed from equation (26). In t e r m s  of D, 

W(Ati) = 2 p(1)+ D(2) + . . 1 (45) 

The computation of an upper bound on the e r r o r  in truncating equation (42) af ter  a 
finite number of t e rms ,  for  example, j = n2 2 1, is somewhat more  complicated than the 
corresponding computation for Qd (Ati) but can s t i l l  be carr ied out by using the same  
general approach. From equations (29) and (40), 

Rearranging equation (46) and assuming that IlAll f 0 yields 

Summing inequality (47) f rom j = 0 to j - 1 yields 

13 




or  

Writing 

j+2 + 2 Cw(j + l)(Ati)j+2 
w @ti) = cw(j+ 1) kti> 

(49) 
2 j = O  ( j  + 2)! j=n2+ 1 ( j  + 2)!  

and employing equation (48) gives

2 Cw(j + 1) (At i ) j+2  - 1S TIlcw(j+ ~ 1 ( ~ t J j + '  -5 

j=n2+ 1 ( j  + 2 ) !  j=n2+1 ( j  + 2 ) !  

Thus 

where 

fo r  IIA! I f 0 and n2 2 1. 

EVALUATION OF Rd (Ati) 

The relation Rd(Ati) can be written as 

14 
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I where 

Defir,;. L(T) as 

L(T) = B'[,' e*'' dgQC[loT eAwdw] B 

from ~ h i c h  

w)= B'V(T) + V'(7) BdT 

with V(7) defined from equation (34). Recursively, 

The function L ( T )  may alternately be expressed as 

With 

(55) 

( j  = 0 ,  1, . . .) (57) 

(59) 

15 




equation (57) gives 

with 

For  computational purposes, let 

with 

from which 

kd(Ati) = G(2) + G(3) + . . . (64) 

By following the same  procedure as in the previous sections, an upper bound on the 
e r r o r  in truncating equation (61) after j = n3 2 2 t e r m s  can also be found as follows: 

16 




and 

if A f 0. 

SUMMARY OF RESULTS 

In the previous sections it has been established, for IlAll f 0, that 

A t -
Qd(Ati) = lo' eA" Qc eAr d r  = Y(0) + Y(1) + . . . + Y(nl) + EQk1) 

w (At.) 
'= loAti 7

eA" Qc lieAz B dz d r  = D(1) + D(2) + . . . f D(n2) + E ~ ( n 2 )
2 

17 




Rd(Ati) = Rc Ati + Rd(Ati) 

Ati 7 
'd(Ati) = B' loeAfZdz Qc eAwdw d 7  B 

= G(2) + G(3) + . . . + G(n3) + E&3) 

The absolute e r r o r  bounds for E ~ ( n 1 ) ,  E w @ ~ ) ,and Eh(n3) can, in each case,  be 
written in t e r m s  of the e r r o r  function E. Relative accuracy requirements,  however, 
generally require different values foi. "1, n2, and n3. 

For the tr ivial  case in which IlAIl = 0, 

2
W (Ati) = Qc B(Ati) 

Rd(Ati) = Rc Ati + B'Qc B- ti)^ 
(70)3 

COMPUTER IMPLEMENTATION 

The infinite s e r i e s  representations summarized in the previous section, when 
,numerically evaluated, yield Qd (Ati), W( Ati) , and Ed(Ati) for general A, B, Qc, 
and Rc matrices and sampling intervals Ati. In practice, numerical difficulties can 
occur unless the matrix A is preconditioned to avoid large numbers of t e rms  in the 
series solutions and excessive roundoff e r r o r .  One preconditioning approach and i ts  
implementation are presented in this section. 

i a  
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If the matrix A and sample t ime Ati a r e  given, find an integer K 2 0 such that 

By defining 

Ati 
A = - (72)

2K 

inequality (71) gives 

whereby the eigenvalues of Ah are within the unit circle in the complex plane and 

Next, replace Ati by A and compute the corresponding Qd(A), W(A), and Rd(A)  

matrices by the s e r i e s  solutions. Convergence should be rapid because of conditions (73) 
and (74). If K > 0, the required solutions for Ati may be constructed from Qd(A), 
W(A), and Rd(A) by applying the equations derived in appendix A as follows. In equa­
tions (A5), (A7), (A8), and (A9) replace A by 2jA to give 

Qd(2j+lA) = Qd(2jA) + eA'2IA Qd(2jA) .A2IA 

W(Zj+lA) = (I + eAf2jA)W(2jA) + 2eAV2jAQd(2jA) H(2jA,0) 

kd(2j+'A) = 2Rd(2jA) + W ' ( 2 j A )  H(2jA,O) + H1(2jA,0) W(2jA) 
2 

+ H'( 2jA,O) Qd (2jA) H (2jA,0) (77) 

2j+'A,O) = (I  + eA2jA)H(2jA,0) 

\ 

eA2j+'h ,A2jA .A2jA 
(79) 
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Recursively evaluating equations (75) to (79) f rom j = 0 to j = K - 1 yields Qd (At 
i>
, 

W(Ati), and ?id(Ati) a t  the final stage. Algorithms for computing eAA and H(A,O) 
to initialize the recursive process are given by Kallstrom. (See ref. 7.) 

Software for the theory presented in this paper is available in the ORACLS program. 
(See refs. 8 and 9.) 

AN EXAMPLE COMPUTATION 

In this section a particular set of (A, B, Qc, Ati) is chosen and resul ts  f rom the 
algorithms presented in the foregoing sections are illustrated. The computation was 
performed by using the subroutine SAMPL of the ORACLS program (ref. 9) on a CDC 
6600 digital computer in single precision. The SAMPL subroutine employs the method of 
computer implementation described in the preceding section, Numerically, convergence 
was assumed to have occurred in the Qd, W, and Rd series when the improvement in 
the element of largest  magnitude (measured relatively if the magnitude was less than unity, 
and absolutely otherwise) of each of the matrices was past the eighth significant digit. Let 

A=! 	 1 

1 

Qc=E1 

0 


L J 

and 

Ati = 1/2 

2:i 

1
1 
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Taking 

for some given m X n matr ix  C with elements c . .  gives
1J 

lbll = IIA'll = 4 

and 

The condition 

- < - 1 

2K ll*ll 
gives K = 2 and A = 1/8. The resul ts  of the series computations are 

0.0 242575 

0.166270 

0.0242575 0.166270 


0.0102932
2 


0.000798547 


with truncation e r r o r  bounds 

21 




("2 = 9) 

("3 = 8) 

Relative accuracies are 

Since K = 2, two passes  through equations (75) to (77) were required which generated the 
sequence 

0.158090 0.158090 
0.482451 0.158090 
0.158090 0.4824511 

-
0.0 173101 
0.0576453

2 
0.0173101 

1 


Ed(1/4) = 

22 
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0.124575 0.0628764 
Rd(1/2) = 

0.0628764 0.124575-

To. 624 57 0.0628764 

Rd(1’2) = b.0628764 0.624575 

These final results agree with the closed form solutions shown in appendix B. 

CONCLUDING REMARKS 

A computational procedure for generating the weighting matrices needed in the time-
invariant optimal linear sampled-data regulator problem has been presented. This pro­
cedure makes u s e  of an analytical property of the defining equations to produce general 
purpose numerically attractive infinite series expansions which can be easily summed on 
a digital computer. E r r o r  bounds for truncating the s e r i e s  expansions after a finite num­
be r  of t e rms  were derived and gave good agreement with intended accuracy for the numeri­
cal example considered. It is felt that the results of this paper eliminate a basic and 
major difficulty in optimal sampled-data regulator methodology and open the way to a 
wider application of the theory. 

Langley Research Center 

National Aeronautics and Space Administration 

Hampton, VA 23665 

November 11, 1976 
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APPENDIX A 

EVALUATION O F  SAMPLED-DATA WEIGHTING MATRICES FOR 

DOUBLED VALUES OF SAMPLING INTERVAL 

For the purposes of this appendix, let the sampling interval be denoted by b and 
the weighting matrices defined by equations (ll),(12), and (54) be denoted by 

Qd(A) = 1	A eAlr  Q c e A r d r  
0 

2W(h) = JOA e A T r Q cH ( r , O )  d 7  

with, as before, 

7 
H(r,O) = IoeAz dz B 

Here equations for &,@A), W(2A), and kd(2A)  are derived in t e rms  of Qd(A), W(A), 
gd (A) ,  eAA,and H(A,O). These equations are used in the body of the paper in the section 
dealing with a computer implementation of the algorithms for Qd (Ati), W (Ati) and 

Rd(Ati)* 

For Qd7 

2A 
Qd(2A) = 1 eA" Qc eAr d r  = Qd(A) + Qc e 

d r  
0 

Additionally, 

24 
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APPENDIX A 

T+A 
H(T+A,O) = lo eAz B dz  = H(A,O) + 

= H(A,O) + eAAH \ ' T , ~ )  

from which 

and 

H ( 2 4 0 )  = (I + eAA) H(A,O) 

For W, 

- W(A) + ,AIA b'" eA ' r  QC H(7,O) dT + eA" Qc eATdT H(A,O)2 L o  
whereby 

W(2A) = ( I  + eA'A)W(A) + 2eAIA Qd(A) H(A,O) 

Finally for i?d, 

- A 
dT + H'(T,O) QC eAT dT H(A,O)= Rd(A) + loH'(T,O) QC H ( T , ~ )  

(Equation continued on next page) 

25 
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APPENDIX A 

A 
+ H'(A,O) loeA" Qc H ( T , ~ )d7 + H'(A,O) JoA eA" Qc eA7d 7  H(A,O) 

or 


k i ( 2 A )  = 2kd(A) + 2 H(A,O) + H'(A,O) -
2


W(4) + H'(A,O) %(A) H(A,O) (A91 

26 




APPENDIX B 

A CLOSED FORM SOLUTION FOR COMPUTATIONAL EXAMPLE 

A closed form solution is given for the numerical example presented in the body of 
this paper. These resul ts  are useful in determining the validity of the numerical 
computations. 

For 

A = [  

1eAt = etI + -(e 4t - e t )F  
3 

where I is a 3 X 3 identity matrix and 

F = A - I  

With equation (Bl) ,  

1 
B =  0: I 
0 0 


1 0 
Qc = 0 1 

0 0 !1 

and 

equations (lo),  (ll),and (12) yield 
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APPENDIX B 

f l  + f 2  f 2  f 2  

Qd (Ati) = f 2  f l  + 

f 2  f lf2+ f 21 
f 3  + f4  


W(Ati)  = f 4  f 3  + f4 


f4f4 1
I f 4  

where 

2At.  
f l  = +(e 1 - 1) 

2At i  At i  

f 5  = f (e - 1) - 2(e - 1) + 2 Ati  

28 
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