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SUMMARY

A study has been made of a new pressure-coefficient formulation based
on linearized theory. It is intended to provide more accurate estimates of
detailed pressure loadings for improved stability analysis and analysis of
critical structural design conditions. The approach is based on the use of
oblique-shock and Prandtl-Meyer expansion relationships for accurate repre-
sentation of the variation of pressures with surface slopes in two-dimensional
flow and of linearized-theory perturbation velocities for evaluation of local
three-dimensional aerodynamic interference effects. The applicability and
limitations of the modification to linearized theory are illustrated through
compar isons with experimental pressure distributions for delta wings covering
a Mach number range from 1.45 to 4.60 and angles of attack from 0° to 25°,
For thin wings at small angles of attack, the modified formulation provides
essentially the same pressure-distribution values as the more conventional
linearized-theory formulation. However, more accurate overall pressure dis-
tributions and wing loadings are provided at moderately high angles of attack
and high supersonic Mach numbers.

INTRODUCTION

Linearized-theory methods for the aerodynamic design and analysis of
supersonic airplane configurations (refs. 1 to 4, e.g.) have proven to be very
useful in the preliminary stages of aircraft design. They provide realistic
estimates of aerodynamic performance for reasonably complete airplane config-
urations. In addition to the wing, these confiqurations may include a fuse-
lage, tail or canard surfaces, and nacelles or stores. Design details such as
wing twist and camber and aerodynamic interference between configuration com-
ponents are also taken into account. These methods, however, may fail to pro-
vide sufficiently accurate estimates of detailed pressure loadings required for
stability analysis and for analysis of critical structural design conditions.
The problem is most severe for large angles of attack and high supersonic Mach
numbers.

The analytic study reported herein provides a modification to linearized
theory which is designed to extend the applicability of the local pressure-
coefficient prediction to high angles of attack and high supersonic Mach num-
bers. This is accomplished by means of a new pressure-coefficient formulation
for use in existing methods, such as those of references 1 to 4, or in advanced
linearized~-theory surface-panel methods now being developed, such as those of
references 5 and 6. As a first step in a study of the feasibility of the
method, the pressure-coefficient formulation has been applied to linearized-
theory solutions for delta wings and the results have been compared with exper-
imental pressure distributions.

The approach is based on the observation of two fundamental flaws in lin-
earized theory when applied to delta wings at large angles of attack. The



first is the failure to predict the high local pressures that occur on the wing
lower surface in the region of the root chord, where the flow has much of a
two-dimensional character. The second is the tendency to predict larger pres-
sure loadings than actually occur in outboard regions of the wing, particularly
near the leading edge, where the flow has a highly three-dimensional character.
The pressure-coefficient formulation adapted herein attempts to solve these
problems by utilization of shock-expansion theory to account for the nonlinear
variation of pressure coefficients in two-dimensional flow while retaining the
linearized-theory prediction of three-dimensional effects.

SYMBOLS
B,C,D constants used in evaluation of Cp* (see appendix B)
b wing span
b/2
CN wing normal-force coefficient, 2/S Lg cpc dy
0
Cp - pressure coefficient
Cp* pressure coefficient evaluated by use of the effective deflection
angle &* (see appendix B)
Cp,84 pressure coefficient for shock detachment &g
Cp,8=90 Ppressure coefficient for the stagnation pressure behind a normal
shock
c local wing chord
Cav average wing chord, S/b
c
Cn section normal-force coefficient, 1/c LY Cp dx'
E(k) elliptic integral of second kind with modulus k
k modulus of elliptic integral, ql - sz cot?2 A
1 wing overall length (root chord for delta wings)
mM* Mach number corresponding to the effective expansion angle v*
M; local Mach number given by linearized theory in three-dimensional

flow (interference included)



local Mach number given by linearized theory in two-dimensional
flow (interference neglected)

free-stream Mach number

exponent in the expression for m*

static pressure

total pressure

wing area

nondimensional perturbation velocities in Cartesian coordinate system

nondimensional local longitudinal perturbation velocity given by
linearized theory in three-dimensional flow (interference included)

nondimensional local longitudinal perturbation velocity given by
linearized theory in two-dimensional flow (interference neglected)

Cartesian coordinates, origin at wing apex
longitudinal distance behind wing leading edge
longitudinal center of pressure

lateral center of pressure

angle of attack

= M2 -1

ratio of specific heats

flow deflection angle

effective flow deflection angle

flow deflection angle for shock detachment

lateral flow angle in plane tangent to local surface (see sketch (a))
shock angle for two-dimensional inclined planar surface

shock angle for shock detachment

wing leading-edge sweep angle



A angle between plane tangent to local surface and free-stream velocity
vector (see sketch (a))

i equivalent turning angle due to local perturbation
v¥ Prandtl-Meyer expansion angle for m*

Vi Prandtl-Meyer expansion angle for M;j

Vo Prandtl-Meyer expansion angle for Mg

Vg, Prandtl-Meyer expansion angle for M

¢ angular parameter used in definition of Cp*

LINEARIZED~THEORY DEFICIENCIES

The failure of linearized theory to provide realistic estimates of pres-
sure distributions at large angles of attack for a high supersonic Mach number
is illustrated in figure 1. The experimental data for an uncambered delta wing
with the leading edge swept 76° and a 4-percent-thick circular-arc streamwise
airfoil section have been taken from reference 5. The theory was evaluated by
means of a simple computer program applicable only to delta wings, which is
discussed in appendix A. This special computer program, rather than those
described in references 1 to 4 or other current methods, was employed to
insure a proper evaluation of lateral as well as longitudinal perturbation
velocities for linearized-theory calculations. The method of references 1
to 3 does not provide lateral components of velocity v, and the method in
reference 4 gives values of v that were found to be in error. More advanced
linearized-theory surface-panel methods such as those discussed in references 6
and 7 should provide accurate numerical solutions for all the linearized-theory
perturbation velocities,

In figure 1(a), the linearized-theory pressure coefficient has been
defined by the standard linearized expression Cp = -2u, At the lower angle
of attack, which is representative of the normal application of linearized
theory, there is a reasonable agreement with the experimental data for all
three semispan positions. At the higher angle of attack (o ~ 20°), however,
there are serious discrepancies. On the wing lower surface, especially in the
vicinity of the root chord, the linearized theory fails by a large margin to
predict the rather large positive pressures actually attained. In the region
of the wing tip upper surface the theory predicts much larger negative pres-
sures than are realized.

A more complete second-order form of the pressure coefficient expression
was employed in figure 1(b) to see whether the correlation could be improved by
use of all three linearized-theory perturbation velocities. It is evident that
the prediction capability has deteriorated. Even the more sophisticated isen-
tropic form of the pressure coefficient employed in figure 1(c) offers an
improvement for only the upper surface.



Some fundamental reasons for the failure of linearized theory to predict
pressures at large angles of attack may be explored with the aid of figure 2.
Here the pressure coefficient on a planar surface inclined to the free-stream
flow is shown as a function of the flow deflection angle & for six supersonic
Mach numbers. For this situation the linearized-theory pressure coefficient
without interference is given as Cp = 26/8 (where § 1is in radians). The
more exact oblique-shock compression and Prandtl-Meyer expansion relationships
(which are hereinafter referred to as shock-expansion relationships) from ref-
erence 8, however, show a far from linear variation with the deflection angle.
For positive deflections, the pressure coefficient increases at an ever greater
rate with increasing deflection until the shock detachment angle &4 is
reached. At this point the flow becomes locally subsonic and the purely super-
sonic prediction methods are no longer applicable. WNote the small angles at
which shock detachment occurs for the low supersonic Mach numbers. This makes
the problem of pressure prediction at high angles of attack and low supersonic
Mach numbers extremely difficult. For negative deflection angles, the pressure
coefficients given by the expansion relationships show a far slower growth of
negative pressure than do those given by the linearized theory. 1In fact, a lim-
iting or vacuum pressure coefficient defined as —2/qu3°2 is approached. The
shock-expansion and linearized-theory curves are coincident only at ¢ = 09,
Figure 2 thus depicts clearly the major reasons for the linearized-theory fail-
ures: both the underprediction of positive pressures on the lower surface and
the overprediction of negative pressures on the upper surface of a wing at high
angles of attack.

THEORY MODIFICATION

The preceding analysis led to consideration of a theoretical pressure-
coefficient formulation which combines the more exact, two-dimensional,
interference-free prediction capabilities of the shock-expansion relation-
ships with the linearized-theory capabilities for handling of three-dimensional
interference effects. 1In brief, a local pressure coefficient C *, is calcu-
lated in accordance with the shock-expansion relationships for an effective
deflection angle 8*. This effective deflection angle includes a purely geo-
metric component (based on the local-surface slope relative to the free stream)
and an aerodynamic interference component (based on local interference veloci-
ties evaluated by normal linearized-theory methods). Thus,

6*=>\+Xi (1)
where A is the angle between a plane tangent to the local surface and the
free-stream velocity vector and Aj is an equivalent turning angle due to

differences between local perturbation velocities and interference-free values.

The equivalent turning angle is defined from Prandtl-Meyer expansion equa-
tions as

Ai = Vg - Vi (2)



where

Mg2 - 1 1
Vo = @ tan~1 \| ——— - cos~ 1| —
6 Mo
M2 -1 1
Vi = \Ig tan~! \|———— - cos~ | —
6 Mi
and
Mo = M_(1 + ug)
(1 + ujy)
Mj =M ——

CcOs €

In the above expressions u, is the longitudinal perturbation velocity without
interference, uj; is the longitudinal perturbation velocity including inter-
ference, and € is the lateral flow angularity on a local surface inclined at
an angle A with respect to the free stream. The angles A and € are

depicted in sketch (a):

z Local velocity ——}—— }
y > €
/ Tangent plan - 17 *
e
~————Tangent p ﬁ
LLocal surface /jk— — X

X

Sketch (a)

Because linearized theory allows the longitudinal perturbation velocities to
approach negative infinity instead of the more realistic limit of -1 (which
corresponds to a stagnation point), an arbitrary constraint defined by the
following equations has been introduced:

2 (A 0) (3
- < )
B



ug = 1 - > (A > 0) (4)
1
+ 1
A m
1 + — —
B 180
uj =u (u > 0) (5)
2
uj_='|——2 (u < 0) (6)
1
+ 1
1 -1u

This adjustment limits My and Mj to values greater than zero.

Values of 8* calculated according to the procedure just outlined are
used to define a local pressure coefficient Cp* through use of the shock-
expansion relationships in reference 8. These equations as adopted for the
present purposes are given in appendix B. A typical variation of Cp* with
8* is shown in sketch (b):

// Cp:6=90
//
—C
p,éd
Cp* 90°
%4
l—- j
6 *
Sketch (b)

When the local Mach numbers M, or Mj; become less than 1, the Prandtl-
Meyer expansion equations are no longer applicable, and without special provi-
sions the whole calculation process would have to be terminated. Therefore,
provision has been made to provide fictitious expansion angles for local Mach
numbers less than 1 so that the process may continue. For My and M; less
than 1, the expansion angles are defined as



]

Vo = (Vg = 90) (1 - Mg)2 (7)

Vi = (v_ - 90) (1 - My)2 (8)
Normally, this provision is not employed unless the local surface slope exceeds
by an appreciable margin the shock detachment angle 83 for the free-stream
Mach number. In programming this procedure for the examples in this report,
care was taken to indicate each incidence of M, and Mj less than 1 so that
the impact on the overall solution could be assessed.

RESULTS AND DISCUSSION

The linearized-theory modification discussed in the previous section has
been applied to delta wings for which experimental pressure distributions are
available. For the present, application of the method is restricted to uncam-
bered wings of delta or arrow planform, because existing linearized-theory
methods applicable to wings of arbitrary planform and arbitrary surface shape
do not appear to provide correct values of all the perturbation velocities.
Advanced linearized-theory methods utilizing surface panels with continuous
distributions of singularities (refs. 6 and 7) should remedy this situation.

For the delta wings treated here, the linearized-theory perturbation
velocities were determined from a computer program created especially for this
purpose. The program is based on the equations given in reference 9 and listed
in appendix A, Velocities determined from these equations were then employed
in the definition of a modified linearized-theory pressure coefficient as
described in the section "Theory Modification" and in appendix B. The flow
angu%arity € in the local surface tangent plane was assumed to be simply
tan™' v.

Chordwise pressure distributions from reference 5 for a delta wing with
the leading edge swept 76° and 4-percent-thick circular-arc streamwise airfoil
sections are presented in figure 3. Data were taken at Mach numbers of 2.3,
3.5, and 4.6 and at angles of attack up to about 20°. The Mach numbers and
angles of attack shown here are representative of those for which the modifica-
tion to linearized theory would be expected to apply. The effective deflection
angle 8* is in all cases less than the maximum deflection angle for shock
detachment Sd. At deflections greater than Sd, the flow is not supersonic
everywhere and the modification becomes invalid. .

In all parts of figure 3, the wing lower-surface pressures along the root
chord y/(b/2) = 0 are better predicted by the modified formulation for the
pressure coefficient. At the root chord, where the v-components of perturba-
tion velocity are zero, the improved pressure-coefficient prediction is due to
the nonlinear nature of the shock-expansion relationships. As a matter of
interest, it might be noted that the interference component A; of the effec-
tive deflection angle &* plays an important role. Without this term the mid-
chord lower-surface pressure coefficient at the highest angle of attack would
be 0.545 at M_ = 2.3 and 0.372 at M_ = 4.6. At the outboard station
y/(b/2) = 0.8 the upper-~surface pressures are better predicted by the modifi-
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cation to linearized theory because the shock-expansion relationships account
for the vacuum pressure limitation —2/YMw2.

For the lower surface of the outboard station, the modified formulation
provides an improvement in the overall shape of the distribution, but provides
only a marginal improvement in the general level. Perhaps most significant
here is that the modified formulation eliminates the infinite pressures of
the wing leading edges for subsonic leading edges (M, = 2.3 and M, = 3.5).
Because of the strong sidewash, or v contribution, the lower-surface leading-
edge pressures defined by the modified Cp formulation approach the vacuum
limit. At moderate angles of attack, the experimental data show evidence of
the formation of a separated leading-edge vortex flow pattern on the wing upper
surface. Note especially the data for o = 9.94° and y/(b/2) = 0.4 at a
Mach number of 2.3. It is possible that the modified pressure-coefficient for-
mulation in combination with vortex flow prediction methods, such as that of
reference 10, could provide good predictions of local pressures for this phe-
nomenon. Large sidewash velocities on the wing surface caused by the separated
vortex could well cause an approach to the limiting vacuum pressure coefficient,
which is -0.270 for this Mach number of 2.3.

Spanwise loading distributions for the 76° delta wings at all three Mach
numbers are shown in figure 4. The loadings predicted by the modified C
formulation provide a better description of the experimental loading distribu-
tion at the higher angles of attack and at the higher Mach numbers. At the
lower angles, the newer method offers little or no benefit.

Force data for the same 76° delta wings from reference 5 are shown in
figure 5. For the wing normal-force coefficient, there is little difference
between the two approaches. A well-known characteristic of the simple linear-
ized theory is its ability to predict overall forces in spite of sometimes
large failures in prediction of detailed pressure distributions. The modified
system does, however, offer an improvement in prediction of longitudinal center
of pressure.

Data for a delta wing with the leading edge swept 63.4° at angles of
attack of 62, 152, and 25° (refs. 11 and 12) are presented in figure 6. The
wing streamwise sections were modified biconvex with maximum thickness ratios
of 5 percent at midchord and with 50-percent~blunt trailing edges. For the
Mach numbers of 2.46 and 3.36, results differ little from those for the 76°©
swept wing and no new conclusions may be drawn. The supersonic-leading-edge
condition at lower Mach numbers creates no particular problem. At a Mach num-
ber of 1.97, the results at O = 62 and O = 159 are similar to those shown
previously. However at O = 259, there are some regions of the wing (e.g., the
lower surface near the apex) where the effective deflection angle 8* becomes
larger than the shock separation angle Sd' an indication that the real problem
is one of a mixed subsonic and supersonic flow. For this angle there is some
deterioration in the correlation between the modified formulation values and
the experimental data.

At the lowest Mach number of 1.45 and at an angle of attack of 159, §*
is larger than the 6d value of 10.8° for most of the forward half of the wing
chord for all the stations shown. This is indicated by the break in the modi-
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fied formulation curve. All data ahead of this point result from an arbitrary
description of C * versus 6*, as discussed in appendix B. Of course, the
presence of such a large region of indicated subsonic flow invalidates any
supersonic linearized-theory solution. This is really a mixed, or transonic,
flow problem. The good agreement between the predicted values and the measured
data at o = 25° is entirely fortuitous, because &* is larger than 8§q for
all the data shown. Only for o = 6° is the linearized theory valid. Here,
there is little difference between the two Cp formulations.

Spanwise distributions of normal force for the 63.4° swept wing are shown
in figure 7. For the higher Mach numbers, the predictions given by the modi-
fied formulation appear to be reasonable and offer an improvement over the sim-
pler linearized formulation. Integrated force data for this wing are shown in
figure 8. As indicated previously, the newer approach is not expected to offer
any improvement at the lower Mach number. At the higher Mach numbers there is
little difference in normal force for the two formulations, but the modified
formulation does offer an improvement in center of pressure location.

In a further attempt at defining the limits of applicability of the modi-
fied method, correlations with pressure distribution data from reference 13 at
Mach numbers of 1.61 and 2.01 for a delta wing with the leading edge swept 70°
are shown in figure 9. This wing had NACA 65A003 streamwise airfoil sections.
The rounded leading edge thus assured that for all angles of attack there would
be some portion of the wing subject to subsonic flow. Only in the vicinity of
the wing apex for a Mach number of 1.61 and an angle of attack of 20° is there
evidence of an appreciable discrepancy between experimental data and values
predicted by the modified formulation resulting from local subsonic flow. For
this Mach number the shock detachment angle is 14.9°, At a Mach number of
2.01, where the highest angle of attack (20°) is less than the shock detachment
angle of 23.19, good correlation between predictions by the modified formula-
tion and the experimental data is shown for all the data presented. Apparently
the rounded leading edge introduces only localized regions of subsonic flow and
does not invalidate the present modification to linearized theory.

In general, the correlations presented here indicate an applicability
range of the present modification to linearized theory limited by angles of
attack roughly equal to the shock detachment angle for a given Mach number.
Outside this range of applicability the problem of pressure distribution pre-
diction actually involves mixed supersonic and subsonic (transonic) flow phe-
nomena and thus is not amenable to any theories which assume all supersonic

flow.

After writing this paper, the author became aware of another method being
advanced for the combining of linearized-theory and shock-expansion formula- .
tions. This other work, reported in reference 14 is based on the same general
premise, but differs considerably in implementation. It is intended primarily
for hypersonic Mach numbers in the range M_ = 4 to 8.
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CONCLUSIONS

A study has been made of a new linearized-theory formulation for the
prediction of pressure coefficients on lifting surfaces at high supersonic
Mach numbers and large angles of attack. The formulation is based on the
use of shock-expansion relationships for accurate representation of the
variation of pressures with surface slopes in two-dimensional flow and the
use of linearized-theory perturbation velocities for evaluation of local
three-dimensional aerodynamic interference effects. The study has led to
the following conclusions:

1. The new pressure-coefficient formulation generally provides a more
accurate representation of local pressure coefficients and section normal-
force distributions for moderately high angles of attack and high supersonic
Mach numbers than does the conventional linearized-theory formulation, although
the changes in overall wing normal forces are negligible.

2. At small angles of attack, for the relatively thin wings treated, d4dif-
ferences between the modified formulation and the more conventional linearized-
theory formulation are small.

3. In general, the applicability range of the modification to linearized
theory is limited to angles of attack roughly equal to the shock detachment
angle for a given Mach number. Outside this range of applicability, the prob-
lem of pressure distribution prediction involves mixed supersonic and subsonic
(transonic) flow, and thus is not amenable to any theories which assume all
supersonic flow.

Langley Research Center

National Aeronautics and Space Administration
Hampton, VA 23665

January 25, 1979
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APPENDIX A

LINEARIZED THEORY FOR DELTA WINGS

The u- and v-components of perturbation velocity for calculation of pres-
sure coefficients by linearized theory were found by means of a computer pro-
gram based on equations presented in reference 9. The thickness solution for
arbitrary wing sections was assembled by well-known superposition techniques.
Longitudinal components of perturbation velocity u were found by direct
application of equations presented in reference 9. Special techniques were
required to find lateral perturbation velocity components v. The expressions
for u are listed first.

Perturbation velocities due to thickness -

Supersonic leading edges:

-\ cot A
u = (x < B_Yy) (9)

\]sz cot2 A - 1

-\ cot A i- 2 1 - (B 2y%/x?)
u = 1 - - sin~! (x>B8y) (10)
véqf cot2 A - 1[ m Bmz cotZ A - (szyz/xz)
Subsonic leading edges:
-2\ cot A 1 - 8,2 cot2 A
u = cosh™! (x < y tan A) (11)
n‘ﬂ] - Bmz cot? A (8m2y2/x2) - (Bm2 cot2 A7)
-2} cot A 1 - (B 2y2/x2)
u = - cosh™! (x > y tan A) (12)
"\I] - B2 cot2 A (8,2 cotZ N) - (B_2y2/x2) ‘

Perturbation velocities due to lift -

Supersonic leading edges:

a cot A
u = (x < B_y) (13)

\Bo? cot? A -1

12



APPENDIX A

a cot A l_ 2 1 - (B,2y2/x2)
u = 1 - - sin”! (x> By) (14)
\[Bm-? cot? A - 1!_ m B2 cot? A - (B 2y2/x2)
Subsonic leading edges:
u = — (x > B_y) (15)
E (k) \]Bmz cot2 A - (B_2y2/x2)
where

=
]

Q1 - B2 cot2 A

No direct solutions for v were found in the literature. However, for
the lifting velocities with subsonic leading edges, it was possible to derive
an analytic expression for v by an integration to obtain the velocity poten-
tial and a subsequent differentiation to obtain v. For that case

o BwY/X

E(k) \\sz cot? A - (B, 2y2/x?)

(x > By) (16)

Because analytic expressions could not be found for the other conditions, v
was found by numerical means for all conditions, and v for that one special
case was used only as a check on the numerical accuracy. It was found through
geometric considerations for wings with conical flow that v could be expressed
as a function of an integral of u in a simple equation:

1 x' x
v = - Lf u dx' - - u(x') (17)
Y 9o Y

This expression in combination with the previously defined equations for u
were programmed on a high-speed digital computer to obtain linearized-theory
solutions for the correlation examples presented in this report.

13



APPENDIX B

PRESSURE COEFFICIENT DEFINITION BY SHOCK-EXPANSION RELATIONSHIPS

Nearly exact expressions for the pressures acting on the surfaces of
pPlanes inclined with respect to the free-stream flow have been defined in
reference 8. These expressions are used in this appendix to calculate a
modified pressure coefficient CP* as a function of the effective deflection

T

angle 8% given in the section "Theory Modification."

First, it is necessary to define the shock detachment angle for the free-
stream Mach number. The shock angle for detachment 63 is

:

6g = sin™} ———E[}Mmz -2+ Q3(3Maﬁ - 4am 2 + 13J (18)
™

[e]

From this, the surface slope for shock detachment {3 can be calculated:

S(MOO2 sin 203 ~ 2 cot 64)
8g = tan™! (19)
10 + M 2(7 + 5 cos 20q)

For 8% values greater than 0 but less than &g, Cp* can be calculated
by a process suggested in reference 8 and implemented in reference 15. The
process requires a three-step operation:

4.58BC - B3 - 13.5D

¢ = cos™! (20)
(B2 - 3¢)37/2
-B 2 ¢ + 4nm
8 = sin~ T\ |— + -\‘B2 -~ 3C cos <——————> 21)
3 3 3 (
5 sz Sin2 6 -1
Co* = - (22)
P 3 2
Moo

14



APPENDIX B

where

M2+ 2
B =~ > - 1.4 sin2 &8*
MCD
2M°°2 + 1 4 .
C = +[1.44 + — | sin2 §
Moo Mco
cos? §*
D=- ——
M 4

For &* wvalues greater than 83, no valid solution can be found because
the local Mach number becomes subsonic. The problem then involves a mixed
supersonic and subsonic flow and neither supersonic linearized-theory nor shock-
expansion relationships are applicable. Because only a small portion of the
flow may be affected in many cases, calculations for the examples shown in this
report were not terminated when §* became larger than 6d. Instead, an arbi-
trary linear fairing between the pressure coefficient for shock detachment
CP'5d and the pressure coefficient corresponding to the stagnation pressure

behind a normal shock Cp,5=90 was introduced. Thus, for 8§* greater than
Gd'

§* - 84
* = — ————————
Cp = CPIGd + (Cp,5=90 CP,5d> 90 - 84 (23)
where
5 Mm2 sin2 ed -1
Co §q = =|—
PI d 2
3 M
and
3.5/ 6 2.5 1
Cp,6=90 = (1.2M(Jo ) ———;———— -1 —___—E
™ ¢ -1 0.7M

In the programming, provision was made to indicate each incidence of &* in
excess of 83 so that the impact on the overall solution could be assessed.

15



APPENDIX B

For &8* values less than 0, Prandtl-Meyer efpansion relationships were
employed. First, an effective expansion angle v is defined:

vF=y -8* (24)

where

<
I

Then an effective expansion Mach number may be defined. No direct expression
for Mach number as a function of expansion angle was found in the literature.
However, an effective expansion Mach number may be approximated by

1
M* = (25)

* n
v
(130.45>

where

v* *
n=20.,5 + 0.313( ———| - 0.42 \|=————
130.45 130.45

and V* is in degrees. This approximation has Mach number errors of no more
than 0.005 in the Mach number range of 1.0 to 10.0. With Vv* zna M* defined,
Cp* may be found from

1 p/pe (M*,v¥)

c.* = { -1 (26)

0.7M_2| P/Pt (M,,V,)

where

3.5
1 2 1
li-(M*,\)*) = [ — {1 + cos —-<\)* + cos™! —>
Pt 2.4 V6 M*
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P
Pt

(Mmlvw) =

1
2.4

APPENDIX B

1 + cos

e

1
+ cos~1 —

(o]

)

3.5
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Figure 1.- An illustration of failure of linearized theory to predict pressure
distributions for large angles of attack. Delta wing with leading edge swept
769; M_ = 3.5 (ref. 5).
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Figure 4.- Comparison of predicted and measured normal-force distributions for a
delta wing with leading edge swept 76° (ref. 5).
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Figure 5.- Comparison of predicted and measured wing normal force and longi-
tudinal center of pressure for a delta wing with leading edge swept 76°
(ref. 5).
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Figure 7.- Comparison of predicted and measured normal-force distribution for
a delta wing with leading edge swept 63.4° (refs. 11 and 12).
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Figure 9.~ Comparison of predicted and measured pressure distributions for a
delta wing with leading edge swept 70° (ref. 13).
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